前言:中文期刊网精心挑选了纳米碳管范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
纳米碳管范文1
不过,说起纳米艺术和纳米碳管艺术,大多数人还真没听说过:难道纳米、纳米碳管也可以用来搞艺术?
纳米艺术是近几年才出现的新生事物,是随着纳米科技的飞速发展而产生的纳米学科分支。作为纳米科技的“明星”,纳米碳管当然不能被排除在外,它是纳米艺术中的主角。
现在,科学家或者纳米艺术家已经可以用纳米碳管做平面绘画、三维造型、纳米碳管扬声器、纳米收音机、纳米琴弦、SPM(扫描探针显微镜)绘画的“画笔”等。另外,科学家们做纳米碳管理论研究时也常常发现,纳米碳管的分子构型、周围的电磁场等通常也都具有一定的艺术欣赏性。
纳米碳管平面绘画艺术
说起纳米碳管平面绘画艺术,最值得一提的要算前一阵在媒体上被炒得沸沸扬扬的“纳米奥巴马”头像了。纳米奥巴马头像是由美国密歇根州立大学机械工程系教授约翰・哈特制造的。如图1所示,每个纳米奥巴马头像包含着1.5亿个纳米碳管,这些纳米碳管像丛林中的树木一样垂直地排列着,每个纳米碳管都是中空圆柱体结构,直径仅为人类头发的五万分之一。据称,为了创建“纳米奥巴马”头像,哈特教授模仿了画家谢泼德・费尔雷绘制的奥巴马素描。首先,哈特将素描头像缩小,并使用激光将头像打印在一块玻璃板上;然后,用紫外线照射模板。当紫外线穿过这个玻璃板模具时,会在一张硅薄片上形成相应的投影头像;接着,他在这个头像图形的基础上生成纳米碳管,在制造纳米碳管时采用了高温催化化学反应;最后,使用电子显微镜对纳米奥巴马头像进行拍照,得到了头像仅有0.5毫米大小的纳米艺术作品。
事实上,像这样用纳米碳管进行平面绘画,对约翰-哈特教授来说并非第一次。早在2006年,哈特就因采用了类似的方法绘制了40个Playboy的纳米碳管小兔子画像而名声大噪。如图2所示,当时绘制的每只兔子的尺寸仅为100多微米。目前,这种纳米碳管的平面绘画技术已经比较成熟。
纳米碳管三维造型艺术
如果说上面谈到的纳米奥巴马和纳米小兔子均属于纳米碳管的平面绘画艺术,那么,美国伦斯勒工业大学一位教授运用纳米管立体结构“绘制”的“雏菊”,则应属于纳米碳管的三维造型艺术范畴。如图3所示,画面上显现的一朵朵三维“雏菊”均由成千上万个排列方向不同的纳米碳管束构成,雏菊的直径约80微米。该成果展现的是这位教授不久前开发的一种新方法:用纳米碳管作骨架按设计要求制作立体结构。
该项作品的制作思路大致如下:首先,在硅半导体上做成氧化硅模具;然后,在这个模具上利用化学气相生成法所需的条件对纳米碳管的生长速度进行控制,从而使它们成长为符合目标方位的碳管造型。
纳米管音频艺术
2009年1月,美国《连线》杂志评选出2008年十大科学突破。图5纳米碳管小刀?纳米碳管单弦琴?其中之一为我国清华大学科学家使用纳米碳管制作的扬声器。这个扬声器实际上是一种纳米碳管薄膜,其发声机制和普通扬声器完全不同,普通扬声器的发声机制为机械振动,纳米碳管膜的发声机制为热致发声,即通过电流加热“使之”振动并发出声音。这种纳米碳管扬声器的声音虽然有点刺耳,但仍能依稀听出播放的是什么歌曲。
另外一个利用纳米碳管发声的设备为纳米碳管收音机。它是美国加州大学物理学家泽托教授2007年的杰作。
2006年,美国科学家辛格制成了纳尺度的“纳米小刀”,这把纳米小刀被认为将来可能用于细胞手术。事实上,纳米碳管小刀也相当于一把单弦琴,若利用激光脉冲或SPM探针拨动琴弦,如图5所示,使得纳米碳管振动起来,该单弦琴也同样会发出特定频率的声音来。
上述种种迹象表明,纳米碳管扬声器、收音机、单弦琴的出现,使得纳米碳管发声、甚至歌唱成为可能,这将为今后纳米声乐艺术的发展提供崭新的思路。
纳米管在“SPM绘画”中的应用
20世纪80年代,扫描探针显微镜(SPM)的发明使人们对物质世界的认识与改造深入到了原子和分子层面。SPM成为人类首次既可以直接观察原子、分子、纳米粒子,又可以直接操纵原子、分子、纳米粒子的工具。如图6所示,由于SPM探针针尖的曲率半径小,并且和样品之间的距离很近,在针尖与样品之间可以产生一个高度局域化的力场、电场等。该场会在针尖所对应的样品表面微小区域产生力的作用、相变、化学反应等,这正是利用SPM进行纳米加工、操纵粒子和绘画的客观依据。
图7为科学家使用SPM搬动一氧化碳分子在铂表面绘制(拼出)的“分子人”,分子人身高仅为几个纳米。要像图7那样使用SPM搬动原子、分子进行绘画,SPM探针针尖的曲率半径必须要足够小,最好达到几十纳米(1纳米=10-9米,相当于1米的10亿分之一)。然而,目前大多数SPM探针针尖的曲率半径都在300纳米以上,用这么粗的SPM探针去操纵直径小于1纳米的原子或分子,就好比我们用一个磨盘粗细的“大柱子”去拨动一粒芝麻一样,显然是力不从心的。为此,科学家们成功地在SPM探针针尖上安装了纳米碳管,最终解决了上述难题。由于纳米碳管的直径很细,一般只有几十纳米,这样,SPM搬动原子/分子进行作画、并对最终的原子/分子画进行观察就变得容易了。原子、分子绘画也终于有了强有力的工具。
纳米管理论研究过程中的艺术
为了研究纳米碳管的力学、电磁学等物理化学特性,科学家经常采用各种计算机软件对纳米碳管进行电磁场、力场等理论模拟。如果留意的话,科学家会发现,模拟的结果中,碳管周围的各种电磁场等往往是绚丽的,常带有一定的艺术性。正如图8所示,它们分别为理论模拟后纳米碳管束周围的磁场和电场。
纳米碳管范文2
碳纳米管,又名巴基管,是一种具有特殊结构即径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口的一维量子材料。
碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2-20 nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。
碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
(来源:文章屋网 )
纳米碳管范文3
1991年,日本NEC科学家Iijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果。
2碳纳米管的结构
碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs)两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm。
3碳纳米管的活化
一般认为,在碳纳米管表面引入一些电活性基团,经过活化才能有较好的电化学响应。活化的方法一般分为两类:①在制成电极前对碳纳米管进行活化,包括在气相中用空气或等离子体氧化或用酸(主要是浓HNO3)氧化。以浓HNO3处理碳纳米管的方法是:将碳纳米管在浓硝酸中浸泡10小时后,100℃浓硝酸回流5-6小时。再将得到的悬浊液离心分离、烘干,得到粉末状开管硝基化的碳纳米管。取1mg分散至3ml的N-N-二甲基甲酰胺(DMF)中,超声分散15分钟,备用。②制成电极后,用电化学方法进行活化,即将碳纳米管电极在一定溶液中(如磷酸盐缓冲溶液)于一定电位范围内循环扫描。经过活化以后,根据所用介质的不同,可以在碳管表面引入含氧、甚至含硫的基团,一般包括羟基、羰基、羧基、酚类和醌类化合物等,这些电活性基团可以催化或促进其他物质的电子传递反应。
4碳纳米管的性质
4.1奇异的导电性碳纳米管的性质与其结构密切相关。由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6mm时,导电性能下降;当管径小于6mm时,CNTs可以被看成具有良好导电性能的一维量子导线。
4.2优异的力学性质除了奇特的导电性质之外,碳纳米管还有非凡的力学性质。理论计算表明,碳纳米管应具有极高的强度和极大的韧性。由于碳纳米管中碳原子间距短、单层碳纳米管的管径小,使得结构中的缺陷不易存在,因此单层碳纳米管的杨氏模量据估计可高达5太帕,其强度约为钢的100倍,而密度却只有钢的1/6。因此,碳纳米管被认为是强化相的终极形式,人们估计碳纳米管在复合材料中的应用前景将十分广阔。
4.3良好的热学性能一维管具有非常大的长径比,因而大量热是沿着长度方向传递的,通过合适的取向,这种管子可以合成高各向异性材料。虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热交换性能较低。纳米管的横向尺寸比多数在室温至150℃电介质的品格振动波长大一个量级,这使得弥散的纳米管在散布声子界面的形成中是有效的,同时降低了导热性能。适当排列碳纳米管可得到非常高的各向异性热传导材料。
4.4优良的储氢性能碳纳米管的中空结构,以及较石墨(0.335nm)略大的层间距(0.343nm),是具有更加优良的储氢性能,也成为科学家们关注的焦点。1997年,A.C.Dillon对单壁碳纳米管(SWNT)的储氢性能做了研究,SWNT在0℃时,储氢量达到了5%。DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的氢气,以现有的油箱来推算,需要氢气储存的重量和体积能量密度达到65%和62kg/m3。这两个结果大大增加了人们对碳纳米管储氢应用前景的希望。
5碳纳米管的应用
由于碳纳米管具有优良的电学和力学性能,被认为是复合材料的理想添加相。碳纳米管作为加强相和导电相,在纳米复合材料领域有着巨大的应用潜力。
5.1电化学器件碳纳米管具有非常高的比表面积、导电性能和良好的机械性能,是电化学领域所需的理想材料。碳纳米管电容器具有非常好的放电性能,能在几毫秒的时间内将所存储的能量全部放出,这一优越性能已在混合电力汽车中开始实验使用。由于可在瞬间释放巨大电流,为汽车瞬间加速提供能量,同时也可用于风力发电系统稳定电压和小型太阳能发电系统的能量存储。锂离子电池是碳纳米管应用研究领域之一。碳纳米管锂离子电池容量大,放电速度快,充放电容量达到1000mA.h/g,大大高于石墨(372mA.h/g)和球磨石墨粉(708mA.h/g)。
5.2氢气存储碳纳米管储氢是具有很大发展潜力的应用领域之一,室温常压下,约2/3的氢能从碳纳米管中释放出来,而且可被反复使用。碳纳米管储氢材料在燃料电池系统中用于氢气存储,对电动汽车的发展具有非常重要的意义,可取代现用高压氢气罐,提高电动汽车安全性。
5.3场发射装置学术和工业界对碳纳米管电子器件的研究主要集中在场发射管(电子枪),其主要可应用在场发射平板显示器(FED)、荧光灯、气体放电管和微波发生器。碳纳米管平板显示器是最具诱人应用潜力和商业价值的领域之一。
5.4碳纳米管场效应晶体管碳纳米管场效应晶体管的研制成功有力地证实了碳纳米管作为硅芯片继承者的可行性。尤其是目前,在科学家再也无法通过缩小硅芯片的尺寸来提高芯片速度的情况下,纳米管的作用将更为突出。
5.5催化剂载体碳纳米管由于尺寸小,比表面积大,表面的键态和颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,是理想的催化剂载体材料。
纳米碳管范文4
关键词:碳纳米管;蜡基复合粘结剂;金属粉末注射成形
中图分类号:TB321;TB324 文献标识码:A
在众多金属基复合材料增强相中,碳纳米管(CNTs)以其独特的结构和性能为人们所青睐.选择碳纳米管作为增强相,金属基复合材料有望获得高强度、高导电、高导热、低膨胀、轻质等优异的综合性能,更难能可贵的是由于碳纳米管良好的柔韧性,复合材料将易于加工和处理.因此这一诱人的应用前景已经吸引人们为之努力.J.Yang等[1]用酒精和酸将碳纳米管与镁粉分散混合,干燥后在25 MPa的压力下进行热压烧结.结果表明:碳纳米管在基体中呈束状分布,增强相与基体相之间没有发生界面反应,强度最高仅为200 MPa.孟飞等[2]采用粉末冶金工艺结合轧制退火制备了碳纳米管弥散强化铜基复合材料,研究表明,碳纳米管弥散强化使材料的硬度得到了提高,但分布的均匀性及两相的结合仍不够理想.韩国Walid等[3]首先采用化学镀方法在碳纳米管表面沉积铜,冷压后利用等离子体火焰烧结成型.结果表明其硬度可为原来的两倍,杨氏模量提高近一倍.但是热膨胀系数仍然很高,界面结合程度不好、碳纳米管分布不均以及空隙的产生影响了复合材料综合性能的发挥.Kim等 [4]采用分子水平混合法制备碳纳米管增强铜基复合粉末,然后通过等离子体火焰烧结成功地制备了碳纳米管分散均匀的复合材料.我们课题组[5]也取得了一些研究成果,采用静电组装方法通过液相预先合成微米级的碳纳米管-铜复合颗粒.碳纳米管被“锁”在复合颗粒中,可极大地减少烧结过程中的偏聚,烧结成形后的复合块材热导率为240 W/(m·K)以上,热膨胀系数小于8×10-6 /K,但这些方法既耗时又昂贵,难以实现规模化生产.
由此可见,为了适应规模化生产,通过机械或借助溶剂等简单的方法作为混合手段难以使碳纳米管在足够含量下实现单分散和在整个金属基体内的均匀分布.相对于金属基体,具有一定粘度的聚合物,不论是在溶液混合或熔融混合中都能较容易地实现碳纳米管的锚固和分散,有关碳纳米管增强聚合物基复合材料的研究也已取得了很大进展.基于这一特点,我们考虑将分散了碳纳米管的聚合物为主要组分的有机物作为粘结剂与金属粉末混炼形成喂料,再采用注射成形,通过有效的脱脂和烧结等工艺,就可获得复合材料块体,这就是已发展了数十年的粉末注射成形技术(PIM)[6-8].脱脂是PIM技术的关键环节,既要使粘结剂脱除干净,又要保留碳纳米管与金属粉末颗粒,这就要求碳纳米管与粘结剂体系以非共价键方式连接.此外,研究还表明,在粘结剂中添加碳纳米管不但能改善力学性能,而且还能提高导热性能,这对在脱脂过程中减少热应力、防止裂纹非常有利.目前,粉末成形技术对单一的金属制品的制备已比较成熟,对二元金属体系如钨铜、钼铜等也已有商业化产品[6,9-10],但应用于复合材料领域则是新的方向,特别是应用于纳米增强相的复合体系更是一个全新的探索.
PIM主要包括混料、制粒、成形、脱脂及烧结5个步骤,而混料中的粘结剂是PIM技术的核心.它既是注射时提供流动性的载体,又在成形坯脱脂阶段起着维持坯块形状的作用,进而对注射成形坯的质量、脱脂、尺寸精度及合金成分等有很大的影响.因此,对粘结剂的流变学性能、热性能等进行研究显得尤为重要.本文将功能化的碳纳米管引入PIM常用的蜡基粘结剂中,获得碳纳米管分散均匀的新型复合粘结剂.碳纳米管的加入提高了粘结剂的结晶度,改善了它的热稳定性,但对其流变学性能影响不大.
1实验材料及方法
本实验采用的碳纳米管为北京天奈科技有限公司生产,直径为20~50 nm,纯度为95%.将其混合于添加了一定量乙二胺四乙酸(EDTA)的H2SO4/HNO3混合溶液中,微波加热30 min得到有效的纯化.
称取一定量的石蜡和碳纳米管加入烧杯中, 80 ℃水浴并机械搅拌30 min,形成碳纳米管石蜡混合物.将此混合物加入已升温至80 ℃,搅拌速度为30 r/min的密闭混炼机中,将混炼机调温至135 ℃、转速调为45 r/min,待温度稳定后加入低密度聚乙烯(LDPE),15 min后加入硬脂酸.待LDPE基本熔融后将混炼机调温至150 ℃,温度稳定后加入高密度聚乙烯(HDPE),混炼1 h后得到碳纳米管改性的粘结剂.
红外光谱分析是在WQF410型傅里叶变换红外光谱仪上进行的,吸收光谱扫描的波数范围为400~4 000 cm-1.将样品的观察面(液氮脆断面)喷金后用日立Hitachi S4800型场发射扫描电子显微镜观察形貌.使用OLYMPUS BX51型偏光显微镜(PLM)对复合粘结剂进行晶体形态表征.用Philips PW 1710型X射线衍射仪对样品进行物像分析.粘结剂的粘度是用上海精密仪器有限公司的NDJ8S型数字显示旋转粘度计测量的.DSC和TGA在德国耐驰NETZACH STA 449C型差热分析仪上测试,氮气气氛,升温速率5 ℃/min,扫描范围30 ~ 800 ℃.
2结果与讨论
2.1红外分析
2.2复合粘结剂的形貌
图2给出了添加含量都为4%(质量分数)的功能化前后碳纳米管的复合粘结剂断面SEM图.为了避免聚乙烯(PE)纤维对碳纳米管分布的干扰,样品截面是在液氮中脆性断裂后获得的.如图2(a)所示,在较低放大倍率下未经处理的碳纳米管在复合粘结剂中分布不均匀,有团聚(如图中圈出区域).而经功能化处理后的碳纳米管分布则比较均匀(如图2(c)).这种截然不同的现象缘于功能化处理后的碳纳米管表面接枝有许多官能团,这些官能团的存在使得碳纳米管与PE链之间的范德华作用力增强[11],从而显著改善了碳纳米管与PE的润湿性.图2(d)还显示碳纳米管外壁有一层厚厚的包覆层,其总直径为150~200 nm,图2(d)右上角的透射电镜照片进一步表明碳纳米管与包覆层结合紧密.与此形成鲜明对照的是,使用未处理的碳纳米管的粘结剂,碳纳米管加包裹层仅100 nm,且结合疏松,这进一步说明原始碳纳米管与基体的润湿性不好.这一现象与碳纳米管的表面结构及聚合物的结构特点紧密相关.已有研究表明,碳纳米管可诱发PE在其表面上形成纳米晶[12-13].这是由于在熔融状态的PE链能量较高倾向于附聚在功能化的碳纳米管表面以降低其表面能[14].此外,功能化的碳纳米管表面存在很多缺陷,使得其直径与聚合物链的回转半径(PE100 kg/mol,Rg13.8 nm)更相近,其高度弯曲的表面导致强烈的几何限制作用,从而迫使聚合物链以碳纳米管为轴结晶,这与文献[12]报道的一致.PE包覆层可以将碳纳米管彼此隔开,同时可以克服纳米碳管之间存在的较大范德华力,防止碳纳米管团聚,极大地提高了碳纳米管在PW中的分散能力.
2.3复合粘结剂的结晶性能
图3(a),(b),(c)和(d)分别为碳纳米管含量0, 2%, 4%和6%(质量分数)的复合粘结剂的偏光显微照片(暗色区域为非晶区,亮色区域为结晶区).可看出,随着碳纳米管含量的增加,图中片状物尺寸变小,白点的数量增加,说明碳纳米管的加入起到促进形核的作用,并使晶粒细化.为了证实偏光图片的分析结果,我们采用XRD对不同碳纳米管含量的粘结剂进行表征,结果(图4)显示,4种粘结剂的主要吸收峰均出现在2θ为21.3°和23.6°,分别对应于PE的 (110) 和 (200) 晶面.与不含碳纳米管的粘结剂相比,碳纳米管改性的粘结剂在21.3°处的吸收峰明显增强,这进一步说明碳纳米管作为一种增强相能促使基体形核结晶.众所周知,聚合物材料的物理性能很大程度上取决于它们的显微结构和结晶度,且弹性模量和柔韧性等机械性能也受结晶性的影响.添加碳纳米管后粘结剂结晶度的提高和晶粒的细化将导致生坯强度的提高,十分有利于从成型、脱脂到烧结过程中保形性的需求.
2.4复合粘结剂的流变学性能
在注射成形温度下,粉末注射成形喂料的流动性是由粘结剂提供的.为了有效调节注射成形参数以实现良好的充型,需要对粘结剂的粘度进行测定.由于PIM喂料的粘度与工业上使用的热塑性塑料的粘度处于同一范围,测定粘结剂粘度,一般采用塑料行业中所使用的毛细管粘度计.但由于实验条件有限,本实验将常用于测量液体表观粘度的旋转粘度计用来测量熔融状态下复合粘结剂的粘度,也能在一定程度上反应在注射成形温度下粘结剂的流动性.在已知转子转速的条件下,试样对转子的粘滞阻力由测力传感器测得后,即可获得该温度下剪切应力与剪切速率的比值,也就得到了粘度值.原始碳纳米管和功能化碳纳米管的含量与粘度的关系如图5所示.我们可以发现,碳纳米管的加入使得粘结剂的粘度增加.这是因为碳纳米管和粘结剂分子链之间的作用力阻碍了它们的相对运动.因此,我们可以选择较低分子量的聚合物作为粘结剂的组份,这样既能满足流动性和保形性的需求,又有利于后续的脱脂和烧结.进一步增加碳纳米管的含量,粘结剂的粘度没有明显增加,且原始碳纳米管和功能化碳纳米管对粘度的影响趋于一致,说明阻碍作用到达极限值时,粘度也将不再升高.上述结果证明,添加碳纳米管对粘结剂的流动性影响不大,此粘结剂仍能满足金属粉末注射成形对流动性的要求.
2.5复合粘结剂的热性能
图6显示的是添加了6%(质量分数)功能化碳纳米管的改性粘结剂与不含碳纳米管的粘结剂的DSC和TGA性能对比.在DSC曲线图(图6(a))中对应的第一个吸热峰61 ℃对应石蜡的玻璃化温度,第二个吸热峰121 ℃对应PE的玻璃化温度.从方框内曲线可看出,碳纳米管改性粘结剂中PE的玻璃化温度(Tg为121.818 ℃,比普通蜡基粘结剂中PE的结晶温度高1.379 ℃).此外,如图6(b)所示,作为添加剂的功能化碳纳米管使聚合物基体的热分解温度也提高了.从以上结果看来,由于功能化碳纳米管在复合粘结剂中均匀分布,即使在大量石蜡存在的情况下也能诱导PE形成大量的微晶区,提高材料整体的结晶度.同时由于碳纳米管表面有大量的羟基和羧基,能够和PE分子链形成较强的作用力,限制PE链的自由运动,这样就使复合粘结剂中PE的Tg较纯粘结剂中PE有所提高.
更重要的是,热重曲线可用于确定注射成形过程中熔体的上限温度和分解温度,从而制定出合适的成形和脱脂工艺.为了避免粘结剂在混炼和注射等成形过程中降解,应使温度低于170 ℃.当温度达到500 ℃时两种粘结剂的降解趋于稳定.纯粘结剂几乎完全分解,残留量仅为0.15%(质量分数).碳纳米管改性粘结剂的残留量是10.39%.这是由于在氩气气氛保护下碳纳米管并没有降解,且粘结剂分解后有少量的残余碳.这一结果说明,碳纳米管的加入没有对粘结剂的脱除产生很大影响,热脱脂后能够得到较纯净的样品.
3结论
通过熔融混炼成功制备了碳纳米管改性的复合粘结剂.扫描电镜显微照片显示,功能化的碳纳米管在粘结剂基体中能均匀分散,而未经处理的碳纳米管则有较严重的团聚.实验结果表明,功能化碳纳米管的加入能有效提高粘结剂的结晶度,从而将提高生坯的强度和保形性.此外,碳纳米管的加入对复合粘结剂的粘度影响不大,这样就可以既满足保形性要求的同时又不影响喂料的流动性.碳纳米管与粘结剂之间以非共价键连接,这样就可以既使粘结剂脱除干净又保留碳纳米管和金属粉末.综上所述,这种新型碳纳米管改性复合粘结剂适用于金属粉末的注射成形.
参考文献
[1] YANG J, SCHALLER R. Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes[J]. Materials Science and Engineering A,2004, 370(1/2):512-515.
[2]孟飞, 裴燕斌, 果世驹. 轧制对碳纳米管弥散强化铜基复合材料微观组织的影响[J]. 粉末冶金材料科学与工程,2005, 10(1): 55-58.
[3]WALID M D, BYUNG K L, CHAN B M. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering A,2009,513/514:247-253.
[4]CHA S I, KIM T K, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metalmatrix nanocomposites processed by molecularlevel mixing[J]. Adv Mater,2005, 17:1377-1381.
[5]XU L S, CHEN X H, PAN W Y. Thermal expansion of MW CNTreinforced copper composite[J]. Transactions of Nonferrous Metals Society of China,2007, 17: S1065-S1069.
[6]MOBALLEGH L, MORSHEDIAN J, ESFANDEH M. Copper injection molding using a thermoplastic binder based on paraffin wax[J]. Materials Letters, 2005, 59(22): 2832-2837.
[7]SIDAMBEA A T, FIGUEROA I A, HAMILTON H G C, et al. Metal injection moulding of CPTi components for biomedical applications[J]. Journal of Materials Processing Technology,2012, 212(7): 1591-1597.
[8]HUANG M S, HSU H C. Effect of backbone polymer on properties of 316L stainless steel MIM compact[J]. Journal of Materials Processing Technology,2009, 209(15/16): 5527-5535.
[9]THOMAS VIELMA P, CERVERA A, LEVENFELD B,et al. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene[J]. Journal of the European Ceramic Society,2008, 28(4): 763-771.
[10]TAO T, ZHANG L, MA J, et al. The production of flexible and electrically conductive polyethylene carbon nanotube shishkebab structures and their assembly into thin films[J]. Industrial & Engineering Chemistry Research,2012, 51(15): 5456-5460.
[11]PAN B, XING B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environ Sci Technol, 2008, 42 (24):9005-9013.
[12]ZHANG S J, LIN W, WONG C P, et al. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization[J]. ACS Appl Mater Interfaces,2010, 2 (6): 1642-1647.
纳米碳管范文5
目前,测定水样中铅含量的方法主要有二硫腙分光光度法、原子吸收法、等离子体质谱以及电化学方法等,其中电化学方法由于操作简便、仪器小型化等而日益引起人们的关注。电分析方法测定铅常用各种汞或汞膜电极〔1,2〕,但汞本身对人类有危害并可造成环境的再次污染。本文采用多壁碳纳米管修饰玻碳电极作为工作电极,完全做到无汞化操作,实现了对水样中痕量铅的高灵敏度高选择性的测定,并且制作方便、重现性好、方法简单可靠。现将结果报告如下。
1 材料与方法
11 仪器和试剂 CHI660A型电化学工作站(上海辰华仪器公司),采用三电极体系:多壁碳纳米管修饰玻碳电极为工作电极,Ag/AgCl(饱和KCl溶液)电极为参比电极,铂丝电极为对电极。铅标准储备液(001mol/L),使用前按需要稀释;双十六烷基磷酸(瑞士Fluka公司);多壁碳纳米管(南京大学化学化工学院生命分析化学教育部重点实验室);其他试剂均为分析纯;实验用水均为二次蒸馏水。
12 碳纳米管修饰电极的制备 将5mg多壁碳纳米管(MWCNT)和5mg双十六烷基磷酸(DHP)加入5ml二次蒸馏水中,超声分散约20min直至得到1mg/ml均一、浅黑色的MWCNT-DHP悬浮液。玻碳电极(有效直径为3mm)依次用03,005μm Al2O3粉及麂皮抛光至镜面,然后分别在无水乙醇和二次蒸馏水中超声清洗1min,红外灯下烘干。用微量进样器取10μl上述悬浮液滴加在玻碳电极表面,红外灯下挥发掉溶剂即可。
13 实验方法 取10ml含有002mol/L KI的01mol/L醋酸缓冲液(pH=45)于电解池中,在-040~+020V之间用循环伏安法活化修饰电极直至循环伏安曲线稳定。然后加入一定量的铅标准溶液,于-100V处搅拌富集5min,静止15s后用示差脉冲溶出伏安法在-100~-040V区间,以100mV/s的扫速作阳极化扫描,记录溶出伏安曲线,测量-058V处铅的溶出峰电流。每次测定后,电极在空白底液中循环扫描以除去吸附在表面的沉积物,恢复其催化活性。
2 结果
21 分析底液的选择 实验结果表明,溶出峰电流在底液中含有KI时有显著提高,并且峰电流随着底液中I的浓度由0变化到002mol/L而逐渐增大,而I的浓度继续增大时,峰电流增加不明显。分别用浓度均为01mol/L的含有002mol/L KI的盐酸、醋酸缓冲液、磷酸缓冲液等作为底液进行分析,发现在醋酸缓冲液中溶出峰电流较大,峰形较好。另外在醋酸缓冲液中,当pH值从70逐渐减小到45时,溶出峰电流逐渐增加;而当pH值由45变化至30时,溶出峰电流反而下降,故本实验选择含有0.02mol/L KI的0.1mol/L醋酸缓冲液(pH=45)作为分析底液。
22 修饰剂用量的影响 实验表明,滴加在玻碳电极表面的MWCNT-DHP悬浮液用量对铅的溶出峰电流有很大的影响。当MWCNT-DHP悬浮液的量从0逐渐增加到10μl时,铅的溶出峰电流显著增加,在悬浮液用量从10μl增加到15μl的过程中,峰电流变化不明显,几乎维持在一固定值。但当悬浮液用量继续增大时,峰电流反而降低。本实验采用10μl 的MWCNT-DHP悬浮液用量来制备化学修饰电极。
23 富集电位和时间的影响 在上述实验条件下,观察溶出峰电流随富集电位的变化。结果表明,峰电流随富集电位的负移而增大,但峰形逐渐变差,背景电流也有所增加,只有富集电位在-100V时,峰电流大且峰形好,因此,选择-100V作为实验的富集电位。在选定的富集电位下,富集时间从0增加到5min的过程中,溶出峰电流几乎线性增加,当超过5min时,峰电流增加缓慢,几乎不变,说明Pb2+在电极表面吸附达到了饱和。故富集时间选用5min。
24 线性范围、检出限及重现性 配制一系列标准溶液,按实验方法在上述选定的最佳实验条件下进行测定,并绘制标准曲线。结果表明,Pb2+浓度与峰电流在18×10-8~10× 10-5mol/L范围内呈线性关系,其线性回归方程为:ip(μA)=014+221 × 107C(mol/L)(r=09972)。测得铅的检出限为40×10-9mol/L(信噪比为3)。对20×10-7mol/L的铅溶液平行测定10次的相对标准偏差为39%,该电极天天测定,并常温空气下保存1个月后,测定相同浓度铅溶液,峰电流仅下降约58%,说明此修饰电极具有很好的重现性和长期的稳定性。
25 干扰实验 在选定的最佳实验条件下,测定20×10-7mol/L的Pb2+溶液时,2000倍的Na+、Ca2+、Mg2+、K+、Al3+、Cl-、NO3-、SO42-、PO43-,500倍的Zn2+、Fe2+,100倍的Cu2+、Cd2+、Fe3+几乎不干扰铅的测定(误差
26 实际水样分析(表1) 为了检验该修饰电极的实际应用,在优化的实验条件下,采用标准加入法测定了4种实际水样中的Pb2+浓度。为了验证测试结果,同时用原子吸收光谱法对其进行测试,2法所得结果基本吻合。
表1 多壁碳纳米管修饰电极测定实际水样中的铅离子(略)
3 讨论
本文利用碳纳米管的独特物理和化学性能,制备了多壁碳纳米管修饰玻碳电极,采用示差脉冲溶出伏安法测定实际水样中的痕量铅,真正做到完全无汞化操作,避免了二次污染。经研究发现,在分析底液中加入KI可以提高检测灵敏度,在实验条件的优化选择研究中发现修饰剂用量应适宜,因为DHP具有绝缘效应,会阻碍传质及电子交换过程,从而降低修饰电极的导电性能。通过标准曲线的绘制与实际水样的分析,可知该修饰电极具有很好的重现性与选择性及高灵敏度,抗干扰能力强,常见离子几乎不干扰铅的测定,仅有Hg2+干扰较严重,主要是因为在修饰电极表面Hg2+可以被还原为Hg,从而使得铅更容易被还原形成汞齐,使测定结果偏高。总之该方法简单可靠,重现性好,灵敏度高,克服了以往电分析方法的一些缺陷,具有较好的实际应用前景。
参考文献
纳米碳管范文6
关键词: 纳米活性炭纤维 生物膜 降解 景观水处理技术
近年来城市化发展越来越快,人们对周围生活环境的要求不断提高,居民小区内出现了大量的各式各样的景观水体,城区及公园内也建造了绿地用来美化环境。但是,当这些景观水体运行一段时间后,都出现了不同程度的污染,受污染的原因来自不同程度的点源、面源污染及管理维护不足等多方面,景观水体富营养化趋势严重,影响了景观效果,给人们的日常生活带来了不便。
1.纳米活性炭纤维微观结构
普通活性炭纤维结构的大小仅为人类头发的十分之一,性脆不可编织。而纳米活性炭纤维可以达到50~200nm,它具有显著的向异性、柔软性,可加工成各种织物,沿纤维轴方向表现出很高的强度。用高倍电子扫描镜观察纳米碳管的形貌(如图1.1所示),可以看出,纳米活性炭纤维表面微观结构的刻蚀变化较普通活性炭纤维明显,有更加清晰的沟槽结构,大大增加了表面的粗糙度。
纳米活性炭纤维这种特殊的孔状结构使它具有很大的比表面积,而高达500~1700m■/g的比表面不仅使它具有普通活性碳的吸附功能,而且能为水中微生物和有益藻类等的生长、繁殖提供巨大的生物附着表面,为硝化、反硝化细菌等各种有益藻类生长创造非常适宜的条件。
a普通活性炭纤维 b普通活性炭纤维
1000倍SEM图 5000倍SEM图
c纳米活性炭纤维 d纳米活性炭纤维
1000倍SEM图 5000倍SEM图
图1.1 普通活性炭纤维和纳米活性炭
纤维微观结构SEM图片
纳米活性炭纤维有很大的比表面积,在纤维表面上,可以直接接触吸附质分子;外表面积比粒状活性炭大1~2个数量级。
2.纳米活性炭纤维在水处理中的基本原理
2.1纳米活性炭纤维生物膜的形成及作用
放入水体中的纳米活性炭纤维在阳光的照射下吸收紫外线引起自身振动发出次超声波,超次声波使各种细菌逐渐吸附到碳纤维表面,而碳纤维超大的比表面为各种细菌大量繁殖提供载体,逐渐形成生物反应膜。
生物膜是使细菌和菌类一类的微生物和原生动物、后生动物一类的微型动物附着在滤料或某些载体上生长繁育,在其上形成的膜状生物污泥。污水与生物膜接触,污水中的有机污染物,作为营养物质,为生物膜上的微生物所摄取,污水得到净化,微生物自身也得到繁衍增殖。生物膜成熟的标志是:生物膜沿水流方向的分布,在其上由细菌及各种微生物组成的生态系及其对有机物的降解功能都达到了平衡和稳定的状态。
2.2纳米活性炭纤维生物膜中几个重要参数分析
2.2.1生物膜的比增长速率
微生物比增长速率(μ)是描述生物膜增长繁殖特别性的最常用参数之一,它反映微生物增长的活性。微生物比增长速率的定义为:
μ=(dX/dt)/X (2-1)
式中X-微生物浓度,[质量][体积]■
μ-微生物比增长速率,[时间]■
生物膜比增长速率主要分为两类:一是动力学增长阶段的比增长速率,即为生物膜最大比增长速率,二是整个生物膜过程的平均比增长速率。
(1)生物膜最大比增长速率(μ■)
生物膜在动力学增长期遵循以下规律:
■=μ■M■
积分后得lnM■=μt+C
(2)生物膜平均比增长速率■
生物膜平均比增长速率计算公式为:
■=■ (2-2)
式中M■——生物膜稳态时对应生物膜量,[质量][面积]■
M■——初始生物膜量,[质量][面积]■
生物膜平均比增长速率反映了生物膜表观增长特性。由于生物膜成长过程中伴随着非活性物质的积累,从严格意义上说并不能真实反映生物膜群体的增长特性。
2.2.2底物比去除速率(q■)
q■=■ (2-3)
式中q■——底物比去除速率,[时间]■
Q——进水流量,[体积][时间]■
S■——进水底物浓度,[质量][体积]■
S——出水底物浓度,[质量][体积]■
A■——载体表面积,[面积]
底物比去除速率反映了生物膜群体的活性,底物的去除速率越高,生物膜生化反应越高。
2.3纳米活性炭纤维生物膜中的微生物及作用
有机物的降解主要是由纳米活性炭纤维表面生物膜中的微生物完成。主要微生物包括细菌、真菌、放线菌和原生动物等,氨氧化细菌将水中的氮有机物转化为无机氮化合物,可被微生物利用,然后经过亚硝化细菌、硝化细菌和反硝化细菌将氮去除;真菌具有强大的酶系统,能促进纤维素、木质素、果胶等的分解,将蛋白质最终分解放出氨;放线菌在分解含氮和不含氮的有机化合物中起着重要作用,同时能分解氨基酸等蛋白物质,也能形成抗生物质维持系统中生物群落的动态平衡;原生动物通过摄食微生物和碎屑起到调节微生物群落的动态平衡和清洁水体的作用。系统内污染物的去除与微生物之间有明显的相关性:污水中的BOD和COD的去除率与微生物的数目都有较明显的正相关性;污水中的氨氮的去除率与根区的硝化细菌和反硝化细菌数量的正相关性显著;而磷的去除率则与磷细菌数目呈正相关。