优化设计与优化方法范例6篇

前言:中文期刊网精心挑选了优化设计与优化方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

优化设计与优化方法

优化设计与优化方法范文1

给水管网优化设计的研究包括管网优化设计模型和优化算法两个方面,优化设计模型需要相应的优化算法进行求解。随着计算机的出现及其应用软件的开发,两者在理论和工程实际的应用中都逐渐成熟,应用比较广泛。

1.1给水管网优化设计模型研究

给水管网优化设计模型是进行优化设计的基础,其优劣程度决定优化设计是否成功。因此,所建的模型必须真实地反映管网运行特征及管理要求。其模型的发展经历单目标函数和多目标函数两个阶段。20世纪50年代后,国内的研究者开始对管网优化设计模型研究,取得一定成果的有同济大学、哈尔滨工业大学等。国内研究者一般都以管网年费用折算值最小为目标函数建立管网优化设计数学模型。此模型没有考虑管网的可靠性约束。随着研究的深入和实践证明,人们逐渐认识到若仅以经济性作为管网优化设计的目标函数与工程实际相比存在某种欠缺和不足,还需要考虑系统可靠性这一因素。

1.2给水管网优化设计模型求解算法研究

给水管网优化设计模型求解方法主要经历了以下三个阶段。

(1)拉格朗日函数优化法。该方法主要用于求解以管径和水头损失为变量的单目标单工况优化设计模型。应用拉格朗日未定系数法,将目标函数进行转换,然后用计算机进行求解。但是由于管径为离散变量,应用此法求得的管径需要进行圆整,化为市售管径,这在某种程度上破坏了解的最优性。该算法目前应用较少。

(2)数学规划法。

①线性规划。线性规划法是在一组线性约束条件下,求某个线性目标函数的最小值(最大值)。该方法只能解决树状管网的优化设计,因此该算法应用较少。

②动态规划法。动态规划法是一种求解多阶段决策过程最优化方法。该法对模型中的目标函数和约束条件的形式要求不高,以标准管径为变量计算结果不需要调整。该方法对小型树状管网能得到最优解;对于简单的环状管网,需预先假设一组管径并进行初始流量分配,将环状网化为树状网;对于复杂管网应用该法不能得到最优解。

③非线性规划法。非线性规划法是在一组非线性约束条件下,寻求非线性目标函数的最大值或最小值。在管网优化设计中,目前所建的模型基本都是非线性模型,因为此种模型能更好地反映管网系统各因素之间的关系,因此该方法能提高计算精度。非线性规划法能较好的反映管网系统的本质。

(3)随机搜索优化方法。

①神经网络算法。神经网络算法是将优化问题的目标函数和约束条件映射到神经网络动力系统,利用人工神经网络的动力系统演化机制,搜索到局部最优解,将最优解映射为动力系统平衡点。目前将神经网络算法用于环状管网方面的研究较少。

②蚁群算法。蚁群算法(ACOAs)是由意大利学者Dorigo于1996年提出的一种模拟蚂蚁寻食行为的算法。该算法能够智能搜索、全局优化,且易与其它算法结合。但有以下缺点:a:当规模较大时,算法效率下降得很快,需要较长的搜索时间;b:容易出现停滞现象,即搜索到一定程度后,所有个体所发现的解完全一致,不能对解空间进一步进行搜索,不利于发现更好的解,从而容易陷入局部最优。

③遗传算法。遗传算法(GA)近年来被认为是管网优化技术的飞跃,它通过模拟自然界生物种群的遗传和自然选择机制,随机搜索最优解。遗传算法是以标准管径为决策变量的,对其采用一定的编码方式,通过选择、交叉和变异等操作,求得最优解。它的优势主要在于:a:该算法不受可微、可导、连续等数学处理方式的限制;b:以离散的标准管径为决策变量避免了非线性规划法需对连续管径进行“圆整”带来的偏差;c:该算法是一种随机搜索过程,不会形成局部最优解;该算法也存在一些缺陷,如遗传算法的早熟现象、适应度值难以标定、接近最优解时收敛很慢等。

2、结语

优化设计与优化方法范文2

关键词:轿架优化设计有限元CAD/CAE

中图分类号:S611 文献标识码: A

1 引言

电梯轿架的主要功能是支撑整个轿厢系统,载着轿厢在曳引钢丝绳的作用下沿着电梯导轨上下运行,它要具有足够强度的同时也要保证轿厢内乘客乘坐舒适,且要有与安全制动装置相配合的机构来保证特殊状态下乘客的安全。一套设计合理的产品须满足如下几个基本要求:

1)结构、功能及强度要求

2)使用性能要求。

3)标准化及成本、工艺等要求

以下以轿架上横梁设计为例,介绍最优化方法和CAE有限元分析方法在电梯结构设计方面的具体应用。

2 上横梁受力分析及结构选型

在轿架系统中,上横梁需承受所有的重量,所以上横梁所用物料的结构形式和尺寸参数是设计的关键所在。 以载重1600kg轿架设计为例,其中轿架各部分重量分布如下表:

表2.1系统配置参数

2.1 截面选型

上横梁承受的主要载荷类型是弯矩,因此要优化截面类型就要选择截面面积最小且抗弯系数最大的截面形状。截面形状为简单的矩形时(矩形高度为h,宽度为b),截面的抗弯系数为

ABC

图2.1三种常见上横梁截面

取3种截面的高度尺寸相同,在相同面积下比较其惯性矩及抗弯截面系数,根据截面惯性矩如下计算公式及具体截面的惯性矩算法可对图2.1三种截面抗弯系数进行对比。

(以上公式:即面积元素A对Z轴的惯性矩为:面积A与其到Z轴的距离平方的乘积。)

经比较,截面A和C的惯性矩和截面抗弯系数在高度和面积相同的情况下大于截面B,考虑到结构的加工工艺,截面A加工较C更为简单,所设计的上横梁基本结构型式如下图2.2所示(图右为上横梁横截面示意图)。

图2.2 上横梁结构型式及横截面示意图

2.2 上承重梁受力情况分析

取单根梁为研究对象,上横梁长度为L,其受力简图如下图所示:

图2.1 上横梁受力简图

单根梁所受力为:

2.3截面模量计算

为便于计算,将上横梁槽钢截面简化分解成如图2.2所示的模块,其中上横梁高度为h,宽度为b,厚度值为t,分别计算截面3个部分的惯性矩得:

上横梁所受应力为

3参数优化及有限元分析

3.1 上横梁结构参数优化计算

结构优化的目的是为寻求零部件结构参数的最优配置,力求综合满足各设计目标。如使所设计的部件在强度满足时,具有更小的原材料消耗量,最佳的制作装配工艺等。根据引言所述的设计目标以及对上横梁的受力分析,确立上横梁结构参数的最优化数学模型如下:

其中优化目标为:上横梁重量最小,对应的目标函数为:

约束条件1为:最大应力小于材料屈服极限235MPa,其对应的约束条件为:

约束条件2为:上横梁的最大挠度σ≤【σ】,其中【σ】为上横梁最大容许挠度,【σ】=3,其对应的约束条件方程为

根据设计经验,初步确定上述各参数变化范围为:

根据表2.1所列出的电梯轿厢的各部分重量值,计算得出作用在上横梁上的总重量为:

又由文中2.2对上横梁的受力分析所得,单根梁所承受的力和弯矩分别为

将上述公式所计算值代入目标函数及约束条件,并在matlab中应用数值搜索和穷举法对优化方程进行求解得:

t=8.32mmb=76.8mm h=230.6mm

当上横梁截面参数取上述3个值时,满足优化优化目标,此时为参数的优化值,即保证零件强度的情况下,材料重量最小。

因此,根据GB型材标准,选用厚度的槽钢作为载重1600kg轿架上横梁材料。此时,根据式3.1函数,计算的上横梁的实际重量为

按优化计算值,在solidworks中创建上横梁实际结构模型,测得上横梁实际重量值和惯性矩分别为:

此为优化的最终结果。

3.2优化解的有限元验算

根据3.1中对上横梁横截面参数优化计算得出的最优解,在solidworks中,创建上横梁结构的简易模型,并依据对上横梁的受力分析,在ansys 12.0环境下对该参数下的上横梁进行结构静力解析,得出的结果见下图3.1。

图3.1 上横梁ansys仿真结果图

从图3.1可以看出上横梁的最大应力为211.46MPa,为压应力,而最容易引起破坏的拉应力的为81.67,均小于材料Q235的屈服强度极限,由图右的应变示意中,上横梁的最大变形为2.7263mm,小于容许挠度【σ】=3,因此优化计算得出的截面参数t=9,b=80,h=250合格。

4结论

在电梯行业中,现代设计理论和方法的使用也越来越多,本文应用最优化思想和现代CAD/CAE手段以电梯轿架零部件上横梁为例,说明了优化设计和有限元方法在电梯部件结构设计中的应用。

参考文献

[1] 傅海明.电梯轿厢的ansys优化设计.机电信息.2012(6)

[2] 夏艳光,夏崇俊等.电梯轿厢架轻量化的分析研究.节能.2012(1)

优化设计与优化方法范文3

关键词: 结构设计方案问题应用

中图分类号:TU318文献标识码: A 文章编号:

在建筑结构设计的过程中,在基本满足建筑师设计意图的基础上,平面布置应尽量规则,对称,尽量缩小质量中心和刚度中心的差异; 使建筑物在水平荷载作用下不致产生太大的扭转效应。竖向布置上,在满足功能要求的前提下,尽量使竖向承重构件上下贯通; 能不使用转换层的就应避免使用,以减小结构分析和设计上的困难,另外也不经济,还容易造成应力集中;竖向刚度最好不要突变,而要渐变,否则突变处在水平荷载作用下会出现严重的应力集中现象。

1 结构优化设计的模型和方案

房屋工程分部结构优化设计包括: 基础结构方案的优化设计、屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。对以上几个方面的优化设计还包括选型、布置、受力分析、造价分析等内容,在实施过程中,还应该按照一切从实际出发的原则,结合具体工程的实际情况,围绕房屋建筑的综合经济效益的目标进行结构优化设计。进行结构设计时,应在满足设计意图后,尽量使平面布置规则,缩小刚度和质量中心的差异,这样水平荷载就不会使建筑物有太大的扭转作用。竖直方向上应避开使用转换层,减少应力集中现象。

1.1 结构优化设计模型

结构设计优化就是在各种影响变量中选择主要参数,并建立函数模型,运用科学合理的方法得出最优解。结构总体的优化建立模型的大致步骤是: 设计变量的合理选择。通常的设计变量选择对设计要求影响较大的参数,将所涉及的参数按照各自的重要性区分,将对变化影响不大的参数定为预定参数,通过这种方法可减少很多计算编程的工作量。目标函数的确定。使用函数找出满足既定条件的最优解。最后,约束条件的确定。房屋结构可靠度优化设计的约束条件,包括了应力约束、裂缝宽度约束、结构强度约束、尺寸约束、从正常时的极限状态下弹性约束到终极状态的弹塑性约束、从可靠指标约束到确定性约束条件等。设计中,要保证各约束条件必须符合现行规范的要求。

1. 2 房屋建筑结构设计的基本方法

(1) 当结构平面图在绘制结构平面布置图时,需要输入结构软件进行建模。建筑物根据设防类别、烈度、结构类型和房屋高度进行相应的计算和构造措施要求。注意“地震作用”、“抗震措施”与“抗震构造措施”,提高地震作用,则结构的各构件均全面增加材料; 抗震措施指除地震作用计算和抗力计算以外的抗震设计内容,包括抗震构造措施,其中的一般规定及计算要点中的地震作用效应(内力和变形) 调整的规定均属于抗震措施,提高抗震措施,着眼于把财力、物力用在增加结构薄弱部位的抗震能力上,是经济而有效的方法; 抗震构造措施指根据抗震概念设计原则,一般不需计算而对结构和非结构各部分必须采取的各种细部要求。设计中需要注意受压和局部受压的一些问题。

(2) 屋顶(面) 结构图当建筑是坡屋面时,结构处理方式有梁板与及折板式两种。梁板式适用于建筑平面不规整,板跨度较大,屋面坡度及屋脊线转折复杂的坡屋面,折板式适用于相反的条件。两种形式的板均为偏心受拉构件。板配筋时应有部分或全部的板负筋拉通以抵抗拉力。板厚基于构造需要一般不宜小于120 厚。至于坡屋面板的平面画法,通常使用剖面示意图加大样详图的表示方法,这样更便于施工人员正确理解图纸。正确绘图和设计的关键是设计人员真正的心知肚明,结构设计者必须要具备一定的空间概念,正确理解建筑图纸和意图。设计的图纸方能让施工人员明白。由于屋面的起坡会造成阁楼层的部分墙体超高,要结合门窗顶设置圈梁来降低墙的计算高度。

1.3 结构优化设计方案

结构设计优化设计多个变量、多个约束条件,属于一个非线性的优化问题,设定计算方案时,常将有约束条件转变为无约束条件来计算。常用的方法有拉氏乘子法、符合型法等。完成计算方案的设定后只需编制相应适用的运算程序即可得到我们的最终优化结果。

2 结构设计优化技术在应用中的几个问题

结构设计优化方法应用于实践之中,是目前一个比较广泛的课题,利用结构优化的方法在不改变适用性能的前提下达到降低工程造价的目的。结构设计优化设计应用于项目的整体设计、前期设计,旧房改造,抗震设计等设计的各分部环节,发挥着巨大的效益。在按照结构设计优化的方法及模型进行实践的过程中,要注意下面的几个问题。

2.1 前期参与

因为前期方案的确定直接影响建筑的总投资,而现在存在的普遍问题就是前期方案阶段结构设计并不进行参与,建筑师进行建筑设计时大多并不考虑结构的合理性以及它的可行性,但是建筑设计的结果却直接对结构设计造成影响,某些方案可能会增加结构设计的难度,并使得建筑的总投资提高。如果在方案的初期,结构优化设计就能参与进来,那么我们就能针对不同的建筑类别,选择合理的结构形式,合理的设计方案,获得一个良好的开端。

2.2 细部结构设计优化

概念设计应用于没有具体数值量化的情况,设计过程中需要设计人员灵活的运用结构设计优化的方法,达到最佳的效果。与宏观把握相对应的,设计的过程同时要注意对于细部的结构设计优化,比如现浇板中的异形板拐角处易出现裂缝,可划分为矩形板。注意钢筋的选择,I 级钢和冷轧带肋钢市场价格差不多,但是他们的极限抗拉力却相差很大,所以在塑性满足要求的情况下,现浇板的受力钢筋就可选择冷轧带肋钢筋。在做里面设计的时候,外立面上的悬挑板及配筋,满足基本的规范要求即可,达到既安全又经济的目的。

2.3 地基基础结构设计

地基基础的结构设计优化首先要选择合适的方案,如果为桩基础,那么要根据现场地质条件选择桩基类型,尽量节省造价。桩端持力层对灌注桩桩长的选择影响很大,应多进行比较以确定最合适的方案。

3 结构设计优化的的功用

3.1 降低总造价

进行结构优化设计中,多层住宅和高层住宅相比较,层数越多,总建筑面积增大,单位建筑面积占用的土地面积就越小,节约了用地成本,但建筑层数的增多,建筑总高度也会加大,楼与楼之间的间距也要加大,这时占用的土地节约量就不与建筑层数增加比例相同了。对于基础部分而言,虽然也是各层共用的,但是层数增加,传给基础的荷载将会增大,我们需要增大基础,这样单位面积的造价有所降低,但是却没有屋盖的效果那样明显。

3.2 提高建筑结构经济性

建筑的层高增加,由于墙体面积和柱体积增加,结构的自重会增加,基础和柱的承载力相应增加,水卫和电气的管线会加长; 相反降低层高,可节省材料,有利用抗震,同时建筑的总高度减小,两建筑之间的日照距离就会减小,间接的节约了用地。建筑面积相同,建筑使用不同的平面形状时,它的外墙周长也就会不同,这样当选择圆形或是越接近于方形时,外墙周长系数就越小,基础、外墙砌体、内外表面装修都随之减少,同时其受力性能也得到提高,增强了建筑的经济性能。优化方法的技术性实现,可以最合理的利用材料性能使建筑结构内部各单元得到最好的协调,不仅可以实现建筑美观、实用,而且在造价方面也有较大的节省,达到了建筑工程设计对适用、安全、经济、美观和便于施工的一般要求。通过使用优化设计手段,达到这5个方面的最佳结合,符合现今建筑商对于建筑结构的效益的需求,也符合市场可持续发展的需求。

优化设计与优化方法范文4

关键词:发动机支架; 轻量化设计; 连续体结构; 结构拓扑优化; 变密度法; 棋盘格现象; 有限元分析; TOSCA

中图分类号:TK422.4;O241.82文献标志码:A

0 引 言

自BENDSOE等[1]首次提出连续体结构拓扑优化概念和基于均匀化理论的拓扑优化方法――均匀化法以来,连续体结构拓扑优化方法就被公认为结构优化研究领域的热点之一.目前,随着结构拓扑优化理论研究的逐步深入[2],以及一些商品化软件拓扑优化功能的实现,拓扑优化的应用研究也逐步展开.在对结构优化设计要求较高和对产品重量要求苛刻的行业,如微机电系统、车辆和发动机等行业[3-7],拓扑优化技术体现出强大优势并正发挥巨大的作用.

本文以某发动机支架为研究对象,在多工况结构分析的基础上,基于TOSCA软件建立结构拓扑优化模型,设置过滤半径和各类制造加工约束,得到清晰且满足工程约束性要求的结构拓扑优化结果.通过对比优化前后结构分析结果,证明单元变密度结构拓扑优化方法在发动机支架结构优化设计上的可行性和有效性.

1 发动机支架多工况结构分析

某发动机支架总成结构由起悬挂作用的空间桁架和支架主体组成,其中支架主体结构由2根纵向工字梁和4根板状横梁组成.根据结构特点,支架主体结构采用实体单元离散,桁架结构采用空间杆单元模拟,得到的整体有限元模型见图1.

模型共包括189 410个节点,148 536个六面体实体单元,12个杆单元.通常,由于优化需进行多次结构分析迭代至收敛,若采用全模型进行优化分析,则将导致分析计算量过大.鉴于支架主体结构的重复性特点,在分析与优化建模中采用如图2所示的1/4局部结构.在该模型结构分析中,根据等效刚度原则将桁架结构简化为弹簧单元,将整体分析得到的位移值施加到分离体连接面上,选取的结构和边界条件采用各横梁中相对较恶劣的情况.

发动机在实际工作状况中产生的冲力反作用于支架上,反作用力处于图2所示垂直向上与y向夹角0~8°范围内,这里极限工况1的作用力夹角为0°,极限工况2的作用力夹角为8°,轴承座载荷分布为在120°范围内余弦函数的形式.这两种不同工况下的位移分布结果见图3.

2 发动机支架拓扑优化设计

2.1 单元变密度结构拓扑优化理论与模型建立

在常见的单元变密度结构拓扑优化理论中,通常以单元相对密度ρi为设计变量,材料弹性模量与密度变量之间满足假设的函数关系.常见的插值模型有固体各向同性惩罚微结构模型(Solid Isotropic Microstructures with Penalization, SIMP)和材料属性的有理近似模型(Rational Approximation of Material Properties, RAMP),两种模型均通过增大惩罚因子数值对中间密度值进行惩罚,使之向0~1状况靠近,从而减少中间材料的出现.以SIMP插值模型为例,弹性模量

2.2 支架结构拓扑优化常见问题设置与结果分析

支架结构拓扑优化模型的建立采用TOSCA完成.由于TOSCA软件本身不进行结构分析,而是通过提取商品化结构分析软件(如MSC Nastran)的结构分析结果(如单元应变能)进行敏度分析并形成优化模型列式,在优化求解后将新的单元密度值重新赋予结构模型并进入下一轮循环迭代,直至满足预先给定的收敛判定条件.基于上述模式的拓扑优化流程见图4.

结构拓扑优化模型建立首先需要指定设计区域,即弹性模量可变区域内的单元.如图2所示,支架两端的工字梁结构、安装轴承孔以及起连接紧固作用的螺栓孔等部位为完成结构功能要求的非设计区域,而其余部分均设定为设计区域.为增强结构拓扑优化结果的可制造加工性,基于数字图像处理技术,设定过滤半径(filter radius)抑制棋盘格现象和消除网格依赖性等数值不稳定性问题.[8]这里过滤半径值为平均单元尺寸的2.0倍.在8°夹角推力作用下,为保证载荷不对称情况下优化结果具有对称性,可设置平面对称性约束(plane symmetry constraint)和与对称面平行的一致性约束(stamp constraint).[9] 2种不同载荷工况分别优化迭代至24步和25步收敛,得到的结构拓扑优化结果见图5.

由图5可知,不同夹角工况下的拓扑优化结果类似,其原因在于载荷作用位置和方向差别较小,最佳传力路径几乎一致.在此情况下,多工况加权目标函数中权因子分配对优化结果的影响不大,可省略多工况下拓扑优化计算.利用优化模型设置的各类制造加工性约束,能进一步限制设计变量空间的搜索范围,得到满足设计要求和制造工艺要求的优化结果.由于有限单元离散性特点,使得结构拓扑优化边界通常出现锯齿形边界,为得到较平滑的优化结果,采用TOSCA Smooth模块对结构拓扑优化结果进行平滑处理,得到平滑后的优化结果见图6.由图6可见,经过平滑处理后的拓扑优化结果边界光滑,局部特征如圆角、倒角等细微特征均有所体现.

根据上述拓扑优化结果,对支架重新建模、分网和分析计算,两种不同载荷工况下的支架优化前后最大位移结果见表1.由表1可知,优化结构在各工况下的最大变形值下降程度较小,相对于初始结构 设计方案,在保持体积大幅削减的情况下满足结构设计刚度.

表 1 支架优化前后最大位移值对比mm0°工况最大位移8°工况最大位移初始结构0.710.71最优结构1.101.10

3 结 论

在整体模型结构分析的基础上,采用局部结构有限元模型适当减少结构分析计算量.优化模型中各类制造加工约束条件的设定,得到满足制造工艺要求的优化结果.平滑后的拓扑优化结果边界光滑、清晰.通过优化前后结构分析对比可知,基于单元变密度结构拓扑优化方法能有效进行发动机支架轻量化设计,从而避免传统结构设计方法的盲目性.

在实际的支架结构拓扑优化中,还需要考虑强度、模态等方面的要求.但在目前的通用化优化软件中,除HyperWorks optistruct等具有满足应力约束的拓扑优化功能外,大多数商用化软件(如TOSCA)尚无此项功能.同时,即使在概念设计阶段未考虑到强度约束,在精细设计阶段中,采用形状优化或尺寸优化的方式也可以考虑到.由于本文着重论述结构拓扑优化方法在发动机支架设计中的应用,故而未考虑强度约束.

参考文献:

[1] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods in Appl Mech & Eng, 1988, 71(2): 197-224.

[2] 罗震, 陈立平, 黄玉盈, 等. 连续体结构的拓扑优化设计[J]. 力学进展, 2004, 34(4): 463-476.

[3] 王振海, 张卫红. 柔性结构拓扑优化设计发展概括[J]. 机械设计, 2004, 21(3): 1-4.

[4] 龙凯, 覃文洁, 左正兴. 基于拓扑优化方法的牵引车车架优化设计[J]. 机械设计, 2007, 24(6): 52-54.

[5] 吴铭, 陈仙风. 拓扑优化技术在汽车零部件设计中的应用[J]. 计算机辅助工程, 2006, 15(S1): 177-179.

[6] 郝志勇, 贾维新, 郭磊. 拓扑优化在单缸机缸体轻量化设计中的应用[J]. 江苏大学学报, 2006, 27(4): 306-309.

[7] 黄国宁, 陈海, 霍应元. MSC Nastran优化功能在结构强度设计中的应用[J]. 计算机辅助工程, 2006, 15(S1): 50-52.

优化设计与优化方法范文5

【关键词】建筑结构设计;结构设计方法;优化方法;优化方法运用

结构设计优化方法的理论及意义

在从事工程项目和结构的设计时,除了要考虑设计对象的基本使用功能及安全可靠性外,还应该考虑到把它设计对象设计得尽可能完美。这就是工程和结构的最优化问题。用科学的语言来描述就是:利用确定的数学方法,在所有可能的设计方案的集合中,搜索到能够满足预定目标的、最令人满意的方案。结构设计优化方法从建筑理论上分析,具体体现在房屋工程分部结构的优化设计和房屋工程结构总体的优化设计两方面。后者的优化设计包括:屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。穿插其中的,还包含选型、布置、受力分析、造价分析等项目,在实施过程中,还应该按照一切从实际出发的原则,结合具体工程的实际情况,围绕房屋建筑的综合经济效益的目标进行结构优化设计。

建筑结构设计优化技术在房屋结构设计中的应用,可以达到“物美价廉”的效果,不但实现了房屋的美观、实用,而且在节省造价方面也有突出的效果。每一个建筑商都希望,在满足建筑结构长远效益的前提下,最大程度地减少建筑结构的近期投资,同时保证建筑物结构的可靠度和科学合理性。如此,才能实现可持续发展,实现更多、更大的市场收益。与传统房屋结构设计相比,采用设计优化方法则可以使建筑工程造价降低6%~35%。优化方法的技术性实现,可以最合理的利用材料的性能,使建筑结构内部各单元得到最好的协调,并具有建筑规范所规定的安全度。同时,它还可为建筑整体性方案设计进行合理的决策,优化技术是实现建筑设计的“适用、经济和安全”目标的有效途径。

二、房屋建筑结构设计的基本方法介绍

1.结构平面图

在绘制结构平面布置图时,是否要输入结构软件进行建模呢?当建筑地处抗震设防烈度为6度区时,根据建筑抗震设计规范,是可以不用进行截面抗震验算的,但必须符合有关的抗震措施要求。因此对于砌体结构来说可以不用在软件中建模,直接设计即可,但设计中需要注意受压和局部受压的问题。当然,如果时间允许的情况下还是输入建模较好,有一个便利就是可以利用软件来进行荷载导算何乐而不为呢?需要注意的是,当建筑地处抗震设防烈度为7度及以上时是必须要输入软件建模计算的。

屋顶(面)结构图

当建筑是坡屋面时,结构的处理方式有梁板式及折板式两种。梁板式适用于建筑平面不规整,板跨度较大,屋面坡度及屋脊线转折复杂的坡屋面。折板式适用于相反的条件。两种形式的板均为偏心受拉构件。板配筋时应有部分或全部的板负筋拉通以抵抗拉力。板厚基于构造需要一般不宜小于120厚。此外梁板的折角处钢筋的布置应有大样示意图。至于坡屋面板的平面画法,通常使用剖面示意图加大样详图的表示方法,这样更便于施工人员正确理解图纸。正确绘图和设计的关键是设计人员真正的心知肚明,结构设计者必须要具备一定的空间概念,正确理解建筑图纸和意图。设计的图纸方能让施工人员明白。由于屋面的起坡会造成阁楼层的部分墙体超高,要结合门窗顶设置圈梁来降低墙的计算高度。

大样详图

在建筑详图的准确无误的基础上,大样详图的绘制可在建筑详图的基础上直接绘制,也可在以前做过的详图的基础上来局部改进绘制。这阶段需要注意在保持建筑外形的前提下尽量的使结构受力合理和施工方便。在标高和外形尺寸上一定要和建筑专业协调一致。

楼梯

楼梯梯板要注意挠度的控制,梯梁要注意的是梁下净高要满足建筑的要求,梯梁的位置尽量使上下楼层的位置统一。局部不合适处可以采用折板楼梯。折板楼梯钢筋在内折角处要断开分别锚固防止局部的应力集中。注意梁下的净空要求,并要注意梯板宽度的问题。首段梯板的基础应注意基础的沉降问题,必要时应设梯梁。

基础

基础要注意混凝土的标号选择应符合结构耐久性的要求。(通常情况下可采用C25)基础的配筋应满足最小配筋率的要求(施工图审查中心重点审查部位)。条基交接部位的钢筋设置应有详图或选用标准图。条基交叉处的基底面积不可重复利用,应注意调整基础宽度。局部墙体中有局部的较大荷载时也要调整基础的宽度。基础图中的构造柱,当定位不明确时应给予准确定位。

结构优化设计技术在房屋建筑中的应用

结构设计优化技术需参与前期

房屋建筑项目的投资计划在实际工程中的影响因素非常复杂繁多,前期方案确定的质量好坏会直接影响建筑项目的总投资成本,而就目前普遍存在的前期方案的确立问题就是在前期方案阶段结构优化设计技术并不参与其中,相关设计人员在进行房屋建筑结构设计时往往会忽略或不考虑建筑结构的合理性和可行性,这样的建筑结构设计结果会对结构设计造成直接的影响,在后续的结构设计工作中往往被增加了结构设计的困难度且在建筑项目总投资上增加了一定的成本。想象一下,如果在房屋建筑结构设计方案确定的初期,结构优化设计就能完全地参与其中,那么我们就能从容地针对不同的建筑类别要求,优化选择合理地结构形式和设计方案,一定可以避免以上情况的发生。

同一建筑结构应设计多种方案布置

如果已经确定了建筑结构设计布置的建筑工程,也有在同种荷载情况下存在不同的分析办法。在一般的分析过程中,对于设计的参数、设计的材料以及设计试验承载能力的取值都不是只有一种取值情况。尤其是在处理一些建筑工程细部结构的设计问题时,还须面对计算机无法解决等情况,作为设计工作人员就不得不通过自身的判断能力根据结构设计规范的规定内容与指导展开设计。因此可以看出,结构设计优化技术主要应用于没有具体的数值量化的情况中,一般在采用概念设计方法的实际情况是可以通过有效数值作为一种辅和参考性的设计依据,以避免在设计过程中出现较大的误差或偏差,并利于设计结果能够达到最佳的效果。

3.优化设计后可承受不同载荷压力

概念设计能够处理的实际建筑工程结构设计问题是非常广泛的,我们所期望的是能够通过概念设计,房屋建筑工程结构能够在遭遇各种不同外部荷载作用下不会受到严重破坏或能够将破坏程度降到最低。因此,在分析如何能够应对建筑工程在一定期间内所有可能遭遇的各宗不确定的破坏因素应该成为概念设计的一项重要内容。尤其是在拟建工程项目地区内的地震活动作用最难以捉摸清楚,且地震的破坏作用通常也非常大,所以在对房屋建筑结构设计工程中必须要了解到拟建工程所在地区内在一定历史年限内的地震活动等一系列自然灾害的发生情况,然后充分考虑到建筑工程结构设计一些有助于提高建筑整体结构抗震能力的措施办法,而且应主要避免设计不利于抗震效果的结构做法。因此,在房屋建筑工程结构设计工程中必须要在整个设计过程中贯穿一种抗震设防的思想且以概念设计作为重点指导设计。

【参考文献】

[1]饶远文.结构设计优化技术及其在房屋结构设计中的应用[J].价值工程.2010年(11)

优化设计与优化方法范文6

关键词:工程造价;工程结算;设计阶段

中图分类号:TU723.3 文献标识码:A 文章编号:

一、工程造价控制方法

1.设计阶段

(1)推行设计方案招标进行多方案筛选:设计招标确定中标的依据包括:设计方案优劣、投入产出、设计进度快慢、收费多少、公司的资历和社会信誉。设计招标或者方案竞选有利于竞争和设计方案的选择,通过招标有多种设计方案可供选择和参考,从而保证设计方案技术先进、功能全面、结构合理、经济实用。

(2)运用价值工程进行设计优化和限额设计:限额设计是对工程造价目标进行分解,按上一阶段确定的目标控制下一阶段的设计,是以控制工程量为重要内容,运用价值工程提出合理化建议,多方案比较进行设计优化,确保在限额之内进行设计。投资估算是所选设计方案的造价控制目标,初步设计概算是技术设计和施工图设计的造价控制目标。

2.招投标阶段

(1)认真编制招标文件:工程招标是通过引进市场竞争,在满足工期和质量的前提下,选择投标报价最低或者经评审的合理最低投标报价的投标人,价格的竞争成为招标工作的核心内容。招标是一种公平、公正、公开选择承包商的方式。一是提高招标文件的质量,特别是工程量清单应项目齐全,数量准确,避免造成漏项,在开标后对工程清单进行重新核对时增加费用。二是要编制好招标控制价或者标底,把他们控制在合理造价的下限。三是在合同条款中应明确工期、质量、造价、材料设备供应、工程款支付、竣工验收、质量保证期违约责任等内容。四是要采取措施防止施工单位串标、围标,招标中经常出现某个人拿着许多施工单位的资质来投一个标,或者参加投标的施工单位相互串通,抬高中标价。

(2)运用工程量清单规范招投标:按照清单项目是否构成工程实体,分为分部分项工程量清单、措施项目清单和其他项目清单。分部分项工程量清单又称为实体分项工程量清单,是完整的建筑产品形体的组成部分。措施项目清单中的项目是有助于工程实体形成的措施性项目,其他项目清单是指预留金、材料购置费、总承包服务费、零星工程项目费等等。工程量清单招标的做法是:由招标单位根据工程量计算规则提供工程量清单,投标单位和参照消耗定额,结合自身实际情况和市场行情,自主报价和自主竞争。这种报价模式规范了报价行为,符合工程造价“量价分离”的原则,“统一量、竞争价、浮动费”,使工程造价建立以市场形成价格为主的管理体系。

(3)应对投标单位的投标策略:在招标时,要熟悉设计图纸和要求,分析工程造价各子目和构成合理性以及费用最易突破的环节,约束投标单位的不平衡报价,从而明确投资控制的重点。对无具体规定的项目用暂定价来规范,确保招标公平公正和控制造价。

3.施工阶段

工程项目施工阶段是把图纸、原材料、半成品等变成工程实体的过程,这个阶段投资比重较大且伸缩性较强,因此采取强有力的措施搞好施工阶段造价管理,对工程总造价的控制,提高经济效益起着显著作用。加强对建设项目施工阶段的工程造价控制可以从以下三个方面入手:

(1)加强项目成本控制和管理。一个工程在开工之前,首先应做好充分的准备工作,按预算要求恰到好处地制定一个正确的资金使用计划,既要保证工程建设有足够资金,又要尽可能少占用资金,还应结合工程项目的性质和规模,对工人数量、机械装备、材料供应情况、配件生产或采购情况、运输条件等做好周密安排,按照工.程项目合理的建设程序,排列施工顺序,编制施工计划,均衡安排施工进度,避免人力、物力、财力等损失,根据实际情况确定各分项工程施工周期,选择技术上可行,经济上合理的施工方案,有条不紊地组织施工,充分利用现有的设备,推行高效作业,保证工作质量,提高工作效率和设备利用率,缩短建设工期,降低工程成本。

(2)完善施工现场管理。施工过程情况多变,要深入现场获取第一手资料,掌握工程进度,及时发现投资偏差,采取适当纠偏措施,科学地预测未完工程,适时发现潜在问题,取得造价控制主动权,也为竣工验收提供有力依据。施工单位由于措施不当,延误了承诺的工期;交叉作业中,一方因现场清单不及时妨碍了另一方正常的工作程序,或因泼水等情况损坏了工程成品,或使用了非业主指定的新产品等等,对此建设单位均可进行反索赔。做好反索赔工作,需要有充分有力的证据,并利用监理的作用,保存好现场工程图片等原始资料。

(3)把好材料价格关。项目的工程材料费一般要占总成本的60%左右,显然材料成本是成本控制的重头戏。项目开发过程中,建设单位为控制成本及确保材料质量,对某些材料均会采用甲方指定或限价方式。首先,企业应关注造价机构公布的价格,与社会咨询机构保持联系。建立起企业自身的价格信息网络,保持信息渠道的畅通,及时准确地把握不同地区及不同规格的材料、半成品的价格信息,保证工作人员可随时随地地调用及监督,做到资源共享。需强调一点,政府公布的价格是市场的平均价,详细的价格管理远不能简单停留在这一深度,要进一步利用长期与商家建立起的经济往来关系和社会公开渠道,寻找物美价廉的产品。其次,控制材料的采购单价,企业还应把握大势,在系统价格的基础上,定期绘制主要材料时间---价格曲线图。再有,分析材料的周期变化规律,结合技术曲线的分析及市场经济的运行状况,委托人的通货膨胀或通货收缩状态,研究判断不同地区、不同材料的短期及中期走向,在参照价格信息的基础上,增加理性分析的因素,把握材料的走向趋势,将其分析成果应用在开发生产中。

二、设计阶段的方案优化

一般情况下,民用建筑的设计费只占总造价的1%—2%。如果决策正确,它对工程造价的影响程度达到75%以上,绘制施工图阶段对投资的影响程度为35%左右。在限额设计和优化设计过程中,设计人员为达到优化设计的效果,每次方案的修改都希望能得到相应的概算,较多的典型工程资料是十分有益的。多种工程组合的比较不仅有助于设计人员探索造价分配的合理方式,还为设计人员指出修改设计方案的可行途径。通过造价分析积累资料,可以为设计人员提供影响民用建筑造价的因素:平面布局、层高与层数、采光通风、三防(防火、防震和防空)设施、建筑造型、室外装修、室内装饰和室内设备。

经过大量浙江省经济适用房的案例进行测算,具体影响参数详见下述:

表1不同层数对造价的影响参数

其计算公式:

Rn= ( Y基础+Y屋面+Y地坪+(n-1) Y楼+n∑YK+∑YA) /n

式中:Rn一一n层住宅造价指标(元/m2)

n一一楼层层数

Y基础一一基础单方综合造价(元/基础底面积)

Y屋面一一屋面(含结构)单方综合造价(元/屋面面积)

Y地坪一一地坪单方综合造价(元/地坪面积)

Y楼一一楼层单位建筑面积造价(元/m2)

∑ YK一一门窗、墙体、圈梁、构造柱、脚手架等垂直部位构件的单位建

筑面积造价之和(元/m2)

∑YA一一安装工程部分的单位建筑面积造价之和(元/m2)

以下结果均参照浙江省造价数据:

表2建筑外形对造价的影响参数

表3不同平面形式的比较关系

表4不同层高对造价的影响参数

表5不同进深对造价的影响参数

表6不同开间对造价的影响参数

表7不同住宅楼户型面积对造价的影响参数

以上是指在相同建筑特征及建筑标准情况下的参数,但建筑造价是多种因素造成的,在工程造价计算中应该注意。

三、结束语

建筑工程造价管理与控制,对建筑工程建设的管理而言,是不可或缺的一个重要组成部分,因此,必须对建筑工程的造价有深入的了解,发现问题,并解决问题。在处理实际的问题时要对各个阶段进行全程的监控,并不断进行优化,这样才能做好建筑工程的造价控制和管理工作。

参考文献

[1] 甄瑞妙.工程造价的确定和控制方法研究[D].浙江工业大学.2006-04