前言:中文期刊网精心挑选了故障诊断方法综述范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
故障诊断方法综述范文1
关键词:汽车;变速器;故障诊断;解析;
自动变速器是一种汽车内部的封闭装置,只要产生故障,就会使维修的难度增大,在未确认故障区域时,不能随意开展解体维修,必须快速并正确地进行故障的诊断及排除,相关的维修人员必须全面掌握各种汽车故障的症状,还要仔细收集并分析来自于用户的情况说明,以便更好地开展故障诊断与排除。
一、汽车自动变速器中的故障诊断
(一)容易产生打滑 汽车运行过程中,在踩油门后车速无法提高,或汽车在上坡时缺乏行驶的动力,产生此类情况时,驾驶员应快速思考是否是自动变速器发生了故障。而导致这一故障的原因有很多:(1)汽车自动变速器的制动器内密封圈使用过久,未进行及时更换,致使零件过度磨损产生脱落,从而使自动变速器漏油;一旦油压与供油减少,就会使汽车缺乏运行动力;(2)汽车自动变速器内的油泵被损坏也会使汽车漏油、油压减少,让汽车缺乏运行动力且无法提速。
(二)容易产生漏油 汽车自动变速器产生漏油的关键因素是汽车自动变速器平面发生了变形,或者是由于自动变速器在进行加工时工作人员缺乏耐心,从而使汽车关键部件中的固定螺栓产生松动。一旦发生此类故障,须从集中漏油的地方着手,判断具体的故障原因,采用具有针对性的排除方法。
(三)无法升档 汽车在运行过程中自动变速器无法提升到高速档或超速档,产生此故障的原因有:节气门拉索的调整不正确;节气门的位置传感器与电路故障;调速阀及其油路故障;车速传感器故障;换档电磁阀故障;高档离合器与制动器故障;档位开关故障等。
二、主要的诊断方法
(一)磨损残余物分析诊断方法
对于汽车变速箱齿轮而言,其最为主要也是最为常见的失效形式就是磨损失效;汽车在运行过程中,若出现齿面磨损,则可以在油中找到这些磨损的残余物;对于磨损残余物分析诊断方法来讲,其对机器失效有关信息的快速获取,主要是基于对机械零部件磨损残余物在油中残余物含量的测定来完成的。当前进行测定的主要有两种方法:1对残余物进行直接检查,以及通过对油浑浊度变化、电感的变化以及油膜间隙内电容的测定来快速获得有关零件失效的重要信息;2收集残余物,例如,应用特殊的过滤器或者磁性探头等来把工作表面因疲劳而形成的大块剥落物收集起来。实践表明,应用磨损残余物故障这种分析方法来对变速器中的磨损类型故障进行检测诊断,是相当有效的;相比于其他故障诊断方法,诸如振动诊断方法,这种诊断方法在对磨损类型故障诊断方面,更具有优势,因而对汽车变速器磨损故障进行判断的有力手段就是磨损残余物分析诊断方法。
(二)振动检测技术诊断法 有关机械振动信号,这是当前诊断技术采用最多的一种信号,这主要是基于由振动所产生的机械损坏具有相当高的比率;根据相关资料可知,由机械振动而带来的机械故障超过三分之二;此外,最容易获得的振动信号,是来自机械运转中所产生的,而且在振动信号中,还具有数量众多的能对机械设备状态进行反映的信号,通过振动的异常可把许多机械故障反应出来。振动检测技术诊断法,主要是基于对设备振动参数及特征的检测,来对设备状态和故障进行分析的一种方法。
(三)声发射技术诊断法 这种诊断方法,就是应用仪器进行检测、对声发射信号进行分析和利用的一种故障诊断方法。对汽车变速箱齿轮而言,因其的高速旋转,致使运行中不可避免地产生热弯曲、不对称等现象,带来转子碰撞,故在金属以内的晶格,将出现重新排列或滑移,此过程因能量发生变化,变化的能量将通过弹性波这种形式来进行释放,这就形成了声发射信号;一定要应用专门技术,来把背景噪声的干扰排除掉。声发射监测这种检测方法,具有无损动态检测特点,但它又不同于其他无损检测方法,因声发射信号是产生于外部条件的作用下,故对于那些缺陷变化,相当敏感,对于那些微米数量级的显微裂纹的扩展和发生的相关信息,可以轻而易举地检测出来,故具有极高的灵敏度。
(四)光纤传感技术诊断法 这种故障诊断方法,主要是基于光纤对一些特定的物理量所具有的敏感性,来把外界物理量向可进行直接测量的信号进行转换的一种汽车变速器齿轮故障诊断方法。就光纤而言,不仅可直接作为光波的直接传播媒质,而且光纤传播中的光波,其特征参数会因外界因素的影响而产生变化,故可把光纤当作传感元件来对各种物理量进行探测。对于光纤传感器而言,因具有极高的灵敏度、超强的抗电磁干扰能力、超好的电绝缘性急耐腐蚀等等优点,故在汽车这个行业也受到了极为普遍的应用。当前,光纤传感技术已朝着智能化、功能化及集成化等方向快速发展着,可以预见,随着科技的不断发展,这种故障诊断方法将在汽车变速器齿轮故障诊断中将得到越来越广泛的应用。
参考文献:
[1]ThomasMerath,JoachimNaas,FranzJoachim等.基于有限元法的汽车变速器齿轮与轴承优化[J].传动技术,2015,29(2):3-13,20.DOI:10.3969/j.issn.1006-8244.2015.02.001.
[2]高勇.微型汽车变速器传动效率的影响因素分析及试验研究[D].武汉理工大学,2013.
故障诊断方法综述范文2
【关键词】 机械设备;状态检测;故障诊断;
1、引言
机械设备状态监测及故障诊断技术,是从上世纪六七十年代的应用发展来的管理理念。随着机械设备的现代化、复杂化和自动化程度的不断升级,机械设备状态监测及故障诊断技术在国外得到了迅猛的普及和广泛使用,成为当今先进设备管理及维修的新思维。上世纪九十年代以来,机械设备状态监测及故障诊断技术开始在我国得带推广,并且取得了一定的效果。作为一种新颖的设备管理思想,与传统的设备管理与维修观念相比,它具有更好的有效性和科学性,显著的提高了设备运行的可靠性、生产效率以及设备的使用寿命,同时降低了设备的维修成本。
2、机械设备状态监测及故障诊断技术的意义
机械设备状态监测与故障诊断技术主要包含着以下两项技术:一是对及其状态进行实时监测,即状态监测技术;二是故障诊断方法,即高效的故障诊断技术,设备的状态监测技术是指对故障设备的某些特征参数进行监测,并且将所得测定值与规定的正常值进行比对,判断该部件是否运行正常。机械设备故障诊断技术则不仅要判断机械设备是否运转正常,而且还需要对故障原因、故障位置、以及故障的严重程度作出判断。
1、经济快速发展的需要
现代化生产向着大型化、自动化、连续化、高精度、高效率等方向发展,生产率大幅度提高,产品的质量也相应的得到可靠的保证。但是,生产设备的突发性故障是不可避免的,极易造成的重大的经济损失。因而对于连续化、自动化生产设备必须实时监视其运行状态,及时发现故障预兆,并且及时采取有效处置措施,对设备进行维修,以减少由于设备故障引起的经济损失。
2、生产安全和可持续发展战略的需要
科技的发展改变了人类的生活,如核能的发现,在给人类提供能源的同时,也会给人类带来灾难,就像发生在美国三里岛的核泄漏事故。科技有其两面性,在其造福人类的同时,若不加约束就会造成严重的灾难事故。并且随着工业化进程的发展,环境污染问题也越来越严重,因此,设备设计尽可能减少环境污染,实施所谓的“绿色设计。然而,设备的老化,势必加剧机械设备引起的污染。因此,从可持续发展的战略高度看,机械设备的状态监测与诊断技术势在必行。
3、是维修体制改革的需要
过去我国沿引的前苏联维修体制,带有技术经济的色彩,称为计划预期维修,它的确定源于大量的统计规律。除了在故障出现时进行维修外,根据统计规律和生产计划定时实施小修、中修、大修,但是这种预期修理技术在技术含量越来越高的设备面前显得越来越吃力,主要表现在以下两个方面:
(1)剩余维修现象严重。剩余维修成本巨大,需要高昂的人力物力,而随机造成的经济损失也是很高的。
(2)现代设备精度要求很高,在计划预期维修中往往拆解,再重新进行组合,这样反复进行将使机械设备的精度受到影响。
上述因素加速了维修体制的改革,由原先的计划预期维修体制为状态维修体制,也就是修理取决于设备的运行状态。这就需要对设备的运行状态进行实时的监测。根据所得到的的设备状态参数对机械的运行状态做出判断,并且分析故障信息。这样就可以避免过剩维修,减少重大事故的发生,设备状态监测和故障诊断技术也因而出现。
3、状态监测及故障诊断技术的应用
状态监测及故障诊断技术是一个系统工程,需要有先进的监测设备,专业的技术人员,还有系统完善的额管理体制。状态监测及故障诊断技术是一门综合性极强、涉及面非常广泛、学科交叉渗透十分严重的技术,可以采用振动分析方法、油液分析、红外热像、超声探伤以及温度、压力分析等多种不同的技术。
机械设备故障的状态监测及故障诊断的一般过程主要包括以下四个部分:
1、设备状态的采集
设备在运行过程中,必然会产生力、热、振动、噪声、能量等各种参数的变化,因此会产生各种不同的信息。根据不同的诊断需要,采用相应的传感器来拾取得到的能表征设备工作状态的不同信息,这就是设备状态的采集。
2、信号处理
信号处理技术是进行故障诊断的基础,是特征提取必不可少的工具。信号处理技术主要包括传统和现代两大类:传统信号处理技术是指以FET为核心的信号分析技术,在实际运用中发挥着重要作用;近来来的现代信号处理技术在故障特征提取方面正在崭露头角。为了保证获取的故障特征信息的准确性和有效性,目前的主要研究点是基于非高斯、飞平稳及非线性故障信号的分析理论及方法。
3、状态识别
将经过信号处理后获得的设备特征参量,采用一定的判别模式、判别准则和诊断策略,对设备的状态作出判、判断,确定是否存在故障以及故障的类型和性质、程度等。
4、诊断决策
根据状态识别的结果,决定采取的对策、措施,同时根据当前的检测信息预测机械设备运行状态的可能发展趋势,进行趋势分析
建立监测与诊断系统之前需要考虑几个方面的问题:经济性,即能够尽可能的节省投资;可靠性,即自身应具有更高的可靠性;实用性,即实用的功能,操作方便;有效性,即分析诊断结果有效;扩展性,即有较好的可扩展性和自开发性能。一般情况下,根据经验,企业用于设备状态监测及故障诊断的投资应占其固定资产的1%-5%。并且,随着设备的复杂程度和技术先进性的增加,投资额度还会有所增加。
4、状态监测及故障诊断技术发展前景
设备故障诊断技术与科技前沿的融合是设备故障诊断技术的发展方向。当今状态监测及故障诊断技术的发展趋势是传感器的精密化、多维化,诊断理论、诊断模型的多元化,诊断技术的智能化,具休来说表现在如下方面:
1、与最新传感器技术尤其是激光测试技术的融合。近年来,激光技术己从军事、医疗、机械加工等领域深入发展到振动测量和设备故障诊断中,并且已经成功应用于测振和旋转机械对中等方面。
2、与新型的信号处理算法相融合。新的信号处理方法不断优化故障诊断技术的精度,同时传统的基于快速傅里叶变换的机械设备信号分析技术也有了新的突破性进展。
3、与非线性原理和方法的融合。机械设备在发生故障时,行为主要表现为非线性的。如旋转机械的转子在不平衡外力的作用下表现出的非线性特征。随着混沌与分形几何方法的日趋完善,这一类诊断问题必将得到进一步解决。
4、与多元传感器信息的融合。快速的生产对设备监测与维护提出了全方位、多角度的高要求,由此可以对设备的运行状态做出整体的、全面的判断。因此,在进行设备故障诊断时,可采用多个传感器同时对设备的各个位置进行监测,然后按照一定的方法对这些信息进行处理,如人工神经网络方法。
5、与现代智能方法的融合。现代智能方法包括专家系统、模糊逻辑、神经网络、进化计算等。现代智能方法在设备故障诊断技术中己得到广泛的应用。随着智能技术的不断发展,设备状态的智能监测和设备故障的智能诊断,将是故障诊断技术的最终目标。
4、结束语
随着科技的发展以及各个学科相互融合的加深,先进的技术被广泛的应用于机械设备的状态监测及故障诊断技术,这对于加强状态监测和故障诊断分析的效率和精度有很大的改善,在以后的实践中要更加注重将其他学科的知识加入到状态监测和故障诊断技术应用中,更好的做好设备的管理工作。
参考文献
[1] 李建华.设备状态监测与故障诊断技术综述.广东化工,2009
[2] 王春焱.设备状态监测与故障诊断技术应用研究.昆明理工大学,2009
故障诊断方法综述范文3
关键词:航空电子 设备故障 诊断
0引言
当今的军事领域,对武器装备的可靠性、保障性和可维修性有了更高的要求,而且随着现代工业及科学技术的迅速发展,特别是计算机技术的发展,设备的结构越来越复杂,自动化程度也越来越高,不仅同一设备的不同部分之间互相关联,紧密耦合,而且不同设备之间也存在着紧密的联系,在运行过程中形成一个整体。因此,一处故障可能引起一系列连锁反应,导致整个设备甚至整个过程不能正常运行, 轻者造成停机,重者会产生严重的后果甚至灾难性的人员伤亡,这就要求现代设备系统具有很高的安全性和可靠性。目前,设备的状态监测与故障诊断已成为现代航空、航天和国防建设中的重要内容,不容忽视。
1、航空设备故障预测和健康管理系统
由于航空设备的特殊性,其故障预测和健康管理系统原则上应分为机载部分和地面部分,机载部分的功能与地面部分的功能显然应有所区别。飞机在执行任务的过程中,机载部分自动进行状态监控和管理,自动记录和分析飞机及各系统的状态,并进行状态的预测、故障的检测和隔离,根据预测和状态信息完成系统重构,上述信息可在空中通过无线通信传递给地面保障中心系统或存储在黑匣子内;地面部分则侧重于维修决策,根据信息进一步确定故障部位,制定维修方案。根据机载部分和地面部分特点,机载部分应具有以下功能:状态监测功能,数据存储功能,分系统功能级故障预测功能,提供分系统故障对飞行任务的影响评估或警示。地面部分的功能应具有以下特点:数据传输与存储功能,状态显示功能,分系统功能级故障诊断与分系统部件级故障诊断功能,提出维修方案和维修规范。故障诊断系统是根据诊断对象故障的特点,利用现有的故障诊断技术研制而成的自动化诊断装置。故障诊断的各种理论与方法的研究最终都必须落实到具体的诊断装置或诊断系统的研制上,只有诊断系统的研制成功才能产生真正的经济效益。
2、NFF的诊断与排除
在航空维修工作中经常会碰到这样的情况:飞行员反映空中出现某个故障,但地面检查中却不能复现;机务准备通电中发现某机件有故障,但再次通电时故障现象消失;甚至有些诸如“转速急降”的危险性信号都是时有时无,给地勤人员排故造成很大困难。实际上,这就是所谓的“未发现故障”(NOFault found,NFF),它是航空维修工作中较为常见的一个问题。
进行NFF的诊断,需要预先收集大量的相关信息、资料和统计数据等。电子产品或设备的性能特征如电流、电压、电阻等是反映其正常或故障状态的重要参数,通过监测这些本质参数的变化来发现故障,已成为当前应用最广泛、置信度最高的故障诊断方法。典型的方法包括电子产品的机上测试(BIT)以及非电子产品功能系统的故障诊断等。在航空装备维护工作中经常测量大量的电压、电阻等数据,基于本质参数的方法可以用在目前对监测发动机工作状态的各种传感器进行NFF预测与健康管理,这些传感器包括滑油温度传感器、滑油压力传感器、金属屑传感器等。它们用电压、电阻等形式随时检测发动机相关工作状态,评价发动机性能指标,有时的自身失效或工作状态变化就会导致发动机误报故障或发生NFF。将这些数据分门别类加以统计,用时间序列分析方法建立差分方程形式的数学模型,再根据模型或得出的曲线趋势图进行分析研究,可较好地掌握机件设备的历史工作状况,发现或预防NFF,并对下一步的工作做出维修建议,成为当前航空装备保障的新趋势。
随着飞机的更新换代和使用时间的增长,要重点关注导航系统、飞控系统和其它自动控制系统电子设备故障和老旧飞机线路引起的潜在性、危险性故障。因此,为了预防或减少NFF的发生,应采取以下措施手段:表面引发的偶然故障是由根本的故障缺陷导致的,因此生产商首先应努力克服硬件或软件的设计缺陷,将故障隐患降到最低限度。
建立相关的数据库,将容易发生NFF的故障进行技术统计分析,以便在某些工作时机根据对该机件的性能检测决定是否提前更换该件,从而降低NFF的发生。出现重要系统、重要故障时,要全面、系统地分析故障发生时的环境特点及飞机所处高度、速度、姿态等参数,及时检测线路,认真研究电路图。尤其应加强空地之间的联系和信息交换,确定该设备是否空地使用不一致或不同,以便能创造故障复现的条件。
3、结论与展望
3.1新的故障诊断方法的研究
主要是将一些新的理论应用到电子设备的故障诊断之中。如小波变换方法,信息融合方法及基于Agent的诊断方法等。随着新理论的不断发展,这方面的工作仍是故障诊断的重要内容之一。
3.2故障信息获取的手段和方法的研究
故障信息的准确获取是故障诊断是否成功的关键之一。像多传感器信息融合在故障诊断中的应用,一个重要的方面就是如何从不同角度获取故障信息。对电子设备来说,除了电压和温度信号外,能否从其它方面获得故障信息,如电磁场信息等,这也是有待深入研究的内容之一。
3.3远程故障诊断的研究
在军事领域,如果各种战伤的武器设备在现场够得到及时的维修,对提高装备的战斗出动强度、补充战斗实力和保持一定的持续战斗力都有重要的意义。而现在的战伤抢修都是由专业的维修人员在野战条件下就地组织实施。利用远程故障专家系统可以获得远离战场的专家的指导,有效地提高维修效率和速度。故障诊断是一门实用性很强的技术,因此只有在实际应用中才能体现它的价值。
目前在理论研究方面虽有不少进展,但真正在工程实践中成功应用的实例还较少。特别是真正实用准确的电子设备故障诊断系统。因此,如何将先进的故障诊断理论与方法应用到实际中去还有待深入的研究。再者对于一个大型复杂航空电子设备进行故障诊断分析时,传统故障诊断和智能故障诊断技术必须是相互弥补。只有这样以传统故障诊断技术为基础,综合利用智能故障诊断技术,构造高效而智能化的故障诊断平台,才是大型航空电子设备诊断和维修的一个很有前途的发展方向。
参考文献:
[1]朱大奇.基于知识的故障诊断方法综述[J].安徽工业大学学报,2002,19.
故障诊断方法综述范文4
关键词:故障诊断,软硬件故障
1、绪论
当前,全球网络高速发展,计算机网络已经在普通用户中广泛使用,与此同时,网络故障也变的极为普遍,然而,由于计算机网络自身的复杂性,维修保障非常困难。用户在计算机网络使用中,常常分辨不出网络故障原因,不知道究竟是软件故障,还是硬件故障。一旦发现问题,他们除了进行常规硬件检查和软件系统重启等简单操作外,对于整体故障,尤其是软件失效引起的故障,常常毫无办法,本文首先简单介绍故障诊断相关术语,进而简述计算机网络软硬件故障特性,结合诊断实例,综述计算机网络故障的排除。
2、计算机网络软硬件故障特性
虽然有各式各样的网络故障,但所有的故障总体可分为物理故障与逻辑故障,也就是通常所说的硬件故障与软件故障,因此具有典型的软件故障特征。许多故障和征兆之间常常不存在一一对应的简单关系,维修难度大。总的说来,故障具有如下特性:
层次性:这是故障的“纵向性”。计算机网络,结构可划分为系统、子系统、模块、部件等各个层次,其功能也可划分为若干层次,因而其故障和征兆也有不同的层次。任何故障都是同系统的某一层次相联系的,高层次的故障可以由低层次的故障所引起,而低层次的故障必定引起高层次的故障。因此在故障诊断中可设计某种层次诊断模型。
相关性:这是故障的“横向性”,它是由系统各元素间的联系所决定的。当一个元素或联系发生故障后,可能导致同它相关的元素或联系的状态发生变化,进而引起相关元素或联系也发生故障。某一故障可能对应若干征兆,而某一征兆可能对应若干故障,它们之间存在着错综复杂的关系,造成故障诊断困难。故障的相关性使得许多的故障现象可以归根于同一个故障,从而可以从不同的角度对同一个故障进行诊断。
不确定性:这是故障的“模糊性”。故障和征兆信息的随机性、模糊性,故障和征兆之间对应关系的不明确性,不确定性是计算机网络的一个重要特性,对相同的系统而言,或对同一系统在不同时间、不同工作环境下而言,各层次的元素特性与各元素间的联系特性是不可能完全确定的,其变化规律难以确定,从而导致元素、联系直至系统的状态和行为也不可能完全确定,因而其故障也是不确定的。
3、计算机网络软硬件故障的表现症状
软硬件故障通常表现为以下几种情况:
①电脑无法登录到服务器;
②电脑无法通过局域网接入Internet;
③电脑在“网上邻居”中只能看到自己,而看不到其他电脑,从而无法使用其他电脑上的共享资源和共享打印机;
④电脑无法在网络内实现访问其他电脑上的资源;
⑤网络中的部分电脑运行速度异常的缓慢。
4、常见计算机网络软硬件故障的解决方法
当出现一种网络应用故障时,如无法接入Internet,首先尝试使用其他网络应用,如查找网络中的其他电脑,或使用局域网中的Web浏览等。如果其他网络应用可正常使用,如虽然无法接入Internet,却能够在“网上邻居”中找到其他电脑,或可ping到其他电脑,即可排除连通性故障原因。如果其他网络应用均无法实现,继续下面操作。
①看LED灯判断网卡的故障
首先查看网卡的指示灯是否正常。正常情况下,在不传送数据时,网卡的指示灯闪烁较慢,传送数据时,闪烁较快。无论是不亮,还是长亮不灭,都表明有故障存在。如果网卡的指示灯不正常,需关掉电脑更换网卡。
②用ping命令排除网卡故障
使用ping命令,ping本地的IP地址或电脑名(如shj831),检查网卡和IP网络协议是否安装完好。如果能ping通,说明该电脑的网卡和网络协议设置都没有问题。问题出在电脑与网络的连接上。因此,应当检查网线和Hub及Hub的接口状态,如果无法ping通,只能说明TCP/IP协议有问题。这时可以在电脑的“控制面板”的“系统”中,查看网卡是否已经安装或是否出错。如果在系统中的硬件列表中没有发现网络适配器,或网络适配器前方有一个黄色的“!”,说明网卡未安装正确。需将未知设备或带有黄色的“!”网络适配器删除,刷新后,重新安装网卡。并为该网卡正确安装和配置网络协议,然后进行应用测试。如果网卡无法正确安装,说明网卡可能损坏,必须换一块网卡重试。如果网卡安装正确则原因是协议未安装。
③如果确定网卡和协议都正确的情况下,还是网络不通,可初步断定是Hub和双绞线的问题。为了进一步进行确认,可再换一台电脑用同样的方法进行判断。如果其他电脑与本机连接正常,则故障一定是先前的那台电脑和Hub的接口上。
④如果确定Hub有故障,应首先检查Hub的指示灯是否正常,如果先前那台电脑与Hub连接的接口灯不亮说明该Hub的接口有故障(Hub的指示灯表明插有网线的端口,指示灯亮,指示灯不能显示通信状态)。
通过上面的故障压缩,我们就可以判断故障出在网卡、双绞线或Hub上。
当电脑出现协议故障现象时,应当按照以下步骤进行故障的定位:
①检查电脑是否安装TCP/IP和NetBEUI协议,如果没有,建议安装这两个协议,并把TCP/IP参数配置好,然后重新启动电脑。
②系统重新启动后,双击“网上邻居”,将显示网络中的其他电脑和共享资源。如果仍看不到其他电脑,可以使用“查找”命令,能找到其他电脑,就完成了。
5、 结束语
网络发生故障是不可避免的。针对于单独的硬件故障诊断相对简单,但是对于由软件故障或者因为软件引起的硬件故障,诊断相对困难,本文给出了软硬件相互影响的故障诊断方法,但对由于软件引起的硬件故障研究不够,需要进一步研究。
参考文献
[1]周炎涛.计算机网络实用教程(第2版).电子工业出版社
故障诊断方法综述范文5
关键词:粒子群优化算法;模糊C均值;故障诊断
1.概述
目前,电机故障诊断已进入人工智能方法阶段,现在比较热门的方法包括神经网络方法、粒子群算法[1]以及模糊聚类[2]等方法。作为一种交替优化算法,FCM在寻找全局最优值时通常可起到较好的效果。但是,当数据集中含有一些噪音值,或者当数据的维数较高时,FCM很难发现全局最优。在这种情况下,结合以群为基础的随机优化算法,便能较大的提高FCM的全局优化能力。
本文结合粒子群优化算法提出了一种新的基于粒子群的模糊聚类算法,文中称之为PSO-U-FCM。该算法中粒子依照模糊聚类中的隶属度进行编码,采用新的策略保证模糊聚类中约束条件的实现。利用该算法极大地提高了FCM的聚类效果,并且有效的提高了故障诊断的性能。
2.相关算法介绍
2.1 模糊C均值聚类算法
模糊C均值聚类算法可描述如下[3]:
已知样本集X为,n为样本的个数,每个样本有k个属性。设要将n个样本分为类,第i个样本对第k类的隶属度记为,需满足:
(1);(2)。
FCM的目标函数为:
(2.1)
m是加权指数。其中为第i类的聚类中心,通过2.2式计算得出,而隶属度由2.3式得出。
(2.2)
(2.3)
FCM即是先给出初始方案,通过2.2式与2.3式反复迭代,最终使得目标函数式2.1达到最小。
2.2 粒子群优化算法
粒子群优化算法的基本思想是通过群体中个体之间的合作和信息共享来寻找最优解,是一种基于群体智能方法的进化计算技术。该算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解。
基本的粒子群优化算法可描述如下[4]:
设有m个粒子组成一个群落,第i个粒子的位置用向量表示,飞行速度用表示, D为目标搜索空间的维数,第i个粒子搜索到的最优的位置为,整个群体搜索到底最优位置为。
3.基于粒子群的模糊聚类算法
3.1 粒子的编码及约束策略
本文采用隶属度对粒子进行编,即每个粒子共有n*c(n为样本个数,c为分类个数)维数据,若将其看成n行c列的矩阵,则第i行第j列的值即代表第i个样本对于第j类的隶属度。
已知第i个样本对第k类的隶属度记为,且需满足:(1);(2)。在用粒子群算法解决模糊聚类问题时也必须保证此约束条件。但实际情况是,在每个粒子飞行后,很少有粒子存在某一个样本对于各类的隶属度满足和为1的条件。故本文提出了新的约束策略。
3.2 算法目标函数的选择
通过粒子群算法便完成了模糊C均值中隶属度的计算工作,目标函数仍然采用FCM中的目标函数式,但仍需要计算各聚类的中心值。
3.3 PSO_U_FCM算法步骤
4.实验测试与分析
本文采用的实验数据来源于文献,用于验证提出的新算法。该数据共包含:①电刷磨损故障;②原件开路故障;③匝间短路故障三个电机故障类型,各个类型都有20个(每个包含6个属性)故障点,共计60个数据。
在利用FCM用于电机故障的诊断时,模糊加权参数m=2,最大迭代次数为100,最小判别误差为0.001。在运用PSO_U_FCM进行电机故障诊断时的参数设置为:模糊加权参数和最小判别误差与FCM一样,学习因子,粒子个数取10,最大迭代次数取100,最大速度取。所有用于作图的数据均为同一参数下进行20次实验后得出的平均值。
5.结束语
FCM算法虽然取得了较为广泛的应用,但其缺陷也较为明显。本文通过结合粒子群优化算法,并把隶属度作为粒子的编码形式,通过新提出的约束策略,较好地解决了FCM自身的缺陷。实验表明,本文提出的PSO-U-FCM明显优于FCM算法,在电机故障诊断方面取得了较好的应用。
参考文献:
[1]付光杰,李云鹏,杨秀菊.基于改进粒子群优化算法的电机故障诊断研究[J].科学技术与工程,20100,10(4)1001-1005.
[2]张彼德,潘凌.汽轮发电机组故障诊断的模糊聚类分析新方法[J].西华大学学报:自然科学版,2006,25 (3):8- 10.
故障诊断方法综述范文6
关键词:模拟电路;故障诊断;方法
中图分类号:TP305文献标识码:A文章编号:1009-3044(2009)36-10546-03
Study on Analog Fault Diagnosis
CHEN Ling-ling, ZHANG Qiu-mi, WANG Xi-dong, LU Chao
(Department of Physics, Shanxi University of Technology, Hanzhong 723000, China)
Abstract: Study of modern and contemporary analog circuit fault diagnosis method. Mainly discussed SBT, SAT, similar to modern technology, analog circuit fault diagnosis method and Expert Systems, Neural Networks, Fuzzy Theory, wavelet transform modern analog circuit fault diagnosis methods and principles.
Key words: analog circuit; fault diagnosis; methods
随着电子科学技术的迅速发展,电子器件的集成度越来越大,电子设备越来越复杂,在电子产品制造、使用和维修中,传统的人工诊断技术已无法满足其需求,故提出了借助计算机实现故障诊断。随着故障诊断理论的发展,确立了其在网络理论中应用的地位,成为继网络分析、网络综合之后的网络理论的第三分支。现代电子电路通常是多层次的或被封装的,可测电压的可用节点数有限,导致可用作故障诊断的信息量不够充分,造成故障定位的不确定性和模糊性。如何有效解决模拟电路的容差和非线性问题,如何解决故障诊断的模糊性和不确定性问题是研究工作迫切需要解决的困难。由于上述问题很难用传统的数学方法描述,人工智能技术则因其善于模拟人类处理问题的过程,容易顾及人的经验并具有一定的学习能力等特点,在这一领域得到了广泛应用。
1 模拟电路故障诊断方法
1962年R.S.Berkowitz[1]首先提出模拟电路故障诊断理论。1979年IEEE会刊将模拟电路故障诊断主要的方法归纳为三大类:估值法、分类法和拓扑法。1979年以后,故障诊断进入深入的发展阶段,根据对被测电路的模拟在测试之前或测试之后分为[2]:测前模拟法―SBT(Simulation Before Test)和测后模拟法――SAT(Simulation After Test)。除此之外,还有近似法和专家系统法。
1.1 测前模拟法SBT
测前模拟法的主要方法是故障字典法FD(Fault Dictionary)[3],其理论基础是模式识别原理,基本步骤是在电路测试之前,用计算机模拟电路在正常和各种故障下的状态,并记录其对应的信号或特征,从而建立故障字典;在实际电路诊断时,根据测量所得的信号或特征,在故障字典中查到与此信号或特征对应的故障,从而确定电路故障。故障字典法[4]是最具有实用价值的故障诊断方法,因为几乎所有的计算量都集中在测前,测后只需要查字典定位故障,所以能做到定时诊断。由于故障状态有限,所以主要用于单、硬故障的诊断。故障字典法按建立字典所依据的特性有直流法、频域法和时域法。直流故障字典法是利用电路的直流响应作为故障特征,建立故障字典的方法。本文介绍一种较常用的直流故障字典法:用分段线性描述所有非线性器件,引入故障开关模拟电路的硬故障,运用混合方程表格法建立电路的通用端口约束方程,通过开关的不同组合可反映电路的各种故障状态;电路通过端口约束方程与二极管变量的约束条件构成一个互补问题,可用互补主元法求解;为克服容差对故障诊断的影响,引入模糊集进行故障隔离。直流故障字典法一般仅适用于单、硬故障的诊断。
频域法是以电路的频域响应作为故障特征,建立故障字典的方法。其优点是理论分析较成熟,硬件要求较简单,主要是正弦信号发生器、电压表和频谱分析仪。频域法主要有:Bode图法、双线性变换法和稀疏矩阵法等。Bode图法的原理是:按电路的对数幅频特性来划分特征空间,以不同频率下的增益偏差作为特征向量建立故障字典;测试后,根据实际增益偏差查字典确定故障。双线性变换法的原理是:以电路的传输轨迹作为故障特征建立故障字典;测试后,根据实际测量在复平面上找出对应点,测量点明显地靠近某一轨迹,由此轨迹可以决定系统测量特性对应的元件参量偏差,从而确定故障。此方法适用于线性电路的单故障,包括硬、软故障,但不适用于故障导致零响应的情况。稀疏矩阵法的原理是:以电路的传输特性(振幅或相位)的偏差作为故障特征建立故障字典;测试后,根据实际传输特性的偏差查字典确定故障。考虑到元件的容差和测量误差,规定一门限,当特性偏差在门限值之内时认为电路正常。
时域法是利用电路的时域响应作为故障特征而建立故障字典的方法,主要方法有伪噪声信号法和测试信号设计法等。伪噪声信号法是以伪噪声信号获得的电路冲击响应的变化作为故障特征,建立故障字典的方法。测试信号设计法是将电路不同状态下测试信号的阶跃幅度和电路对辅助信号响应中跨零位置的变化作为故障特征,进行编码,从而建立故障字典的方法。
1.2 测后模拟法SAT
测后模拟法的主要方法有参数识别技术和故障证实技术,其特点是在电路测试后,根据测量信息对电路模拟,从而进行故障诊断。
参数识别技术的原理是利用网络响应与元件参数之间的解析关系,通过响应的测量值识别或求解网络元件的参数值,根据该值是否在容差范围之内来判定元件是否故障。按诊断方程是否线性,参数识别技术可分为线性技术和非线性技术。线性技术有伴随电路法等;非线性技术有转移导纳法、元件连接分割法、节点法等。
1) 伴随电路法是利用特勒根定理和伴随网络概念建立故障诊断方程的方法。
2) 转移导纳法是直接通过解网络转移导纳参数非线性方程组来决定网络元件值,如果元件参数值超过容差范围,就判定为故障元件。
3) 元件连接分割法是把系统中的元件或组件从系统中分割出来,用元件与系统的连接关系,来描述系统特性与元件之间的关系。由元件特性和连接特性组成的CCM(Component Connection Model)方程,根据CCM方程建立故障方程。
4) 节点法是从电路节点电压方程出发,通过传输函数或表格法建立故障诊断方程的方法。
故障证实技术是通过检验网络元件某一子集是否出现故障来识别故障的,从而使测试点数大大下降,其方法有K故障诊断、故障定界技术、网络分裂法等。
1) K故障诊断是通过检验某些线性方程的相容性来进行故障定位的,定位中引入补偿电源代替元件参量的变化。它有K节点故障诊断和K支路故障诊断两种。
2) 故障定界技术是假定最大的故障数,并将网络元件分为两个子集S1、S2且假定S1中元件正常,利用S1中元件特性与网络特性测量值求出S2中元件值进行故障识别的。
3) 网络分裂法是通过可及节点的撕裂,将网络分裂为若干个子网络,运用测试条件(STC、MTC)和逻辑分析将故障定位到子网络,然后利用内部自测条件(ISTC)将故障定位到更小的区域。
1.3 近似技术
近似技术研究在测量数有限的情况下,根据一定的判别准则,识别出最可能的故障元件,其中包括概率统计法和优化法。
1) 概率统计法中常用的为逆概率法,其工作原理是:在测试之前,根据维修经验对大量数据进行统计分析确定元件发生故障的先验概率,测试之后,算出后验概率,根据Bayes判别准则,后验概率最大者即是最可能出故障的元件。此法的原理与故障字典发相似,是属于测前模拟的。
2) 优化法用于软故障诊断,其思路是采用适当的目标函数估计出最可能出现故障的原件。此法是属于测后模拟的。
1.4 专家系统故障诊断方法
专家系统[5]是一个智能计算机程序系统,其大多基于产生式规则,即首先将专家知识及诊断经验用规则表示出来,形成故障诊断知识库,然后根据测试数据利用专家提供的知识和经验进行推理诊断出故障元件。专家系统包括[6]测前模拟诊断中的故障特性的收集和处理过程,以及测后模拟的故障推理收索等过程。
专家系统特点:具有丰富的经验和高水平的技术及专家水平的专门知识;能够有效地模拟故障诊断专家并完成故障诊断的过程,但在实际应用中仍存在一定缺陷,其主要缺陷为[7]:知识获取“瓶颈”问题;易出现“匹配冲突”、“组合爆炸”和“无穷递归”;知识“窄台阶”;知识维护困难;实时性差。这大大影响了故障诊断的准确性。鉴于上述困难,提出将其与具有信息处理特点神经网络和适合人类认识特征模糊理论相结合。
2 模拟电路故障诊断新方法
字典法一般只用于单故障诊断,参数辨识法和故障验证法在诊断时在线计算量大,难以实现实时诊断。而在科学技术高速发展的现代化生产中,传统的故障诊断方法已不能适应技术发展的需求,这就要求科技人员和理论工作者要进一步探索新的理论和方法,主要包括神经网络,模糊理论,小波变换等。
2.1 神经网络故障诊断方法
人工神经网络[8](Artificial Neural Network,ANN)是模拟人脑组织结构和人类认知过程的信息处理系统。神经网络作为一种自适应的模式识别技术,并不需要预先给出有关模式的经验知识和判别函数,它通过自身的学习机制自动形成所要求的决策区域。网络的特性由其拓扑结构、神经元特性、学习和训练规则所决定。它可以充分利用状态信息,对来自于不同状态的信息逐一进行训练而获得某种映射关系。而且网络可以连续学习,如果环境发生改变,这种映射关系还可以自适应地进行调整。
基于神经网络的诊断过程分为两步。首先,基于一定数量的训练样本集(通常称为“征兆―故障”数据集)对神经网络进行训练,得到期望的诊断网络;其次,根据当前诊断输入对系统进行诊断,诊断的过程即为利用神经网络进行前向计算的过程。在学习和诊断之前,通常需要对诊断原始数据和训练样本数据进行适当的处理,包括预处理和特征选择、提取等,目的是为诊断网络提供合适的诊断输入和训练样本。此外,尽管神经网络和传统的故障诊断是两种不同的诊断方法,但两者是紧密联系在一起的。
2.2 模糊理论诊断方法
模糊故障诊断方法,就是在故障征兆空间与故障原因空间之间建立模糊关系矩阵,再将模糊推理规则产生的模糊关系矩阵进行组合,根据一定的判定阀值来识别出故障元件。将模糊理论的模糊逻辑系统与ANN相结合[9],充分吸收了两者各自的优点,既能处理专家知识和经验,又能通过自学习增强系统的判断能力。目前的研究主要集中在[9]:研究模糊逻辑系统和ANN的对应关系,将模糊逻辑系统的调整和更新转化为对应的ANN学习问题以及利用模糊逻辑系统对ANN进行初始化;模糊神经网络的快速学习算法;利用模糊理论加快ANN的学习速度并应用ANN构造高性能的模糊逻辑系统。但两者发展到现在,时间相对较短,自身体系还不完善,在解决诊断问题方面还存在很多问题。
模糊理论与其它人工智能技术结合构成的诊断系统虽然可以增强处理不确定性能力,在一定程度上提高诊断的准确度,但是它不能完全消除专家系统所固有的缺点。
2.3 小波变换故障诊断方法
小波变换的基本原理[9]:通过小波母函数在尺度上的伸缩和时域上的平移来分析信号,适当选择母函数,可以使扩张函数具有较好的局部性,因此,它是一种时-频分析方法。在时-频域具有良好的局部化性质并具有多分辨分析的特性[10],适合非平稳信号的奇异性分析,如利用连续小波变换的极值可以检测信号的边沿、随机信号的突变,还可以抑制噪声;利用离散小波变换可以检测随机信号频率结构的变化。
小波变换故障诊断机理包括两个方面[11]:利用观测器信号的极值、突变等进行故障诊断以及利用观测器信号频率结构的变化进行故障诊断。小波变换不需要系统的数学模型,故障检测灵敏高,运算量小,抑制噪声的能力强,对输入信号要求低,但滤波器的时域宽度较大,检测时会产生时间延迟,且不同小波基的选取对诊断结果也有影响。
近年来,将小波变换与模糊集合论、ANN理论相结合,提出的模糊小波和小波网络的故障诊断方法。采用嵌套式结合方式,把小波变换的运算融入到ANN中去,形成小波网络。小波网络是一种连续的非线性映射,它把ANN的自学习特性和小波的局部特性结合起来,具有自适应分辨性和良好的容错性,所以适用于模拟电路故障诊断领域。
3 结束语
综上所述,本文围绕模拟电路的故障诊断方法进行了有益的探索,回顾上世纪70年代以来模拟电路故障诊断的研究成果,例如测前模拟法、测后模拟法、近似法、专家系统等,并介绍了模拟电路故障诊断新的成果,例如神经网络、模糊理论和小波变换等。
参考文献:
[1] Berkowitz R S.Condition for Network-Element-Value Solvability[J].IRE Trans,Circuits Theory,1962,15(9):25-29.
[2] 周玉芬,高锡俊.模拟电路故障诊断[M].北京:国防工业出版社,1989.
[3] 杨士元,胡梅,王红.模拟电路软故障诊断的研究[J].微电子学与计算机,2008,25(1):1-8.
[4] 赵伟.基于仿真的模拟电路故障诊断技术研究[D].中国知识网,2006.
[5] 关惠玲,韩捷.设备故障诊断专家系统原理及实践[M].北京:机械工业出版社,2000.
[6] 于淑芳.模拟电路故障诊断方法展析[J].柳州职业技术学院学报,2005,5(1):87-88.
[7] 吴金培,肖建华.智能故障诊断与专家系统[M].北京:科学出版社,1997.
[8] Abderrahman A,Cerny E,Kaminska B.Optimization based Muhifrequency Test Generation for Analogcircuits[J].Joumal of electronic testing theory andapplication,1996,9(1),59-73.
[9] 欧阳宏志,廖湘柏,刘华.模拟电路故障诊断方法综述[J].电子科技,2008,21(12):75-80.