前言:中文期刊网精心挑选了污水综合范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
污水综合范文1
北京是我国的首都,地处华北平原北端,属于半干旱季风地区,天然水资源量有限,时空分布极不均匀,因而使北京成为严重缺水的城市。近年来,由于城市规模日益扩大,人口膨胀,人民生活水平逐年提高,城市用水量日益增长,供需矛盾愈发尖锐。
为了缓解水资源的供需矛盾,有关方面正在积极寻求开辟新水源的各种途径,如外流域引水、开源节流、污水回用等措施。但是从外流域引水济京,在短期难成现实;本地开源很有限,而且代价很高,节水工作已经卓有成效,进一步挖掘潜力比较困难。而城市污水具有不受气候影响,不与邻近地区争水,就地可取,稳定可靠,保证率高等优点。污水回用在一定使用范围内,为我们提供了一个经济可靠的新水源,并且可以节省优质的饮用水源。
二、国内外污水回用状况
目前世界上许多面临着严重水危机的国家都在积极利用城市污水,并将城市污水作为第二水源予以开发利用,并已取得了成功的经验。美国有357个城市实现了污水处理后再利用;日本从60年代起一直大力研究和推广城市污水回用和中水技术,广泛供给工厂、企业和居民小区“中水道“冲洗厕所及杂用;南非1986年建成了世界上第一座城市污水“再生水“厂,用作城市自来水的补充水源。
另外美国丹佛市已将处理后的再生水送入自来水管网作为城市管网的补压用水。此外,以色列、俄罗斯、英国、以及中东诸国等都相继发展利用污水回用,以弥补日益缺乏的水资源。
我国的一些缺水城市80年代以来也相继建设了一些污水回用的示范工程,为我们大力推广城市污水综合利用提供了很值得借鉴的经验。目前我国的大连市、青岛市、太原市等缺水城市都建有城市污水回用工程,将城市污水处理后回用于工业和市政等方面。
国内外经验表明,城市生活污水在二级处理处理基础上无论采用混凝、沉淀、过滤、或者采用臭氧、抑制活性炭处理均能达到“中水“水质标准。国内外出台的一系列污水回用的规范和要求,为我们提供了可借鉴的依据。
三、北京市污水回用的可行性
1、技术可行
充足的污水资源是城市中水回用的基础,经预测2000年城市污水总量为263.84万m3/日,2010年城市污水总量为327.12万m3/日。目前北京市区已建成高碑店、方庄、北小河三座二级污水处理厂,处理能力为108万立方米/日,即北京市城市污水量44%得到了处理,为北京市城市污水再利用工程提供了良好的条件。
目前国内外制订了一系列针对污水回用的规范和要求,例如1992年美国国家环保局修订的《污水回用综合规范》;1989年世界卫生组织颁布的《污水回用农业的微生物含量标准》;我国于1989年10月正式颁布了《生活杂用水水质标准》GJ25.1-89;中国工程建设标准化协会于1995年颁布了《城市污水回用设计规范》,其中涉及污水回用于工业冷却水、景观河道水的水质标准;北京市自1987年颁布了《北京市中水设施建设管理试行办法》。
这些规范为我们开展污水回用工程提供了可借鉴的依据,我们分析了现状高碑店处理厂的出水水质并以北京水源六厂出水水质参照作为二级出水的深度处理水质,分别与工业、农业、市政杂用、河道补水、生活杂用等对回用水质的要求进行比较,分析目前北京市污水回用的技术可行性。经对比分析经处理的城市污水,适应以下几个方面:
1)工业:高碑店污水厂二级处理后的出水进一步深度处理后,水质能够满足一般工业行业冷却水的水质要求;
2)农业:高碑店污水厂处理厂二级出水水质基本满足农业灌溉水质的要求;
3)河湖补水:结合《北京城市总体规划》,在为“位于城市上游的莲花河、清河、凉水河等风景观赏河道“补水时,污水厂处理等级为深度处理;在为“位于城市下游的清河、坝河、凉水河、通惠河等河道“补水时,污水厂处理等级为二级处理;
4)市政杂用:城市污水经深度处理后满足城市绿化、扫除等杂用水的要求;
5)中水及居民小区杂用:北京市自1987年颁布了《北京市中水设施建设管理试行办法》,自此中水工程在北京也被广泛应用。从目前正常运转的中水设施来看,水质基本能够达到要求的中水标准。
2、经济可行
通过对比分析经济可行主要体现在下三个方面:
1)提供新水源:污水回用为我们提供了一个非常经济的新水源,减少了由于远距离引水引起的数额巨大的工程投资;
2)减少新鲜水处理设施投资:污水回用在提供新水源的同时还可以减少新鲜水的用量,因此相应减少了城市水厂处理设施的投资;
3)减少污染控制费用:随着社会发展和环境保护的要求,城市污水必须经过处理,达到地面水水质标准后方能排放进入水体,因此污水回用还可以降低污水外排放量,减少控制水体污染引起的费用。
四、适宜回用对象及回用水量
根据可行性分析,结合北京市的具体情况,将北京城市污水回用对象分为工业、农业、景观河道补水、市政杂用、居民区中水五个方面。
1、工业:目前北京市正在进行工业布局调整,要形成相对集中,集分有序的分布。工业的主体集中分布在若干个经过规范、调整的老的工业区、规划市区边缘集团和远郊区县外的若干个经济开发区和工业小区。近期工业污水回用首先应选择用水量较大的用户,远期回用对象包括现状工业区和规划工业边缘集团。
2、农业:根据污水灌溉对地下水的影响,城市污水灌溉只能在适宜污灌区和控制污灌区中的一般控制污灌区进行。结合北京市污水处理厂规划,市区污水回用于农业的范围集中在朝阳区、丰台区部分地区;远期污水回用于农业的范围可扩大到通州区和大兴部分地区。
3、景观河道补水
结合《北京城市总体规划》中有关污水回用于景观河道的内容,并考虑规划城市污水厂与市区河道的布局关系,规划将对市区12条IV、V类河道作为污水回用的对象。
4、市政杂用
根据北京市区园林绿化规划,规划将对中心地区与边缘集团之间的绿化离地带、市区外缘的防护绿化环带作为污水回用的重点。
规划以规划边缘集团居住区和缺水地区的居住小区作为污水回用的对象。内容包括住宅的冲厕用水和社区内绿化、道路冲刷和冲车等杂用水。
根据研究结果若按规划实施。近期可利用厂出为2.95亿立方米/年,其中工业回用水量1.06亿立方米/年,市政回用水量0.21亿立方米/年,河湖补水量0.65亿立方米/年,小区配套0.03亿立方米/年,农业灌溉水量1.00亿立方米/年,其中工业回用水量1。84亿立方米/年,市政回用水量0.32亿立方米/年,河湖补水量2.40亿立方米/年,小区配套0.88亿立方米/年,农业灌溉水量4.53亿立方米/年。
五、显著的社会和经济效益
污水综合范文2
《北京市城市污水回用研究》在综合分析、确定北京市污水回用的技术可行性和经济可行性的基础上,采用多种预测方法进行北京城市污水量的预测和污水可回用量的计算;利用Mapinfo地理信息软件平台建立北京城市污水回用综合信息系统,包括工业、农业、市政绿化、河道和生活杂用五个子系统;确定城市污水回用的部位、水量以及城市污水处理厂深度处理规模。
一、北京亟待开发新的水资源
北京是我国的首都,地处华北平原北端,属于半干旱季风地区,天然水资源量有限,时空分布极不均匀,因而使北京成为严重缺水的城市。近年来,由于城市规模日益扩大,人口膨胀,人民生活水平逐年提高,城市用水量日益增长,供需矛盾愈发尖锐。
为了缓解水资源的供需矛盾,有关方面正在积极寻求开辟新水源的各种途径,如外流域引水、开源节流、污水回用等措施。但是从外流域引水济京,在短期难成现实;本地开源很有限,而且代价很高,节水工作已经卓有成效,进一步挖掘潜力比较困难。而城市污水具有不受气候影响,不与邻近地区争水,就地可取,稳定可靠,保证率高等优点。污水回用在一定使用范围内,为我们提供了一个经济可靠的新水源,并且可以节省优质的饮用水源。
二、国内外污水回用状况
目前世界上许多面临着严重水危机的国家都在积极利用城市污水,并将城市污水作为第二水源予以开发利用,并已取得了成功的经验。美国有357个城市实现了污水处理后再利用;日本从60年代起一直大力研究和推广城市污水回用和中水技术,广泛供给工厂、企业和居民小区“中水道“冲洗厕所及杂用;南非1986年建成了世界上第一座城市污水“再生水“厂,用作城市自来水的补充水源。
另外美国丹佛市已将处理后的再生水送入自来水管网作为城市管网的补压用水。此外,以色列、俄罗斯、英国、以及中东诸国等都相继发展利用污水回用,以弥补日益缺乏的水资源。
我国的一些缺水城市80年代以来也相继建设了一些污水回用的示范工程,为我们大力推广城市污水综合利用提供了很值得借鉴的经验。目前我国的大连市、青岛市、太原市等缺水城市都建有城市污水回用工程,将城市污水处理后回用于工业和市政等方面。
国内外经验表明,城市生活污水在二级处理处理基础上无论采用混凝、沉淀、过滤、或者采用臭氧、抑制活性炭处理均能达到“中水“水质标准。国内外出台的一系列污水回用的规范和要求,为我们提供了可借鉴的依据。
三、北京市污水回用的可行性
1、技术可行
充足的污水资源是城市中水回用的基础,经预测2000年城市污水总量为263.84万m3/日,2010年城市污水总量为327.12万m3/日。目前北京市区已建成高碑店、方庄、北小河三座二级污水处理厂,处理能力为108万立方米/日,即北京市城市污水量44%得到了处理,为北京市城市污水再利用工程提供了良好的条件。
目前国内外制订了一系列针对污水回用的规范和要求,例如1992年美国国家环保局修订的《污水回用综合规范》;1989年世界卫生组织颁布的《污水回用农业的微生物含量标准》;我国于1989年10月正式颁布了《生活杂用水水质标准》GJ25.1-89;中国工程建设标准化协会于1995年颁布了《城市污水回用设计规范》,其中涉及污水回用于工业冷却水、景观河道水的水质标准;北京市自1987年颁布了《北京市中水设施建设管理试行办法》。
这些规范为我们开展污水回用工程提供了可借鉴的依据,我们分析了现状高碑店处理厂的出水水质并以北京水源六厂出水水质参照作为二级出水的深度处理水质,分别与工业、农业、市政杂用、河道补水、生活杂用等对回用水质的要求进行比较,分析目前北京市污水回用的技术可行性。经对比分析经处理的城市污水,适应以下几个方面:
1)工业:高碑店污水厂二级处理后的出水进一步深度处理后,水质能够满足一般工业行业冷却水的水质要求;
2)农业:高碑店污水厂处理厂二级出水水质基本满足农业灌溉水质的要求;
3)河湖补水:结合《北京城市总体规划》,在为“位于城市上游的莲花河、清河、凉水河等风景观赏河道“补水时,污水厂处理等级为深度处理;在为“位于城市下游的清河、坝河、凉水河、通惠河等河道“补水时,污水厂处理等级为二级处理;
4)市政杂用:城市污水经深度处理后满足城市绿化、扫除等杂用水的要求;
5)中水及居民小区杂用:北京市自1987年颁布了《北京市中水设施建设管理试行办法》,自此中水工程在北京也被广泛应用。从目前正常运转的中水设施来看,水质基本能够达到要求的中水标准。
2、经济可行
通过对比分析经济可行主要体现在下三个方面:
1)提供新水源:污水回用为我们提供了一个非常经济的新水源,减少了由于远距离引水引起的数额巨大的工程投资;
2)减少新鲜水处理设施投资:污水回用在提供新水源的同时还可以减少新鲜水的用量,因此相应减少了城市水厂处理设施的投资;
3)减少污染控制费用:随着社会发展和环境保护的要求,城市污水必须经过处理,达到地面水水质标准后方能排放进入水体,因此污水回用还可以降低污水外排放量,减少控制水体污染引起的费用。
四、适宜回用对象及回用水量
根据可行性分析,结合北京市的具体情况,将北京城市污水回用
对象分为工业、农业、景观河道补水、市政杂用、居民区中水五个方面。 1、工业:目前北京市正在进行工业布局调整,要形成相对集中,集分有序的分布。工业的主体集中分布在若干个经过规范、调整的老的工业区、规划市区边缘集团和远郊区县外的若干个经济开发区和工业小区。近期工业污水回用首先应选择用水量较大的用户,远期回用对象包括现状工业区和规划工业边缘集团。
2、农业:根据污水灌溉对地下水的影响,城市污水灌溉只能在适宜污灌区和控制污灌区中的一般控制污灌区进行。结合北京市污水处理厂规划,市区污水回用于农业的范围集中在朝阳区、丰台区部分地区;远期污水回用于农业的范围可扩大到通州区和大兴部分地区。
3、景观河道补水
结合《北京城市总体规划》中有关污水回用于景观河道的内容,并考虑规划城市污水厂与市区河道的布局关系,规划将对市区12条IV、V类河道作为污水回用的对象。
4、市政杂用
根据北京市区园林绿化规划,规划将对中心地区与边缘集团之间的绿化离地带、市区外缘的防护绿化环带作为污水回用的重点。
规划以规划边缘集团居住区和缺水地区的居住小区作为污水回用的对象。内容包括住宅的冲厕用水和社区内绿化、道路冲刷和冲车等杂用水。
根据研究结果若按规划实施。近期可利用厂出为2.95亿立方米/年,其中工业回用水量1.06亿立方米/年,市政回用水量0.21亿立方米/年,河湖补水量0.65亿立方米/年,小区配套0.03亿立方米/年,农业灌溉水量1.00亿立方米/年,其中工业回用水量1。84亿立方米/年,市政回用水量0.32亿立方米/年,河湖补水量2.40亿立方米/年,小区配套0.88亿立方米/年,农业灌溉水量4.53亿立方米/年。
五、显着的社会和经济效益
污水综合范文3
关键词:污泥 综合利用
城市污水厂的污泥是指处理污水所产生的固态、半固态及液态的废弃物,含有大量的有机物、丰富的氮磷等营养物、重金属以及致病菌和病原菌等,如果不加处理的任意排放和投弃会对环境造成严重的污染。随着污水处理设施的普及、处理率的提高和处理程度的深化,污泥的产生量必将有较大的增长。如何妥善地处置污水厂污泥,并将其作为一种新的资源加以有效利用,变废为宝,已成为城市污水厂和相关部门提高技术水平和管理水平的重要因素,也是全球共同关注的课题。
1.污泥最终处置的主要方式
目前,国内外污泥最终处置方式主要有:综合利用、填埋、投海。
(1)综合利用
①农田林地利用
污泥脱水后堆肥农用是目前国内一些污水处理厂正在进行研究和开发的课题,污泥中含有大量植物生长所必需的肥分(N、P、K)、微量元素及土壤改良剂(有机腐殖质)。我国城市污水处理厂的各种污泥所含肥分见表1,故污泥农田林地利用是最佳的最终处置方法,但污泥中也含有对植物及土壤有危害作用的病菌、寄生虫卵、难降解有机物、重金属离子以及N、P的流失对地表水和地下水的污染,甚至可能含有一些致癌物质,目前对重金属污染研究较多。因此,在作农田林地利用前,应进行堆肥处理以杀死病菌及寄生虫卵,同时还应去除这些有害物质。目前普遍的问题是检测手段跟不上要求,处理成本无法和经济效益相平衡,化肥的普遍应用造成销售市场难以开发等,这些使得此种处置方式尚未得到普遍的推广。我国有大量工业废水进入污水处理厂,污水中重金属离子约有50%以上转移到污泥中,污泥中的重金属离子含量一般都较高。
为提高污泥的农用量可以采取一些措施:一是把污泥制成有机—无机复合肥料,适当添加钾肥以补充污泥肥料中钾的不足,这样可以提高肥效降低有害物的含量;二是在经济政策上优惠使用污泥复合肥料的单位或个人,如免费提供试用肥料样品,免费为施用污泥复合肥料的区域或地块作土壤营养状况分析等。
②污泥焚烧产物利用
污泥中合有一定量的有机成分,经脱水干燥的污泥可用焚烧处理。在日本,该方法巳占污泥处理总量的60%以上、欧盟也在10%以上。为防止焚烧过程中产生二噁英等有毒气体,焚烧温度应高于850℃。污泥焚烧所产生的焚烧灰具有吸水性、凝固性,因而可用于改良土壤、筑路等,也可作为砖瓦和陶瓷等的原料,另外,污泥灰也可以作为混凝土混料的细填料。将污泥转变成一种颗粒状燃料,可以很好燃烧,其热值和褐煤相当,燃烧释放的有害气体远低于焚烧过程,其残余物可用于建筑工业。
污泥焚烧可以从废气中获得剩余能量,用来发电。在脱水污泥中加入引燃剂、催化剂、疏松剂和固硫剂等添加剂制成合成燃料,该合成燃料可用于工业和生活锅妒,燃烧稳定,热工测试和环保测试良好,是污泥有效利用的一种理想途径。
③低温热解制取可燃物
污泥热化学处理因其无害化和减量化彻底,地位已逐渐增强。污泥低温热解是一种发展中的能量回收型污泥热化学处理技术。它通过在催化剂作用下无氧加热干燥污泥至一定温度(
④建筑材料利用
污泥可用于制砖和制纤维板材。
污泥制砖的方法有两种。一种是用干化污泥直接制砖,另一种是用污泥灰渣制砖。用干化污泥直接制砖时,应对污泥的成分作适当调整,使其成分与制砖粘土的化学成分相当。当污泥与粘土按重量比1:10配料时,污泥砖可达普通红砖的强度。利用污泥焚烧灰渣制砖时,灰渣的化学成分与制砖粘土的化学成分是比较接近的,制坯时只需添加适量粘土与硅砂。比较适宜的配料重量比为灰渣:粘土:硅砂=100:50:(15~20)。
污泥制生化纤维板,主要是利用活性污泥中所含粗蛋白(有机物)与球蛋白(酶)能溶解于水及稀酸、稀碱、中性盐的水溶液这一性质,在碱性条件下加热、干燥、加压后,发生蛋白质的变性作用,从而制成活性污泥树脂(又称蛋白胶),使之与漂白、脱脂处理的废纤维压制成板材。其品质优于国家三级硬质纤维板的标准。
(2)填理
污泥填埋有填地与填海造地两种。
污泥消化后经脱水再进行填埋是目前国内许多大型污水处理厂中常采取的方式,经过消化后的污泥有机物含量减少,性能稳定,总体积减少,脱水后作填埋处置是一种比较经济的处理方式。由于消化装置工艺复杂、一次性投资大、运行操作难度大,实际运行经验表明往往难以达到预期的效果。况且脱水污泥含水率大大高于普通生活垃圾卫生填埋场所要求的30%含水率,因此需再经处理才能送生活垃圾填埋场填埋;或者设置专用的污泥填埋场,根据污泥的含水率及力学特性等因素进行专门填埋,但此法有占地较大、选址受阻及存在二次污染隐患等缺点。
污泥填埋的操作要求与垃圾填埋相似。污泥填埋场的渗滤液属高浓度有机污水,必须集中加以处理;污泥填埋场四周应设围栏,并采取相应的防蚊蝇、防鼠措施,未经干燥焚烧处理的污泥,宜小规模分层填埋,生污泥泥层厚度应
污泥填海造地,应遵守下列要求:①必须设护堤,渗水也必须集中进行处理,以防污泥和污水污染海水;②污泥或灰渣中的重金属含量应符合填海造地标准。
(3)投海
沿海地区,尤其是有大江、大河入海口附近,可考虑把生污泥、消化污泥、脱水泥饼或焚烧灰渣投海。投海污泥最好是经过消化处理的污泥。投海方式可用管道输送或船运,其中管道输送较为经济。在污泥投海工程实施前,必须搞好投海区的选择(离海岸10km以外,水深25m左右),以保证海水的稀释与自净作用。
总之,综合利用将是今后污泥处置的主要方式。填理由于占地多,潜在生物可利用率低,渗滤液可污染地下水,后续处理管理费用高等问题,应用受到限制。海洋投弃将逐渐被禁止。随着科技的发展,污泥的有效利用的方式和有效利用率将会进一步增加。
2. 污泥利用方案的选择
(1)污泥利用的潜在风险
污泥利用需满足严格的环境卫生标准,不能造成新的环境危害。污泥利用的环境问题是重金属和氮对土壤、作物、水体的影响以及病原物污染,所以具有潜在风险。污泥的热能利用无疑是风险最小的,而土地利用则需严格管理,只有重金属含量低于农用污泥标准才可用于农作物,而且污泥肥的施用也需严格定量以控制重金属的积累和减少氮、磷淋失对水体的污染。至于病原物污染,热干化的安全性较佳,因其高温灭菌作用很彻底,产品可完全抑制微生物的活性;碱性稳定化基本上也能达到安全标准;堆肥则不足以保证安全性,因病原物仍有少量存活且产品的高含水率(一般为30%~40%)可使病原物复活,故采用堆肥方案时需加强对堆肥质量、场所和施用场地的管理。
(2)利用方案的比较
①农田林地利用
用污泥对农田、林地、草坪施肥或进行土壤改良以及用于市政绿化、育苗等,不仅可改善土壤的理化性质,增加土壤肥力,促进树木、花卉及草坪等的生长,而且可避免污泥中的重金属、有毒有机物因食物链的生物富集效应对人畜产生的危害,除此之外土壤的自净能力还可使污泥进一步无害化。因此土地利用是一种积极的、生产性的污泥处置方法。污泥利用前需堆肥化处理,堆肥化若采用静态条垛工艺,成本最低,但其生产周期长、占用土地多且对周围环境的影响比较严重;若采用发酵仓,其设备投资和运行费用将增加,而且若要制成复合肥还需烘干造粒设备,这样其成本优势就大大削弱了。
②污泥焚烧产物利用
污泥焚烧效果好,焚烧产物既可用作新的产品原料,又可回收热能。国外已有较成熟经验和工艺,可以直接借鉴使用。但总体来说焚烧的成本最高(是其他工艺的2~4倍)。今后应从降低成本,减少二次污染角度着手,生产新设备。
③低温热解制取可燃物
污泥低温热解效果亦好,污泥可通过干馏提取油、气等,不但可做燃料也可用于制造四氯化碳等化工产品,具有工业化利用前景,且能量回收率高,经济性优于焚烧处理,是大有前途的处理方法。在热解机理和动力学研究方面,还有很多工作需进一步探讨。在工艺和设备的改进方面有待新的突破。
④建筑材料利用
建筑材料利用,不仅可以减少污泥填埋所占用的土地,减少自然资源消耗,而且可以使资源得到循环利用,变废为宝。
(3)其他因素
污泥处理设施的选址是方案选择的决定因素之一。一般而言,污泥宜就近处理以节省运输费用和减少湿污泥运输对沿途造成的污染。由于污泥处理过程中可能会带来臭味、有毒有害气体及病原体等环境问题,所以选址会对方案选择产生决定性影响。
3. 结语
污水综合范文4
关键词:大型钢筋砼水池 施工难点 关键技术
Abstract: this paper through the changsha open f sewage treatment plant engineering construction, summarizes the reinforced concrete pool large construction experience, according to several key construction technology in the construction of a detailed discussion, refers for the colleague.
Keywords: large pools of reinforced concrete construction difficulties key technology
中图分类号:TU74文献标识码:A 文章编号:
一、工程概况
长沙开福污水处理厂位于开福区金霞开发区,项目占地99亩,采用MSBR处理工艺,日处理污水能力20万吨。由于工艺先进,在我国目前的污水处理厂建设中是一个新突破。
该厂主要的建构筑物包括配水井、细隔栅及旋流沉砂池、MSBR生化处理池、紫外线消毒池、出水提升泵房、污泥脱水间、配电间、机修间和综合楼。其中4个MSBR生化处理池工程结构为地下现浇钢筋砼挡墙结构,长边为88m,短边为50m,池壁最大净高7.8m,池壁为外直内斜,根部壁厚800mm,顶部壁厚500mm。池体伸缩缝采用埋入式橡胶止水带,在变形缝的外侧采用双组份聚硫密封膏柔性防水,结构防腐为环氧煤沥青厚浆型涂料与玻璃纤维布相结合。池体工艺管线多,结构施工预留套管、预埋铁件、预留洞口多。
二、关键部位和施工难点
(1)如何保证砼的整体性、密实性,防止有害裂缝的产生,尤其在是砼刚性自防水部位和伸缩缝部位。
(2)7.8米高倒锥形池壁模板加固,止水螺杆的应用。
(3)伸缩缝、预留洞、预留套管部位的钢筋绑扎,砼浇筑。
(4)伸缩缝橡胶止水带固定处理。
三、关键施工技术的探讨
3.1砼的浇筑是重点。作为大型的钢筋砼污水池,砼的自防水是重点,确保砼的自防水性的关键是砼的浇筑,所以施工的重点放在提高砼的抗渗性、抗裂性,以及保证砼结构的整体性上。
3.2 模板支撑加固体系的设计。本工程模板设计采用18mm竹胶合板模板,使砼的施工达到清水砼的标准,背枋用50×100木枋, 48×3.5钢管做支撑加固, 14的对拉螺杆连接加固,中部焊有止水环。木枋间距不大于250mm,对拉螺杆间距不大于450mm,取得了较好的效果。
3.3 提高砼抗渗、抗裂性能。本工程在防水砼中添加水泥用量10%的HEA高效抗渗抗裂防水剂,作为提高砼抗裂、抗渗的一种技术手段。由于施工受场地条件限制,本工程仍然采用现场设置搅拌站拌自制砼,用砼泵进行输送.后台砼搅拌中配料系统使用前进行校验,确保配合比和计量准确无误;向泵机卸料前,保证砼已充分搅拌,加入HEA高效抗渗抗裂防水剂或粉煤灰等外加材料的砼搅拌时间应比普通砼延长30s;人工添加外加剂对操作人员进行交底和培训,使添加准确,误差≤0.5%。前台砼施工中砼振捣时由专人负责,振捣时间宜为10~30s,以砼泛浆和不冒气泡为准,确保不漏振、不欠振、不超振;并应严格按预先设计好的浇筑方法进行浇筑;浇完砼后按规范的要求拆模和养护,以保证砼抗渗质量。
3.4保证砼结构整体性
3.4.1砼浇筑时,底板砼根据伸缩缝划分出的底板分块进行一次分层性浇筑,不再留设施工缝;同样池壁砼也根据分块一次性分层浇筑到顶,中间不留施工缝。
3.4.2底板与墙体接缝处,在距底板500mm处留一道水平施工缝,水平施工缝采用止水钢板,彻底切断渗水路线(见图1)。穿墙螺栓部位采取了(如图2)所示的处理办法。
图1 图2
螺栓加堵头
1-混凝土;2-模板;3-止水环;4-螺栓;
5-堵头;6-木枋;7-圆形钢管
3.5伸缩缝、套管部位钢筋安装质量的控制
(1)伸缩缝部位为保证橡胶止水带位置的准确性,箍筋采用“U”型。
(2)本工程预留套管比较多,直径大小不一,最大直径为1800mm。洞口加强钢筋先预制但不固定,待套管安装后再调整到位并固定。
四、主要的施工方法
4.1模板支撑加固体系
(1)该水池施工中的重点是池壁模板的施工,水池池壁较长、较高,呈倒锥形,面积较大,模板一次性投入量大,该工程模板设计采用18mm竹胶合板模板,50×100木枋和 48×3.5钢管支撑,14的止水螺杆加固。
(2)池壁模板施工具体施工方法是用双钢管横楞,14止水螺杆穿池壁拉结固定,墙外侧用钢管斜撑支撑,墙内侧搭设双排脚手架和斜撑支撑,脚手架立杆间距1.2m,水平横杆间距1.5m,剪刀撑每3跨设置一道,角度45°,双向通长布置(见图3)。
图3
(3)按工程结构施工图进行了模板设计,确保强度、刚度及稳定性,在进行模板配板布置及支撑系统布置的基础上,对其强度、刚度及稳定性进行了验算。
(4)模板施工时综合考虑了工程结构的形式、特点及现场条件,合理确定了模板工程施工的流水区段,以减少模板投入,增加周转次数,均衡工序工程(钢筋、模板、砼工序)的作业量。
4.2砼配合比设计及优化
(1)砼配合比应根据工程结构特点和要求、输送距离和高度、气温条件、泵机性能及原材料的特性等情况进行设计。
(2)选择有相应资质和能力的试验室进行配合比设计, 并有具有执业资格的操作人员,检测和试验仪器经过计量检测并合格。
(3)砼根据工程需要和泵送砼的要求确定砼的坍落度;坍落度的确定考虑到气温、泵送距离和高度、缓凝、膨胀、防水等因素;严格控制及测定坍落度损失值,以满足工程的要求,确保工程质量。
(4)泵送砼水泥用量≥300kg/m3;水灰比宜为0.4~0.6,当水灰比小于0.4时,砼的泵送阻力急剧增大,大于0. 6时,砼则易泌水、分层、离析,也影响泵送;砂率要比普通砼增大,但是砂率过大,不仅会影响砼的强度,而且能增大收缩和裂缝,泵送砼砂率宜为35%~45%;粉煤灰掺量≤20%。
(5)不同强度等级的砼配合比在使用前须经审核批准和现场技术交底后方可投入生产和使用;搅拌站必须按已批准的配合比拌制砼。
(6)应当根据搅拌站原材料实际情况,及与试验室的差别(如砂石含水率等不同),将砼设计配合比按规范规定的方法调整为施工配合比。
污水综合范文5
关键词:污水处理 综合智能自动化 DCS和PLC技术
1、概述
近年来,各地相继建设了一批大型城市污水处理厂,将先进的工艺及设备引进该类项目,在提高工艺设备技术水平的同时,控制系统和管理水平也有了很大的提高。
污水处理成套设备综合智能自动化系统对污水处理运行过程的全面控制及全厂管理系统进行研究开发,实现污水处理全过程的自动化控制和现代化管理。
针对自动化系统的发展趋势及现污水处理厂的一些现状,将现场总线技术,智能控制,故障诊断及常规DCS和PLC技术作为开发的重点。
系统按纵向分层,横向分站的原则构造,纵向分为远程终端,计算机集成生产系统,控制网络和现场设备及各层面。横向则根据污水处理工艺划分为若干个控制站,用户可根据自己的实际情况,合理地选择系统的配置。针对污水处理工艺过程,开发并应用智能化控制软件,实现污水处理工艺运行参数以及运行过程的自动控制。
工艺运行的控制系统可划分为污水泵及三索格栅自动化控制、预处理工序自动控制、曝气池溶解氧与鼓风曝气自动控制、曝气池混合液浓度与污泥回流自动控制、二沉池泥水界面检测及排泥自动控制、污泥脱水工序自动等六个控制单元。
2、各单元智能自动化控制系统
2.1 污水泵及三索格栅自控系统
污水泵单元设有污水泵,通过变频器控制或自耦启动。中控室DeltaV控制污水泵运行。为满足系统控制的要求,在电气控制部分增加了远程控制功能,在远程控制状态时,DeltaV控制其运行。三索格栅的运行间隔根据进水量的大小确定。
2.2 污水预处理工序自控系统。
(1)旋流沉沙池和砂水分离器控制系统
该系统电气控制元件多,动作复杂,为此采用PLC做主控制器,控制方式为自动,中控,手动三种。
(2)一沉池自控系统
沉淀池有电动排泥阀及刮沫机。电动排泥阀具有现场手动和远程操作功能,刮沫机的控制信号也同样反馈到上位机的PLC中,主控制器按工艺要求分别对刮泥机,电动排泥阀门按时间函数进行控制。
2.3 曝气池溶解氧与鼓风曝气自控系统
该系统由鼓风曝气装置电动调节阀、溶解氧传感器及DeltaV控制器组成。各曝气池溶解氧含量的控制由溶解氧传感器,控制器,综合参数流量控制器,电动调节阀构成串级控制回路,通过调节阀门开度使溶解氧保持在工艺要求的范围之内,鼓风曝气总量控制回路由溶解氧传感器,综合参数流量控制器和变频调速器构成。通过调节风机转速控制鼓风总量的大小,在满足曝气池供氧量的前提下,降低鼓风机电耗。
2.4 曝气池混合液浓度与污泥回流自控系统
该系统为串级控制回路组成,每个回路中包括混合液浓度传感器和控制器,回流污泥流量传感器和控制器以及电动调节阀等。
在混合液浓度控制系统的内环,由于执行机构-电动调节阀和检测仪表-多普勒流量计均有一定的纯滞后时间,对于这种控制现象使用常规控制效果较差,所以采用了采样值PI控制作为串级控制系统的控制器。为使回流污泥调节阀的动作不至太频繁,混合液浓度控制系统的控制器采用采样-保持式增量控制"方式,这种控制方式是模拟人工控制的方式进行的,控制器每隔一段时间采样检测一次混合液浓度,将该值与前一次监测值进行比较,得到在区间内的变化量,再根据当前混合液浓度与混合液浓度控制范围的中值的差,计算出主控制器对从控制器的给定流量。
2.5 二沉池泥水量界面检测及排泥控制系统
该系统由泥水界面计,无线数据传输装置和工业控制机组成。采集的二沉池泥水界面值通过无线发射模块送到无线接收模块,再通过RS--485总线传输到中控室的工业控制机。
排泥控制系统中的DeltaV系统,污泥回流泵变频器,排泥电动阀等作为系统的控制和执行单元,完成对二沉池泥水界面值的控制。
2.6 污泥脱水工序自控系统
根据污泥量,污泥浓度调节絮凝剂的投入量,使污泥脱水过程在最佳絮凝状态下运行,改变污泥脱水工序无计量,无检测的人工经验式的工作状态,实现污泥脱水工序生产过程的自动控制,建成运行过程主要工艺参数的在线监测及参与实时控制的自动化系统。
根据污泥脱水工艺流程和需要控制的设备的数量,仍以PLC做为控制计算机。控制方式分别采用手动和自动。
手动运行方式下,可按照工艺要求,根据现场设备状况及污泥和絮凝剂的反应情况,进行手动操作。阀门控制器和定量控制器,也设为手动/自动两种工作方式,在手动工作方式下,由面板上的按键直接操作。
在自动运行阶段,关键是控制阀门开度和定量泵加药量,定量泵转速,和给泥阀的开度。但由于加药量和阀门开度控制都有一定的延时,所以,关于给泥阀和加药泵的控制是一个带有滞后的多因素的非线型控制,为使控制准确,需增加智能控制,选择专家系统对阀门开度和定量阀进行控制。阀门开度控制在0~100%之间,定量泵的流量控制在0~300m3/h之间,由PLC的模拟量的输出对阀门开度和定量泵的转速进行控制。
污水综合范文6
关键字:噪声控制 罗茨风机 综合治理
德兴铜矿污水处理站采用HDS技术处理工艺,送风选用罗茨风机,型号为ARE195,长沙鼓风机厂生产。主要技术参数:风压101.3kPa,风量52.8m3/min,转速1450r/min,配套电机功率132kW。风机房共安装了3台罗茨风机,二用一备。
虽然工程设计时已采取了对罗茨风机加隔声罩等噪声控制措施,但运行后鼓风曝气系统噪声污染仍然十分严重。风机房内噪声平均值达118.8dB(A);曝气反应池靠近送风道处的噪声达111.6dB(A);风机房相邻厂界噪声达75.5dB(A),超过所在区域厂界噪声标准值(夜间)30.5dB(A)。
一、噪声治理的基本原理
环境噪声污染一般是由声源、传播途径和受主三个基本环节组成的。因此,噪声治理必须把这三个环节作为一个系统进行研究。
声源可以是单个,也可以是多个同时作用;传播途径也常不只一条,且非固定不变;受主可能是人,也可能是若干灵敏设备,对噪声的反应也各不相同。所以,在考虑问题时,既要注意这种统计性质,又要考虑个体特性。
1、降低声源的噪声辐射是控制噪声最根本的措施。通过对声源发声机理和机器设备运行的深入研究,研制新型的低噪声设备以降低激发力,或改变操作程序和改进加工工艺,均能显著降低环境噪声。
2、声传播途径中的控制是常用的降噪手段。在噪声传递的路径上,设置障碍以阻止声波的传播,铺置吸声材料增加声能损耗,或者通过反射、折射改变声波的传播方向。在噪声控制工程中经常采用的有效技术有吸声、隔声、阻尼和隔振等。常见的吸声墙、吸声吊顶、隔声屏障、隔声门、隔声窗、消声器和隔振地板等,则是这些技术的具体应用。
3、在某些情况下,噪声特别强烈,在采用上述措施后,仍不能达到要求,或者工作过程中,不可避免地有噪声时,就需要从受主控制角度采取措施。对于人,可佩带耳塞、耳罩、有源消声头盔等;对于精密仪器设备,可将其安置在隔声间或隔振台上。
二、 喘振及防止方法
1、喘振
在风机运转过程中,当流量不断减少到Qmin值时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动,这就是旋转脱离。当旋转脱离扩散到整个通道,会使风机出口压力突然大幅度下降,而管网中压力并不马上减低,于是管网中的气体压力就大于风机出口处的压力,管网中的气体倒流向风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机又开始向管网供气,将倒流的气体压出去,这又使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以至无法工作,这就是喘振。
从理论上还不能正确计算出喘振工况点,只能在性能测试时根据经验来判断是否进入喘振工况。
1、1听测风机出气管道的气流噪音。接近喘振工况时,出气管道中气流发出的噪音时高时低,产生周期性变化。当进入喘振工况时,噪音立即剧增,甚至有爆音出现。
1、2 观测风机出口压力和进口流量变化。正常工作时其出口压力和进口流量变化不大,当进入喘振区时,二者的变化都很大。
1、3观测机体的振动情况。进入喘振区时,机体和轴承都会发生强烈的振动。
2、 防止方法
采用出风管放气。在出风管上设一旁通管,一旦风量降低至Qmin,旁通管上的阀门自动打开放气,此时进口的流量增加,工作点可由喘振区移至稳定工作区,从而消除了进气流量小、冲角过大引起失速和发生喘振的可能性。在采用进口导叶片调节风量时,随着工况变化,导叶旋转改变通道面积适应新工况的要求,从而避免气流失速,可有效防止风机喘振。
三、 噪声控制
鼓风机的噪声对污水处理厂及其周边临近区域的环境影响非常严重,噪声的辐射主要通过风机本体,进、出风管和连接风道。据有关资料介绍,国外有的鼓风机房为减小噪音将鼓风机设在地下,而地上式鼓风机房室内设有吸音板,门、窗全部是密封的,其造价很可观。结合我国实际情况,针对风机组产生的各种噪声源,通常采取的措施有:消声、隔声、隔振和包覆。
1、消声
装设消声器是控制风机噪声的主要途径,消声器是一种阻止声音传播而允许气流通过的装置,可以大大减弱进、出风口辐射出来的噪声。我们在进、出风管道上加设消音器,降噪效果显著。
2、隔声和吸声
风机进、出风管加设消音器后,其风机壳体的辐射噪声仍对周围环境有较大干扰。在条件允许的情况下,可采取隔音措施,设置隔声室,在室内壁及天棚衬贴多孔性吸声材料,以消除机组产生的噪声。
3、隔振
振动是噪声的主要起源,风机组的振动会产生低频噪声,故减轻机器振动是控制噪声的治本办法。为此,风机的外壳材料宜选用铸铁,以增加设备自重与外壳厚度,减小自振。在风机进、出口处设置柔性波纹管减振接头,降低风机振动传递到风道上产生的辐射噪声,对于小型鼓风机可在机组的基础下加设减振器。
4、包覆
室外出风管道目前大多数设在地面上,实际运行中噪声很大,可将出风管全部设在地面以下,利用土层吸音或用隔音材料包覆管道。
通过综合控制使整个鼓风系统噪声减弱,达到规范的要求。
四、 风机冷却
为改善鼓风机房运行管理环境,在选择鼓风机时需考虑鼓风机的冷却形式。目前常采用的冷却方式有水冷和风冷。通过运行发现,水冷虽然增加了冷却水系统,但运行环境良好;而风冷的鼓风机,热量直接排至室内,夏季室温高达40 ℃以上,工业水处理站在每台鼓风机上加设通风机及排风管道,影响了机房的环境。因此,鼓风机选型时宜选择水冷式。