前言:中文期刊网精心挑选了交流稳压电源范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
交流稳压电源范文1
关键词:直流稳压电源,现代信息技术,教学设计。
中图分类号:TM44-4 文献标识码:A DOI:10.3969/j.issn.1003-6970.2013.07.061
本文著录格式:[1]邓果.基于现代信息技术的直流稳压电源教学设计[J].软件,2313,34(7):161-162
0 引言
直流稳压电源是模拟电子技术的重点部分,包含整流电路、滤波电路和稳压电路,仅仅讲解电路工作原理,学生难以理解和掌握[1-2]。为此,借助现代信息技术,通过信息化资源如多媒体课件、动画、视频等进行引导,借助multisim软件进行仿真,整个教学过程突出以“学生为主体,教师为主导”的教学形式,体现“做中教,做中学”,取得了较好的教学效果[3]。
1 教学目标
根据人才培养方案和新教育理念的要求,从知识、技能和素养三个方面,确定教学目标为:
1.1知识目标
①理解直流稳压电源的工作原理;②会合理选择元器件,绘制电路图。
1.2技能目标
①掌握基于multisim的仿真方法;②掌握自主探究的学习方法。
1.3职业素养
①培养学生养成良好的职业习惯;②提高团队合作、交流协作的能力。
2 教学资源和教学方法
借助世界大学城平台,将教师的教学课件、多媒体动画、Multisim仿真软件、教案、项目任务书等都整合到教师个人空间,构建开发式的教学平台,使学生能在线预习和复习。在教学中,采用项目教学法,将教学项目贯穿整个教学过程,通过原理分析、仿真实训,激发学生学习的兴趣,培养和提高学生学习电子技术理论和时间操作技能[4]。
3 教学设计
本次教学设计以“直流稳压电源”任务为驱动,通过构建网络教学平台,采用multisim软件进行仿真实训,以学生自主学习为主,实现做中教,做中学。引导学生自主学习,把教学课件、表格化教案、教学视频、教学大纲、习题库、实训指导书和教材整合到世界大学城教学平台,利用网络实现师生互动和在线测试。以项目教学理念为指导,把三课时的教学活动设计为六个教学环节。
首先,创设情境,本环节用时10分钟。为了激发学生学习兴趣,为学生创设几个直流稳压电源的应用情景,例如展示手机充电器情境动画,通过提出问题“手机充电器是如何把220v的市电转换成电子电路所需的直流电呢?”从而进入该项目内容。
接下来下达任务书,用时5分钟。通过世界大学城空间给学生分发任务书,并提供丰富的教学资源,让学生通过阅读任务书,了解项目内容。
然后进入原理分析阶段,用时40分钟。由于这部分内容概念抽象、难分析、难演示,将其设置为教学重点。为了提高教学效果,采用教师讲解和学生分组讨论相结合的教学方式。首先教师讲解电路构成及原理分析方法。为提高学生的学习兴趣,制作了相应的演示动画,该动画形象地为学生展示了电路中元器件实物图和符号、各部分的工作原理,比如桥式整流部分,当输入正弦波的正半周波形时,二极管D1和D3导通,当输入负半周波形时,二极管D2和D4导通,从而实现全波整流,把正弦交流电转换成脉动直流电。以及测试过程,把原理图绘制好之后,首先用示波器查看经过变压器的电压波形,然后给电路添加滤波电容和整流二极管,再查看波形。为了让学生更好的理解滤波原理,制作了电容滤波过程的演示动画。然后引导学生分组讨论,实现师生互动,生生互动。从而突出教学重点。
让学生理解电路工作原理之后,引导学生进入multisim软件仿真环境,提供学生一人一机的实训条件。Multisim软件是IIT公司推出的能提供全面集成化的设计环境,完成从原理图设计输入、电路仿真分析、电路功能测试的一款电路分析软件。当改变电路连接成原件参数时,可以通过Multisim界面观察到各种变化对电路性能的影响。
首先根据原理图选择元器件,适当布局之后开始接线,为了提高学生的接线速度,提供了multisim软件的操作演示视频,绘制好原理图后,接入双路示波器, A通道接输入端,B通道分别接入整流端、滤波端、稳压端,点击仿真按钮进行仿真,适当调节示波器参数,查看输入、输出波形,还可以通过调节元件参数,得到不同幅值的电压。整个教学过程教师巡回指导,适时给予帮助,注重培养学生自主探究、网络检索能力。
此外设计一个拓展应用环节,用时10分钟。以楼宇对讲系统电源的应用作为提高拓展任务,培养学生的实践应用能力。
最后是任务评价,本环节用时10分钟。首先学生在线做10个选择题,检验对理论知识的掌握程度。整个任务考核由仿真实训,在线测试和课堂表现三部分组成,结合主观和客观成果,综合评价。评价结果不合格的同学可继续学习完成任务。
4 教学反思
本次教学设计由直流稳压电源的原理及应用这一项目为导向,分成六个环节组织教学。利用网络教学平台、仿真实训软件和在线测试平台,把枯燥的电子技术理论学习变成生动的仿真实验,将抽象的理论知识形象化,实现学生的自主学习、仿真实训和交流协作。丰富了交流手段,拓展了教学空间。但也感觉到,在信息化教学的实施过程中存在一定的程度,将学生分组学习中,学生的团队协作有待加强,在今后的教学中,要继续加强网络教学平台和虚拟实验室的建设,注重培养学生的职业素养,提高学生的自学能力和创新能力。
参考文献
[1]李红妹.“教学做”一体化的直流稳压电源教学研究[J].职业教育研究,2012(8):87-88
[2]黄华飞,王红梅.Multisim9在直流稳压电源教学中的应用[J].广西轻工业,2008,(6):75-76
交流稳压电源范文2
伍水梅 广东省国防科技技师学院 广州同和 510515
【文章摘要】
电源是电路的核心,是电子电路制作过程中必不可少的设备。一个好的直流稳压电源能让电路制作事半功倍,效果显著。一般直流稳压电源由变压器、整流、滤波、稳压等几个部分组成。本文介绍了一种简单实用的直流稳压电源的制作。
【关键词】
直流稳压电源;变压器;整流;滤波; 稳压;7806
【Abstract】
Power which is the core of the circuit is the essential equipment for making electronic circuit. It will get twice the result with half the effort if a good DC power is supplied for the production of circuit.Generally speaking,DC power supply is mainly composed of transformer, rectifying,filtering and voltage-stabilizing. This article describes a simple and practical construction of DC power supply.
【Keywords】
DC Regulated Power Supply;Transformer; Rectifying;Filtering;Voltage-stabilizing; 7806
0 引言
科技在不断进步,人们对小型电器的需求越来越大,但不管是那种电器设备, 电源都是必不可少的,而且越是高端的电器,对电源要求越是严格。电源技术核心是电能变换与处理,广泛应用于教学、科研等领域,而直流稳压电源是电子技术中常用的仪器设备之一,几乎所有家用电器和其它各类电子设备都在使用直流稳压电源,它占着举足轻重的位置,是大部分设备与电子仪器的重要组成部分,是电子科技人员及电路开发部门进行实验操作和科学研究不可缺少的电子仪器。但实际生活中通常是由 220V 的交流电网供电, 直流电源需要通过电源系统将交流电转换成低电压直流电以供给各类电器设备使用。
直流稳压电源对电路调试、电路制作有决定性的作用,一个好的直流稳压电源,能让工作事半功倍。直流稳压电源系统主要由变压、整流、滤波和稳压四部分电路组成,其原理和制作过程比较简单, 如图1 所示。本文主要介绍一个能提供+6V、+1A 的串联型直流稳压电源的制作过程。
1 合适变压器的选择
变压器作为一个降压元件,主要是将初级电压(市电220V)转换为电路所需压降。根据电路要求提供+6V、+1A 的直流电源,所以在选择变压器的次级电压和次级电流时应适当增大,原则上次级电压应在所需电压的基础上多加3V,即次级电压应选6V+3V=9V,而次级电流应在所需电流的基础上乘以1.7 倍,即1.7A ;变压器的功率P 是初级线圈P1 和次级线圈功率P2 之和的一半,即:
P=(P1+P2)/2,
按照所选择的电压可计得:
P2=U2×I2=9×1.7=15.3W
P1=P2/ (0.8 ~ 0.9)=18W
这样可以选择变压器的参数是功率为18W,初级输入电压220V,次级输入电压9V。变压器应进行基本检测,如初级、次级线圈的分辨,最常用的方法有两个: 第一种是根据线圈电压与线圈匝数的比值V1:V2=n1:n2 可知线圈细的那边应为初级线圈(输入端);另一种方法是用万用表的电阻档比较两线圈的电阻值,阻值较大的那一端为初级线圈(输入端)。
2 整流电路的配备
整流电路的主要作用是利用二极管的单向导通特性将变压器输出的交流电压转换为脉动直流,是直流形成的第一站,它所提供的电压比最大输出电压值
图4.2 1ms 调频周期信号频谱 要略高,所以在选用四个二极管时要注意耐压值应比变压器的次级输出电压大3 倍以上,耐流值应略大于变压器的次级电流。按照变压器所取的数据:U2=9V、I2=1.7A,所选取的二极管耐压应大于27V,耐流值最小应等于变压器的次级电流。二极管需要承受较大的反向电压,假如二极管反接,将会造成二极管损坏,电路无法工作等严重后果,因此安装前要对二极管进行检测,确保极性。二极管的检测:用万用表测量二极管的正反向电阻, 根据二极管的单向导通特性可以轻易的判断出小电阻的那次黑笔所接是正极,红笔所接是负极;对于外观完好的二极管也可以从银色圈圈在哪边从而判出负极。
3 选用不同的电容器实现滤波
滤波电路是利用电容器将整流电路所输出的脉动直流存在的交流成份滤掉, 使输出波形变得平滑。不同类型的电容器有着不同特性,在电路中能起不同作用, 因此不同的电路应该选择不同的电容器; 但不管何种电容器,在电路中承受的电压都不能超过它自身的耐压值,否则电容器将受到损坏,甚至产生“放炮”现象。根据变压器的次级电压等于9V,选择电容器的耐压值应为1.42 U2,即13V,电容器的容量应为(1500 ~ 2000)I2 (I2 为变压器次级电流),即电容器可选用3300 ~ 4700μF 的。在本文所设计的电路中,前面的滤波电容C1 可适当选大到3300μF 以上,稳压出来的滤波电容C2 就要相对减小,可选择几十微法的。利用万用表的电阻档检测电容的好坏,判断电容有无短路、断路和漏电等现象:按电容量的大小用万用表不同的电阻档,红、黑表笔分别接电容器的两引脚,在表笔接通瞬间观察表针的摆动,若表针摆动后返回到“∞”,说明电容良好,且摆幅越大容量越大;若表针在接通瞬间不摆动,则说明电容失效或断路; 若表针在接通瞬间摆幅很大且停在那里不动,说明电容已击穿(短路)或漏电严重;若表针在接通瞬间摆动正常,只是不能返回到“∞”,说明电容有漏电现象。对电解电容更要分清楚正负极,避免反接。
4 稳压电路的研制
稳压电路是当电网电压波动或负载发生变化时,能使输出电压保持稳定的电路。根据电路的连接方式可分为并联型直流稳压电源和串联型直流稳压电源。并联型直流稳压电源所用元器件少,较经济;输出短路时元器件不易损坏,但效率低,调压范围小,负载变化容易引起输出电压的变化,适用于负载电流变化不大或极易发生短路的场合。相比之下串联型直流稳压电源可用在负载变化较大,稳压性能要求较高,输出电压可调等场合,所以建议安装串联型直流稳压电源。常用的稳压元件有稳压管、LM317、CW78××× (CW79×××)。
稳压管是特殊加工而成的二极管,和普通二极管一样具有单向导通特性,主要工作于反向击穿区,起稳压作用,通常并在负载两端使用。当它两端所加的反向电压达到反向击穿电压时,管子导通,电流急剧上升,达到稳压效果。只用稳压管工作的稳压电路一般较简单,性能也较差, 适用于输出电流不大,稳压要求不高的场合。为改善稳压效果,稳压管常会和复合管一起用,但稳压效果还是不理想。
LM317、CW78×××(CW79×××) 同属三端集成稳压器,都是将稳压电路通过半导体集成技术压制在一块半导体芯片中形成集成稳压电路[9]。LM317 是一种常用的三端可调稳压集成电路,输出电流为1.5A,输出电压可在1.25 - 37V 之间连续调节,调整使用方便。CW78××× 系列为输出正电压的固定式三端稳压器, CW79××× 系列为输出负电压的固定式三端稳压器,两者都包含了输入、输出、公共接地端三个引出端,具有限流和热保护的功能,且根据后序××× 不同各有不同的的输出电压和输出电流,第一个“×” 代表额定电流--- 字母L 表示输出电流为100mA,字母S 表示输出电流为2A, 没有字母表示输出电流为1A ;后面两个×× 表示额定电压---05 表示额定电压为5V,12 表示额定电压为12V,如此类推。根据要求,本文选用7806 集成稳压器(如图5 所示),其额定电压+6V,输出电流1A ;若是79S12 则额定电压为-12V,输出电流2A。在使用所选IC 前,应注意区分7806 的三个管脚和判断其好坏。区分管脚时可将三端稳压器正面竖起来面对自己, 从左到右依次为输入端、接地端、输出端, 使用加电压法测试三端稳压器好坏,在7806 的1 脚和2 脚按极性加上直流电压(9—35V),用万用表测3 脚和2 脚的电压, 如果所测电压数值与稳压值相近(大小不超出2V),则说明稳压器性能好。
5 附加电路的选用
根据电路的要求不同,也为了让电路能更好的工作,可以在原电路的基础上增加一些冗余电路,如电源指示电路,输出电压显示电路,散热电路等。
当电路完成后应重新检查一次所有元器件,如二极管的方向、电解电容的极性、集成电路的各管脚等,在检查无误后则可以进行通电调试,接通开关后若指示灯显示正常,则+6V、1A 直流稳压电源即可正常使用,其原理图如图2 所示。
6 结束语
通过对直流稳压电源的分析制作,总结出直流稳压电源的制作应从选材入手, 根据电路要求进行电路设计。只要认真扎实的进行制作,就能从中悟出很多有关直流稳压电源的制作技巧,使一些积累问题迎刃而解,推导出开关型稳压电路、串联反馈式稳压电路、输出正负电压可调的稳压电路等的制作,提高创作水平。
【参考文献】
[1] 田智文. 一种带有保护电路的直流稳压电源的设计[D]. 西安:西安电子科技大学,2011
[2] 孟祥印,肖世德. 基于先进集成电路多输出线性直流稳压电源设计[J]. 微计算机信息,2005,21(1): 154-155,180
[3] 金钊. 直流稳压电源的性能测试与优化[D]. 威海:山东大学,2012
交流稳压电源范文3
北京工商大学计算机与信息工程学院 付 扬
【摘要】设计一种多路输出的直流稳压电源。通过对220V电网电压进行降压、整流、滤波,并以三端可调和固定输出的集成稳压器稳压,得到多路电压输出。设计中依据Multisim仿真,通过不断调试修改电路参数,取得了理想的设计效果。该电源可以满足多种工作电压系统的需求,并在实际中得到很好地使用,具有很强的实用价值。
【关键词】Multisim仿真;稳压电源;多路输出
1.引言
在电子电路和电子设备中常常需要各种不同电压的直流电源,但有些电源只有某一固定电压输出,或有些电源体积偏大,给一些便携式电子产品及小型的电子系统使用带来不变,基于此本设计研究一种多输出便于携带的直流稳压电源,它将电网交流电变为各种需要的直流稳压电源。
为保证设计实现,电路基于Multisim仿真进行设计。Multisim是美国国家仪器公司推出的原理电路设计、电路功能测试的虚拟仿真软件,它具有较为详细的电路分析功能,可以设计、测试和演示各种电子电路。
2.设计任务及方案
设计多路输出直流稳压电源,即输出±(1.25V~20V)任意可调电压;输出±12V电压;输出±5V电压。
设计的直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如图1所示。其各部分主要完成的作用是:电源变压器将交流电网电压u1变为合适的交流电压u2;整流电路将交流电压u2变为脉动的直流电压u3;滤波电路将脉动直流电压u3转变为平滑的直流电压u4;稳压电路清除电网波动及负载变化的影响,保持输出电压uo的稳定。
图1 直流稳压电源框图
3.单元电路设计
3.1 变压器降压和整流电路
220V交流电首先要降压,以得到合适的电压值,其降压和整流电路如图2所示。根据设计任务,需要降压电路具有2路输出,电源变压器可选一次输入220VAC,二次输出2个绕组均为20V,其A点仿真波形如图3所示,图中两条曲线分别为输入交流电压波形和降压后的波形,A点相位与输入相同,B点相位与输入相反。
图2 降压和桥式全波整流电路
图3 输入波形和A点降压波形
利用整流二极管的单向导电性,将降压后双向变化的交流电变成单向脉动的直流电,常用的整流电路有单相半波整流电路与单相桥式整流电路两种,本设计采用单相桥式整流电路,其仿真结果如图4所示,图中上面曲线为C点整流波形,下面曲线为D点整流波形。
图4 整流电路仿真波形
设变压器副边电压为:
(1)
整流输出电压平均值Uo:
(2)
由于每个周期内,D1、D4串联与D2、D3串联各轮流导通半周,所以每个二极管中流过的平均电流只有负载电流的一半,二极管截止时,每个二极管承受的最高反向电压就是变压器次级交流电压u2的最大值。
3.2 滤波
整流输出的直流电压脉动分量比较大,为减小脉动,在整流电路之后加上滤波电路。本设计采用电容滤波,电容在高频时容抗小,和负载并联,从而达到减小纹波的目的,电容滤波电路如图5所示。
图5 整流滤波电路
若滤波电路负载开路,则输出电压为。接入负载后,其输出电压取决于时间常数RLC,RLC 越大,Uo越高,脉动越小,同时负载电流的平均值越大,整流管导电时间越短,二极管 iD的峰值电流越大,当时,工程上常取:
(3)
仿真波形如图6所示,滤波后输出电压的脉动程度大大减少,而且输出电压平均值U0提高了,上面曲线是C点波形,此时C为10μF电容,下面近乎直线是D点波形,C为4700μF电容滤波波形。
图6 10μF和4700μF电容滤波波形
3.3 稳压电路
稳压电路采用三端集成稳压器,三端集成稳压器只有三个引脚,即输入端、输出端、公共端。输出电压固定的三端集成稳压器有正输出(LM78××)和负输出(LM79××)两个系列,以上各型号中的××表示输出固定电压值,一般有5V、6V、8V、12V、15V、18V、20V、24V等8种。输出电压可调的三端集成稳压器有LM317、LM117(输出正电压),LM337、LM137(输出负电压),其最大输入电压40V,输出电压范围为⒈25~37V。
4.整体电路设计实现
整体电路设计如图7所示,输出±可调电压由LM317和LM337的E、F输出,其通过调节滑动变阻器RW,输出电压可调,其输出电压计算公式:
(4)
LM7812和LM7912输出G、H分别为±12V,LM7805和LM7905输出M、N分别为±5V,其正电压E、G、M点输出仿真如图8所示,负正电压F、H、N点输出仿真如图9所示,由仿真可见,实现了预期的设计。
图7 多路输出稳压电源电路
图8 分别为E、G、M点输出电压
图9 分别为F、H、N点输出电压
5.结论
基于multisim的实现了直流稳压电源的降压、整流、滤波和稳压设计,实现了多种稳压输出,其设计调试方便,达到理想设计。该设计已经使用到我们电子技能实训的各种电子系统中,使用方便,效果很好。
参考文献
[1]卞文献,何秋阳.Multisim10仿真软件在《模拟电子技术》理论课教学中的应用[J].电子世界,2012.13:162-163.
[2]雷跃,谭永红.用Multisim10提升电子技术实验教学水平[J].实验室研究与探索,2009(4):24-27.
交流稳压电源范文4
关键词:单片机;智能稳压电源;系统原理;电源设计
1前言
随着科学技术的发展,促进了通讯事业的发展,电气设备和电子设备的稳压电源性能逐渐提高,使稳压电源逐渐向低成本、小型化和高效率方面发展,确保了稳压电源的可靠性,不会受到低电磁的干扰,使稳压电源逐渐向精度低和功能简单化转变。以单片机为系统的稳压电源弥补了传统电源中存在的不足,降低了制作成本,Y构更加紧凑,符合当前社会的发展要求。
2智能稳压电源系统原理
在对智能稳压电源进行设计时,需要以开关电源为基础,将高性能的单片机作为控制核心,在组成数据中进行电路处理,充分利用监测与控制软件功能,对开关电源输出的电压和电流进行数据处理,将采样数据与给定数据进行比较分析,以此来达到对开关电源工作状况进行控制和调整的目的。同时还需要加大对开关电路输出电流大小和工作温度的控制。送入到开关中的调整电流主要是经整流、滤波变成直流电所形成的电流,需要通过调整电路的形式,对输入的方波信号进行控制,确保能够输出稳定的直流电。用户可以对输出的电压值和输出的电流值通过键盘给定稳压电源进行控制,通过对单片机系统中的用户给定数据进行比较分析的形式,结合设置的调整算法对电路开关进行控制和调整,确保输出的电压值符合给定值,需要对输出电压中的电路进行检测,如果输出的电流和工作的温度超出给定值,需要重新进行保护电路的启动。
3单片机基础下的智能稳压电源设计
3.1系统的总体设计
系统在设计过程中,主要是利用AT89C52单片机进行一路1V-9V连续可调电压输出,主要是通过外接键盘和串口通信连接的形式来输出上位机的电压值,电压值为0.01V,电压具有步近增减功能,可以运用数字来显示输出电压值。为了确保系统的正常工作,需要配备一套备用电源,备用电源主要由电压调整模块、系统供电模块、显示模块和人机交互模块共同组成。
3.2硬件设计
3.2.1AT89C52程控模块
在对硬件系统进行设计时,需要将AT89C52程控模块作为系统设计的核心,需要明确51系列单片机型号,微处理器主要是运用8K字节闪存的高性能和低电压处理器,将Flash存储器与微处理器有机结合起来,需要对Flash存储器进行反复擦写,以此来降低系统开发成本。
3.2.2电压调整模块
电压调整模块主要是指变压器次级输出的交流电,交流电会通过电容滤波和全波整流后送到调整管NMIS管中。电阻R3和R4会形成不同形式的取样电路。需要对输出端的输出电压DC0进行取样采集,运用A/D转换器的形式对输出端的实际电压值送入到单片机中,通过对单片机进行计算的形式,求出电压设定值和实际输出值两者之间的差额。运用调用PID做好单片机控制信号的输出。与DAC和ADC构成闭环控制回路,做好信号的输出控制工作,将信号控制到D/A转换器中,将其转换为模拟信号DA0。并将模拟信号与输出的电压值进行比较,来达到控制电压和调整电路的目的,确保输出端的电压能够维持在预先设定的额定范围内,达到稳压的目的。
3.2.3备用电源模块
备用电源以两节可充电锂离子电池为主,在使用过程中主要是出于体积、电源总重量和经济因素考虑。锂离子自身具有优良的性能,在实际的使用过程中主要是运用单片机来发送信号,放电过程主要是利用芯片的反向,对MOS管的通断情况进行控制。要做好锂电池充电工作,运用LC滤波后使用MOS管导电的形式进行充电。
3.3软件设计
智能电源系统的软件设计由电压输出、电压测量和电压调节等闭环结构共同组成。在进行软件设计时,需要运用模块化思想进行设计,设计内容主要包括键盘、使单片机和LCD等工作内容。在智能电源初始化过程中,需要做好8031各个口复位工作,需要从EEPROM过程中对上次关机前存入的数据进行读取,对开关电路进行控制。在初始化工作完成后,需要做好开中断工作,中断工作不会突然停止,会出现请求提示,可以利用数据采样的形式进行给定值读取,需要通过数据处理,调用报警保护子程序的形式来了解短路或过流情况。如果没有出现短路或过流情况,需要对电压控制算法进行重新设置,做好键盘和保护程序设定,将子程序作为保护报警程序中的重要组成部分。
交流稳压电源范文5
关键词:二次电源; 开关电源; 接地; 线性稳压电源
中图分类号:TN71034 文献标识码:A 文章编号:1004373X(2012)10013903
电源是一切电子设备的动力源,是保证电子设备正常工作的基础部件。据相关统计,电源故障约占电子设备征集故障率的40%~50%。为此,对电源必须提出一些基本要求,包括实用性能要求和电气性能要求。对于弹载二次电源更是如此,一定要考虑细致,除了满足供电能力以外还要考虑其接地方式、效率、开关电源与线性电源的取舍情况。
1 二次电源基本要求
1.1 高的可靠性
平均无故障时间MTBF是衡量电源可靠性重要指标,在通用标准中规定,可靠性指标大于等于3 000 h是最低要求。
1.2 高的安全性
设计制造出的开关电源,应符合相关标准或规范中规定的安全指标要求,如散热要求,抗电强度要求,防人身触电要求等,以防止在极限状态或者恶劣环境条件下,出现电源故障危及人身和设备安全。
1.3 好的可维修性
电源出现故障时,应能及时诊断出故障现象及部位,并且可以有效地解决故障或者更换故障模块。
2 二次电源设计思路
弹载电源由于其空间和系统性要求,需要二次电源设计的小型化、电磁兼容性好,DCDC效率高,可以满足各个组件的用电需求,线性集成稳压电源的测试和调试相对简单,如果两者结合对产品的后续阶段设计提供了方便[1]。综合考虑线性稳压电源、开关稳压电源或者复合型设计等方案,分析各种方案的优缺点和可行性后,此二次电源将采用线性集成稳压电源与DCDC结合进行设计,也就是复合型设计。采用该设计有比较高的效率,可满足各组件的用电需求,对于纹波要求比较高的供电电路采用线性稳压电源。
3 二次电源具体设计分析
3.1 电源接地设计
设计电源还有个重点也是难点,就是接地。接地从字面来十分简单,但是对于经历过电磁干扰挫折的人来说可能是一个最难掌握的技术。实际上,在电磁兼容设计中,接地是最难的技术。面对一个系统,没有一个人能够提出一个绝对正确的接地方案,多少会遗留一些问题。造成这种情况的原因是接地没有一个系统的理论或模型,人们在考虑接地时只能依靠过去的经验或从书上看到的经验。但接地是一个十分复杂的问题,在其他场合很好的方案在这里不一定最好。关于接地设计在很大程度上依赖设计师的直觉,也就是他对“接地”这个概念的理解程度和经验[23]。接地的方法很多,具体使用那一种方法取决于系统的结构和功能。
3.1.1 单点接地
单点接地有单元电路的、电路间的和设备间的单点接地。如图1所示为单点接地示意图\[45\]。其优点是可以抑制传导干扰。单点接地时,由于各电路和设备都接在一个接地点上,从而消了信号地系统中的干扰电流的闭合回路。设备地上的干扰电压也不会通过接地电路进入信号电路。这样的接地使用导线长,接地线本身的阻抗可观,对于高频信号接地效果不好。当接线长度达到1/4信号波长或其奇数倍时,地线阻抗变得很高,它就不是接地线而更像是辐射天线。
3.1.2 多点接地
在多点接地系统中,各电路和设备有多点并联接地。因为可以就近接地,接地导线短,可以减少高频驻波效应。但这种接地方法出现了多个地回路。公共地中的50 Hz市电容易经公共地回路耦合到信号回路中去。工程实践表明,如能将电源和信号的回流线分开,强信号和弱信号的回流线分开,微弱信号和火工品信号等敏感信号采用单独的回流线,就会大大减少的回路引起的干扰。图2所示为多点接地示意图。
图1 单点接地示意图 图2 多点接地示意图
3.1.3 混合接地
混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用图3所示的混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。图3所示为混合接地示意图。
实际应用中,信号频率低于1 MHz时,采用单点接地;高于10 MHz时,多点接地;频率在1~10 MHz之间时,如果接地线长度大于1/20波长,采用单点接地;否则,应采用多点接地。该弹载二次电源是低频电路,所以选择单点接地,并且设计电路板时也要注意地线尽量宽并且走直线,保证接地干净。
3.2 电源切换设计
因产品在工作时包括“预热”与“准备”,正常工作时仅包括“预热”,所以还要设计电源切换部分,见图4。
图3 混合接地示意图 图4 电源切换原理图
电源在预热状态时,27 V电源的瞬态电流达到5.6 A;在准备状态时,27 V预热和28.5 V准备同时供电,电流达到5.25 A;在脱离载机后,电源为单一28.5 V准备供电,电流达到5.25 A。根据电压和电流特性,选取的二极管应满足额定电流大,反向工作电压高,满足使用要求,其封装容易安装,并且安装在放置舱壳体上利于二极管的散热[6]。
3.3 线性稳压电源电路设计
交流稳压电源范文6
[关键词]单片开关电源 复合式 AC/DC MAX8873
一、引言
电源是现代电力电子设备不可缺少的组成部分,其性能的优劣直接影响设备的性能。传统的电源由于笨重、效率低而逐渐被重量轻、体积小、效率高的开关电源所代替。复合式开关电源作为一种高效率的开关电源,是对线性稳压电源和开关稳压电源进行优化组合形成的一种电源设计方案,它即具有输出电压稳定程度高、纹波电压小、电源转换效率高等众多优点。本文介绍了一种新型复合式开关稳压电源,该电源采用了一种新型单片AC/DC单片开关电源作为前级稳压器,为低压差线性稳压器MAX8873提供直流输入电压,然后利用低压差线性稳压器MAX8873获得高质量的稳压输出,组成高效率、输出可调的复合稳压电源。实验证明该电路具有良好的性能,有很高的实用性。
二、AC/DC开关电源
本设计采用基于Trench DMOS工艺设计的一种AC/DC开关电源管理芯片。该芯片的工作方式为PWM即脉冲宽度调制方式;电路正常工作温度范围是-35℃至130℃;工作的开关频率为100KHz;占空比调节范围是3%~65%。其特点是宽压输入,输出电压纹波小,芯片效率高。该开关电源变换器集成了耐650V高压的功率开关管、电流限流比较器、振荡器、旁路调整器/误差放大器、高压电流源、基准源和过温、过压/欠压、过流及自动重启等保护电路,采用PWM调制模式达到在不同的负载下的高效率,采用隔离结构降低了芯片的EMI。开关电源控制集成电路的原理图如图1所示:
针对变压器原边绕组的漏感产生的高压毛刺,采用二极管D1与稳压管VR1并联接入原边绕组侧,用来吸收高压毛刺。光电耦合三极管U2的偏置电压由二极管D3与电容C3构成的整流电路提供。稳压管VR2、电阻R1、光电耦合三极管U2、电容C5组成电压反馈电路,用来确保电压稳定能都稳定输出。稳压管VR2和电阻R2保证了电源空载或轻载时输出电压的稳定性。利用电容C2降低输出直流电压的交流纹波。
电路工作原理:输入交流电先经过整流桥BR1整流,之后再经电容C1滤波,最后转变为脉动的直流电压。当MOSFET开关管导通时,电容C1两端的电压加到反激变压器的原边,流过原边绕组的电流线性增加,变压器储存能量。当MOSFET开关管关断时,电感原边电流由于没有回路而突变为零,此时稳压管VR1的击穿电压高于原边的感应电势而截止。
该AC/DC开关电源控制芯片结构示意图如图2所示,该集成电路的主要组成部分有旁路调整器/误差放大器、锯齿波/振荡发生电路、PWM比较器、基准电压源、软启动电路、上电复位电路及其它保护电路等。
从图2可以看出控制芯片的最大特色是把外置管脚数控制为三个。振荡器和功率管的内置使管脚数减少,功率管的内置还提供了启动偏置电压。控制引脚C不仅给内部供电,还提供了反馈电流信号,可用于控制电路的旁路电流和控制PWM占空比。此外,来利用功率管的导通电阻作为敏感电阻,来实现各个周期内的限流保护,这些都是该电路的特色。
三、低压差线性集成稳压器MAX8873
低压差集成稳压器是近年来应用广泛的高效率线性稳压集成电路。传统的三端集成稳压器普遍采用电压控制型,为保证稳压效果,其输入输出压差一般取2V~4V来保证正常工作。低压差稳压器采用电流控制型,选用低压降的晶体管作为内部调整管,能够把输入输出压差降低到0.6V以下,提高了电源的转换效率。产品主要有MAXIM公司生产的MAX8873系列,MICREL公司生产的MIC39500系列,TI公司生产的TPS767系列,LT公司生产的LT1528系列等。本文采用应用广泛的MAX8873芯片,MAX8873的典型工作电路如图3所示。
MAX8873是MAXIM公司生产的输出120mA的低压差线性稳压器。其中IN和OUT分别为电压输入端和输出端,GND为公共端,SET和SHDN分别为调整端和控制端。其主要特点有:组成电源元件最少,压差低,静态电流低,有关闭电源控制,输出电压固定,由外接电阻组成的分压器时输出电压可调,内部有输出电流限制、过热保护及电池反接保护等。
MAX8873有两种工作模式:工作在预置的电压模式下或工作在可调的电压模式下。在预置的电压模式下,内部电位器能够设置它的输出电压,我们通过连接SET端到地选择这种模式。在可调模式下,我们通过在SET端连上两个外部电阻作为分压器来选择输出电压,电压范围可从1.25V到6.5V。
为了减小寄生电容的影响,我们在电阻R1两端串上一个10PF到25PF的电容。而在预置电压模式下,SET端和地之间的阻值不能小于100K,否则SET端的电压将超过两种工作模式的门限值60mV。
四、新型复合式开关稳压电源的设计
本复合式开关稳压电源的原理图如图4所示。
电源输入交流宽输入电压85V-265V,双路输出电压+5V/1.5A,-5V/1.5A,输出功率15W。电路包括输入整流滤波,脉宽调制,高频变压器,电流反馈,低压差线性稳压,整流滤波输出等几部分。交流输入经整流滤波后,产生一个的直流电压加在变压器初级绕组的一端和控制芯片的源极,变压器初级的另一端由控制芯片内的高压功率管驱动。变压器两组副边经整流滤波后分别产生±5.5V的输出电压,该电压经LC滤波后输入到MAX8873中,经MAX8873输出后再通过下一级LC输出滤波得到±5V的高稳定输出。
在设计PCB板时要注意,电容C2负极应直接连反馈绕组,将反馈绕组上的浪涌电流直接返回到输入滤波电容,提高抑制浪涌干扰的能力。控制端附近的电容应尽可能靠近源极和控制端的引脚。控制芯片的源极采用单点接地法,即控制端旁路电容C12的负极、反馈电路的返回端、高压返回端应分开布线,最后在源极管脚处汇合。安全电容C13应通过宽而短的印制导线分别接至反馈绕组和次级绕组的返回端。尽量使用大尺寸的低电感引线。
五、实验结果
在市电输入下,当负载从0达到额定值时,电路的负载调整率为95%,输出电压纹波在40mV左右,输出纹波主要由变压器漏感的电压和整流管电压产生,可以通过进一步优化PCB版布局等方法来改善。
六、结束语
本文采用基于Trench DMOS工艺设计的一种AC/DC开关电源管理芯片和低压差线性稳压器MAX8873设计了一种新型通用的复合式开关稳压电源。该电源具有体积小,效率高,输出电压稳定,负载调整率好等优点,实验表明该电源是一种性能良好的高精度稳压源。
参考文献:
[1]黄俊,王兆安.电力电子变流技术.北京:机械工业出版社,1999.
[2]刘胜利.现代高频开关电源实用手册.北京:电子工业出版社,2001.
[3]沙占友.新型单片开关电源设计与应用技术.北京:电子工业出版社,2004.