纳米技术范例6篇

前言:中文期刊网精心挑选了纳米技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

纳米技术范文1

全世界的首篇纳米硒的论文就是中国科学家撰写的。1997年纳米硒问世之后,1998年经鉴定申请了国家专利,1999年第二次鉴定后由四通纳米港迅速产业化,逐步被人们所认识和接受。我去香港讲学,就有人问我要这个产品,他们反映台湾也在搞这个项目推广,而这个项目是推向实用化进程最快的一个项目,也是将源头创新和市场接轨最好的事物。所以说,这样一个产品理应受到政府的重视和支持。

Chinese scientists first reported the properties of nano selenium after obtaining its patent right. Stone Nano Technology Port Ltd. rapidly invested for this novel technology and the product in the form of health food has gained good reputation it warrants. While I was in Hong Kong for academic activity, many people there told me they enjoyed this product, they also said it was popular in Taiwan. The project is innovative, moveing-fast, highly integrated into market. Thus, such a product ought to be paid attention and be supported by government.

纳米科技发展速度之快出乎了大家的预期,尤其是实用化技术的进程大大加快。比如,美国的目标是到2010年纳米科技的GDP达到10000亿美元,并培养80万人真正懂纳米科技。并且纳米生物学会比美国上一届总统克林顿估计r 20年发展历程缩短5年左右。目前美国有大量实验室和风险投资正式对源头创新进行投入,生产方式在纳米组合空间得以体现,其中美国硅谷由政府支持建立全球第一条芯片生产线,这条生产线生产的芯片是人的肉眼看不见的、尺度只有100纳米、而且计算速度提高1000倍。此外,在新材料领域及医药领域的纳米技术的应用也有很大突破。

现在各国都致力于纳米技术和纳米产业发展,美国的发展是全面的,而日本主要致力于纳米机器人的发展,德国则定位于环境和能源,英国定位于医药领域的应用,法国重新建立国家纳米中心。总之纳米实用进程加快了,并将成为各国竞争的焦点。

客观来说,中国的纳米科技起步早,在纳米科技基础研究方面与国际水平相差不大。但我国要真正将纳米技术转为财富、使纳米为我国GDP做贡献,还面临三大问题:其一,我国的纳米技术缺乏实用化进程、缺乏市场目标做牵引、缺乏进入市场具体规划,没有适合本国纳米发展的领域;其二,纳米技术应是多学科交叉的,科学家应该能组织在一起进行纳米技术的应用,这样才能迅速集成技术进入市场,而我国是各干各的;其三,我国前一段时期市场上出现炒做概念、乱用概念,错误地低估纳米技术,其实我们要认识到,纳米不使性能提高便一钱不值,不能将性能提高和纳米科技内涵脱离开来。

那么我国纳米技术有没有领先呢?有。譬如纳米硒,是世界上为数不多的纳米技术的领先产品,在硒的研究方面中国本身就具有领先水平,全球硒的膳食标准就是中国参与制订的,而且硒又是普遍看好的一个事物,它对免疫力的提高、维持新陈代谢的平衡及防止癌症起到了别的元素不可替代的作用。缺碘会导致大脖子病,缺钙会导致骨质疏松,缺铁导致贫血,那么缺硒导致多种疾病的高发。当然微量元素过量补充也会有反作用。过去人们对硒的副作用看得过高,其实这是过量补充造成的后果。

客观认识硒的作用,那么目前对硒的更高要求是什么呢?我认为主要纳米集成技术加工后使硒变成人体易于吸收的营养,避免硒带来的副作用。传统补硒医学上是非常慎重的,因为有益含量和有害的差得太近了,所以,在医院一般是非吃不可、如癌症放化疗患者才能补硒。而纳米硒具有低毒、高效的功能。这也是对纳米生物学一个相当高的要求。

纳米技术范文2

所谓碳纳米管就是由碳原子组成的纳米级的圆柱体,来自麻省理工学院的研究者将碳纳米管包裹在单链DNA中并将其植物叶片细胞中的叶绿素中。被“改造”过的叶绿素捕捉和转换光能的能力比普通叶片提高了40%,它们也能产生更多的养分和氧气。

“这项实验证明纳米技术是可以与合成生物学一起来调整和增加有机体的功能。”麻省理工学院生物工程学教授詹姆斯・科林斯(James Collins)说,“这不仅仅可以将植物改造成微型‘发电厂’,也可以在未来用于人体受损器官组织的修复以及强化等更有意义的领域。”

走进医院的电子游戏技术

长久以来,医院里病人摔倒造成附加伤害已经成为医院头疼的一个问题,密苏里大学的研究者曾经试图利用摄像机来记录分析病人摔倒的原因,但是普通摄像机必须要在光线充足的时候才能发挥作用,有着一定局限性。

于是研究者转而使用动态图像捕捉摄像机,这种摄像机原本是制作电子游戏时用来捕捉角色动作的,这种设备可以100%显示一个人的动作,它无需在有光环境下工作,而且显示出来的只是一个人三维轮廓,可以保护患者的隐私。

“我们在这套设备上加上制作电子游戏的动态分析技术就可以准确找出患者摔倒的时间和原因。”密苏里大学计算机教授马乔里・苏可比克(Marjorie Skubic)说,“只有了解病人摔倒的原因,我们才能找到预防病人摔倒的方法。”

帮助减肥的糖

糖和龙舌兰酒都不是健康饮食中的一部分,但是龙舌兰酒中的一种糖可以为肥胖或糖尿病患者解决想吃糖却又怕病情加重的顾虑。

这种名为Agavins的糖分来源于龙舌兰属植物,是制作龙舌兰酒的主要材料。根据墨西哥研究者的报告,这种糖不会被吸收,因此不会增加食用者血糖含量。另外研究者通实验发现服用Agivans的小鼠吃的比没有服用这种糖分的小鼠少,研究者推测这是因为Agivans可以刺激小鼠产生一种名为GLP-1的荷尔蒙,可以延长“吃饱的感觉”并且促进胰岛素的分泌。

“这让Agavins成为肥胖和糖尿病患者能吃的糖的最佳候选之一,”研究者梅赛德斯・洛佩兹(Mercedes Lopez)表示。

黑巧克力更健康之谜

黑巧克力比其他巧克力更有营养是妇孺皆知的事情,但是具体的原因直到现在才被找出――原来这是和人体内的细菌有关系。

圣路易斯大学的研究团队发现人体内的双歧杆菌和乳酸菌会以巧克力为食,同时产生抗炎物质,这种物质被吸收后可以缓解人体心血管的氧化、调节血压并降低人中风的危险。实验证明巧克力原料之一的可可粉中的物质是产生这种抗炎物质的关键,众所周知黑巧克力中可可粉的含量最高,因此黑巧克力更加健康。

研究还发现益生元可以帮助体内细菌更好地产生抗炎物质,也许巧克力生产商要考虑将大蒜、熟麦等富含益生元的食品与巧克力结合起来,做出更健康的产品。

心脏问题新征兆

如果你在弯腰系鞋带或做其他事情时感觉呼吸困难,那么你要小心了。得州大学西南医疗中心的研究表明,这种情况可能是心脏问题的前兆。

该机构的专家将这种现象称为“弯腰呼吸困难症”(bendopnea)。“有很多人认为弯腰喘不过气来是因为自己太胖了,但是我们认为这其中会有更大的原因。”研究者詹妮佛・锡伯杜(Dr. Jennifer Thibodeau)说。

锡伯杜和她的团队发现有“弯腰呼吸困难症”的人往往是因为体内液体较多,在弯腰时会压迫肺所致。同样,体内液体过多也会给心脏造成压力,是心脏的隐患之一。因此,锡伯杜建议弯腰半分钟就会出现呼吸困难的人要尽早去医院检查。

新应用:一小时看完《哈利・波特》

一款名为Spritz的阅读应用最近成为各博客网站的热门话题,它不像常规的阅读软件显示一行行的字,而是将单词一个个地显示出来,使用者可以根据自己的习惯和能力调节文字显示速度(从每分钟250个单词到1000个单词),据悉,在最快速度下一个人在一个小时内就可以看完《哈利・波特》的第一部。

纳米技术范文3

关键词:纳米材料;应用;前景展望

中图分类号:S219.04 文献标识号:A 文章编号:2306-1499(2013)03-(页码)-页数

1.纳米技术引起纳米材料的兴起

1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

2.纳米材料及其性质表现

2.1纳米材料

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

2.2纳米材料的特殊性质

纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、剂等领域。

3.纳米材料的应用示例

目前纳米材料主要用于下列方面:

3.1高硬度、耐磨WC-Co纳米复合材料

纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

3.2纳米结构软磁材料

Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

3.3电沉积纳米晶Ni

电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

3.4Al基纳米复合材料

Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。

4.纳米材料的前景趋向

经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

纳米技术范文4

关键词:纳米技术与纳米材料;教学改革;教学实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)12-0029-02

纳米科技是继信息技术之后,人类的又一次技术革命,在人类未来的生活中有着非常重要的影响,纳米科技包括纳米材料学、纳米电子学、纳米生物学、纳米机械学、纳米加工学、纳米检测与表征等多种学科,是21世纪飞速发展的一门新兴学科,[1]它涉及到物理、化学、生物、电子、机械等多个学科,一个交叉性综合性学科。而纳米材料是整个纳米科技的基础,纳米技术则是整个纳米科技的灵魂,两者在纳米科技中相互交织,一起构成了纳米科技的主体,将会带动整个纳米科技发展。认识纳米技术与纳米材料将会是学生能够了解并跟上未来科技的发展,使学生能够对纳米这种新的科学技术有较为全面认识,开拓视野,扩展知识,从而能够让学生在今后从事纳米方面的工作打下良好的技术,所以很多高校在本科生中开设了《纳米技术与纳米材料》课程。《纳米技术与纳米材料》是一门交叉性综合性学科,涉及到物理、化学、电子、生物等学科的基础知识,而授课所面向的学生在这些技术知识方面存在不同程度的不足,在教学方面存在很大的难度;同时纳米科技发展迅猛,需要不断地更新纳米科学技术的最新进展。如何让学生能够全面地了解纳米科技,理解纳米科技中的一些基本原理,对纳米科技产生兴趣,并培养学生的创造能力和思考能力,这是授课中需要思考的问题。针对上述问题,需要对课程的内容安排,教学的方式方法,教学形式以及考核方面做出一些改进和补充。

一、教学内容的安排与更新

《纳米技术与纳米材料》这门课基本涵盖了纳米科技的整个领域,具有内容多,更新快,范围广等特点,且需要在规定的时间内将整个纳米领域讲授给学生,这就需要教学内容条理清晰,重点突出,逻辑性强,结合纳米科技的特点具有较强的创新性和启发性。在我校这门课所选用的教材为国防工业出版社的《纳米技术与纳米材料》(张志焜,崔作林著),该书主要以纳米材料为中心,介绍了纳米材料的制备、特性以及纳米材料的加工、表征手段,内容丰富,知识面广,介绍详细且深入,是一本较为全面的图书。但对于课程的授课对象——本科生以及学校的实际授课课时来说,这本书的还存在一定的问题,如学时较少,涉及的知识面较宽,书中涉及到的理论较为深奥,而学生的基础知识较为薄弱,且授课课时受限,因此导致学生很难接受教材中的知识,全面地理解书中内容。为此,需要将整个教材的内容重新规划,根据纳米科技领域中所涉及到的学科,故将这门课分为纳米基础及概况、纳米材料的应用、纳米材料的制备、纳米材料加工、纳米电子学、纳米机械学,纳米生物学,纳米的发展前景八个部分,这八个部分既相互独立,也相互联系。以这八个部分为主线,将纳米材料的制作,性能,原理以及应用通过总体介绍、分类介绍、综合讲述,全面地介绍纳米科技以及纳米材料的总体以及两者的相互联系。并且在实际授课中,需要言简意赅,重点突出,条理分明,前后贯通,对于纳米科技所涉及的知识尽量深入浅出,对于抽象的知识,通过比喻等方法,将其形象化,易于让学生接受。如讲授纳米电子学的时候,就需要将纳米材料有哪些特殊的电子学特性及优越性明确指出来,以提起学生的兴趣,随后介绍出为什么纳米材料以及纳米结构会出现这种特性,通过比喻等方法,形象化介绍纳米电子机理、机制。针对本科生基础知识薄弱,所以要尽量减少一些不必要的理论知识,并且重点介绍纳米科技中的方法以及思路,从而能够让学生既能够了解纳米科技,又能从纳米科技的发展中学习到纳米科技的创新思路,从而能够培养学生的创新精神和科学素养。同时针对纳米科技这一新兴学科不断发展的特性,适时、适当地开展专题课程介绍目前纳米科技发展的最新动态,从而能够让学生更多地了解目前纳米科技的科研动态,引导学生关注纳米科技的最新动态。希望能够通过这些内容的学习,从而能够使学生真正的了解纳米科技,掌握其中的基础知识,以及其中的一些实用基础,并拓宽知识面,养成科学、严谨、创新的基本素质。

二、课堂教学方式方法的改变

课堂讲授在教学中是一个非常重要的环节,如何有效地利用课堂时间,激发学生的兴趣、注意力,提高学生的学习能力在教学中一直是一个至关重要的问题。这就需要通过启发、诱导、提问、互动等方式,引起学生的注意力,让学生能够参与到课堂中,培养学生的学习自学能力。[2-7]在讲授方面需由浅入深、深入浅出,务必让学生能够理解课堂所讲述的内容,并根据学生的兴趣,引入一些相关感兴趣的内容,激发学生的学习热情和兴趣。这就需要在教学方式,以及教学方法上,根据课程自己的特点和学生的特点对课程的教学进行一些改革,充分利用多媒体教学,通过影像、板书、图片等方法将一些抽象的知识以丰富多彩的方式讲授给学生,同时,这种课堂的互动,通过提问,自发提问,以及课堂小讲演等方法,激发学生的学习兴趣以及自学能力,培养学生的基础素质。首先针对纳米科技教学内容的特点,其中第一部分纳米的基础及概况即导论将介绍整个课程大体情况,是一门课的开篇,这部分将总体介绍课程的特点,课程的结构,以及教学大致内容,纳米导论部分的讲授将直接影响学生对这门课的印象以及日后学习的兴趣。纳米科技已成为人们普遍关注的一个热点领域,并且已经有一部分纳米产品已经在军事,医疗以及日常生活中出现,并且展示出其独特的魅力,如在军工已经应用的雷达波隐身涂层,纳米衣物,纳米灭菌涂层等,由于纳米科技诞生不久,这些只是纳米科技在未来应用的冰山一角,而目前很多性能奇特的纳米材料以及纳米科技还在科学工作者的研究中,所以很多同学对于纳米科技的了解很浅,知其名而不解其意。针对这个现状,就要通过导论的讲授,让学生了解纳米科技的整体轮廓以及纳米科技的长远意义,使学生能够对纳米科技产生较为浓厚的兴趣。为此,对于导论的讲述需要分为四个部分,第一部分,首先要介绍什么是纳米,以及纳米材料和纳米科技的定义,并举一些纳米材料特例,第二部分介绍纳米材料与纳米技术所研究的范围以及构成,从而让学生能够了解纳米科技的整体雏形以及纳米材料与纳米技术在整个纳米中的关系,以及与传统学科之间的关系。第三部分为纳米科技的发展历程,第四部分为纳米科技的研究热点以及研究现状,结合科技和生活实例,并且配合丰富多彩的图像,引领学生进入纳米领域,让学生对纳米科技有一个直观全面的了解,同时激发学生的学习兴趣。同时在课堂上让同学举出自己所了解的一些纳米科技以及纳米材料,进行互动式讨论。让学生对纳米科技有一个较为深刻的印象。其次,利用多媒体教学中丰富的图片以及影像,直观地让学生了解纳米科技中的一些内容。图片以及视频以直观形象的讲授,让学生更容易了解纳米科技中的一些抽象难懂的内容。利用多媒体教学,可以通过文字讲解,配合形象的图片以及视频可以以多种方式相互配合,让学生了解纳米科技,并对其产生兴趣,同时丰富了教学内容。纳米科技日新月异,在纳米领域,不断有新的科技成果出现。针对这一个特点,对于纳米科技的授课,就需要不断地给学生介绍一些最新的具有价值的科技成果,从而能够对学生有所启发,培养学生的创新精神。同时通过学生参观纳米科技相关的科学仪器,组织学生进纳米材料实验室自己动手制备一些纳米材料,培养他们的科研和创新能力。另外,在教学中需要学生能够积极参与,通过讨论、上台讲解的方式将学生的思维、思想引入课堂,以互动的方式进行教学,能够让学生更加深入地了解纳米科技。

三、考核方式的改变

与基础知识课程不同,纳米科技是一门新兴的且实践性较强的课程,所以通过传统的闭卷或者开卷考试,让学生了解知识点对于纳米科技这门课不是非常适合。对于这门课程,需要注重学生的学习效果,学生的平时表现,平时成绩,学习态度,以及独立创新的素质养成,避免学生为应试而死记硬背,所以需要取消考试,以出勤(10),课堂表现(10),平时作业(20),书面调研报告(30),口头报告(30)的考查形式考核学生,培养学生良好的学习习惯。综上所述,在教学工作中教师应有效地掌握所学知识,激发学生的学习热性,引导学生养成良好的学习习惯,培养学生实事求是的科学素养,以及用于探索的创新精神。

参考文献:

[1]翟华嶂,李建保,黄勇.纳米材料和纳米科技的进展、应用及产业化现状[J].材料工程,2011,(11):43-48.

[2]第23期高校中青年干部培训班“高校教学改革”课题研究组.关于高校“两课”教学方法改革的若干思考[J].国家教育行政学院学报,2006,(2):31-34.

[3]李进才,孙超.教学方法改革的关键在于教育思想观念的转变[J].中国大学教学,2009,(11):55-57.

[4]钟延强,李国栋,鲁莹,等.讨论式授课在药剂学教学方法改革中的尝试与体会[J].药学实践杂志,2006,24(5):307-308.

纳米技术范文5

在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。

2、食

利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。

3、住

纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。

4、行

纳米技术范文6

文章编号:1003-1383(2013)01-0106-04 中图分类号:R319 文献标识码:A

纳米(符号为nm)是一种度量单位。1 nm=1/100万mm。“纳米材料”的概念是20世纪80年代初形成的,指的是物质的颗粒尺寸小于100 nm的具有小尺寸效应的零维、一维、二维、三维材料的总称。目前在口腔医学临床上使用的材料相当广泛,运用于口腔的纳米材料称之为口腔纳米材料,对口腔临床修复治疗起到了非常重要的作用。随着纳米材料和纳米技术的兴起,新型的纳米材料开始在口腔医学领域[1]应用,对现有口腔材料的改性和创新具有重要意义。纳米材料具有以下主要特点:纳米粒子大小在1~100 nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。因为具有以上特性,纳米材料具有包括表面或界面效应、小尺寸效应、量子尺寸、宏观量子隧道效应[2]。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能[3],主要表现在催化、磁性、光学、力学等许多方面。纳米高分子材料的应用涉及多方面,主要为介入性诊疗、免疫分析、药物控制释放载体等[4]。纳米技术涉及许多领域,包括纳米合成技术、纳米装置技术、微加工技术等,在口腔医学方面采用的纳米技术称之为口腔纳米技术[5]。现就纳米材料与纳米技术在口腔内外科学中的应用进行如下概括综述。

纳米技术与纳米材料在口腔内科学中的应用 1.纳米复合树脂 从以化学方式固化的复合树脂到光固化灯照射固化的复合树脂及双固化型复合树脂。用复合树脂修复牙体缺损已有40多年历史。复合树脂的基本组成部分是无机填料,根据无机填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。如今推出的适用于所有充填通用型纳米复合树脂,将是最有希望的新型复合树脂。为改善牙科树脂的性能,目前多采用许多增加强度和增加韧性的方法。在树脂中加入种类、数量、大小不相同的无机填料,虽然使复合树脂的强度得到提高,但同时又使树脂的韧性降低。而在树脂中运用纳米粒子来填充,可使复合树脂强度与韧性增加。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅[6]、纳米氧化锆[7]、纳米羟基磷灰石[8]、纳米氧化钛[9]等。由于纳米粒子具有以下独特的性能,如非配对原子多,表面缺陷少,比表面积大,能与聚合物发生较强物理结合或化学结合,使粒子与基体间界面粘结时,对更大的载荷都能承受,从而使纳米复合树脂具有更高的强度和韧性。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,

体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点,纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。口腔临床使用的树脂充填材料,放射阻射性弱,如发生继发龋坏时,X线片上很难将充填材料与继发龋进行鉴别,若将氧化钽纳米粒子通过运用纳米技术填充入树脂材料中,形成具有放射阻射性的新型纳米复合树脂材料,材料的物理强度会得到增强。而将氧化钽纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。该材料主要是依靠纳米机械结合,来提高其耐磨性。如果把纳米多孔二氧化硅凝胶加入树脂材料中,使新形成的材料具有不相同的结构,耐磨性能得到提高。有学者将纳米材料加入复合树脂中,发现能使其具有抗菌性能。Xu等在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的[10,11]。宋欣等人在复合树脂中加四针状氧化锌,发现该材料不仅能提高树脂的机械性能,还使树脂具有抗菌作用[12]。Niu等也在复合树脂中加入四针状氧化锌,使复合树脂具有抗菌性能的同时机械性能也增强[13]。由有机高分子材料和各种纳米单元通过多种方式复合成型的新型复合材料就是纳米填料复合树脂,是一种含有纳米单元相的纳米复合材料。纳米复合树脂与过去的复合树脂相比较性能上有更大提高,其优势就是色泽更逼真,抛光性与持久性更佳,超强强度更耐磨,可以广泛用于前牙或后牙。

2.纳米粘结材料 从BisGMA粘结剂和酸蚀技术用于口腔临床以来,在口腔临床粘结治疗方面获得很大进步。口腔内环境有其独特性,使许多粘接材料和粘接技术没有达到理想要求。随着纳米技术的广泛运用,纳米材料的日益发展,将纳米粒子加入现有的口腔粘结材料中进行改性外,还把纳米杂化树脂(poss)作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,不仅能提高其粘结力,还可作为牙本质过敏治疗的封闭材料。主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。

3.纳米根管充填材料 临床上用于做根管治疗的根充材料要求有以下特点:其一,能把炎症始发地彻底清除,能使根管封闭、死腔消灭,从而防止微生物进入根管内,阻止根管再次受到感染;其二,材料自身有恢复组织病变的能力,对根尖孔的钙化闭合有促进作用。因羟基磷灰石颗粒的尺寸较大,如单纯使用羟基磷灰石作为根管充填材料,在根管充填后形成的整体脆性较大,弹性模量与牙根牙本质不匹配,从而出现明显的微渗漏。随着纳米羟基磷灰石生物材料的出现,能很好解决根充材料存在的关于生物相容性的难题。经过大量基础和临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好[14~16]。将纳米羟基磷灰石制成糊剂用于充填根管,大多数病例根尖透影区变小或消失,临床症状消失,成功率达93.2%。根尖周围组织有病变的牙齿,成功率达93.8%。王艳玲[17]研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。不少学者把具有良好的生物相容性,可使病变组织愈合加快,根充不会被组织吸收的纳米羟基磷灰石作为根管充填材料和根尖屏障材料,对其可行性进行了大量的临床研究[18~22],取得良好的疗效。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高[23]。张海燕等[24]对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。有临床报道将其用于年轻恒牙的根管充填特别合适。

纳米技术与纳米材料在口腔外科学中的应用 1.纳米技术在拔牙麻醉上的应用 拔牙麻醉时的注射操作和疼痛往往让患者感到害怕和恐惧。临床上可使用丁卡因进行组织的表面麻醉或局部注射碧兰麻来减轻患者的疼痛,但有时仍会出现诸多问题如麻醉镇痛不全、血肿、面神经暂时性麻痹等。随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号(如超声波)或程序化的化学反应链(电化学机制)的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到麻醉效果。比牙本质小管管径(1~4 μm)小数百倍甚至数千倍的纳米粒子,可由信号引导,从牙本质小管灌流到牙髓腔内,起到麻醉效果,实现牙科无痛麻醉,给患者减少疼痛和恐惧感。

2.纳米复合体材料修复骨缺损 随着口腔材料学不断发展,羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。研究表明:羟基磷灰石所具有的许多特征与多种因素有关,尤其与它的颗粒直径大小有密切关系。如果颗粒直径大小在1~100 nm,羟基磷灰石则会具有特有的生物学特点。纳米羟基磷灰石的晶体构造与自然骨中的无机成分相比较,两者极为相似,都可以通过氢键方式与蛋白质及多糖结合在一起。无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物[25~29]。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果[30,31]。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。清华大学材料科学与工程系研制的纳米羟晶/胶原仿生骨,用来修复家兔颅颌骨实验性穿通性骨缺损,因仿生骨有良好的生物相容性,对骨组织的再生、修复起到促进作用,从而取得良好的骨创愈合效果,达到骨创的关闭和骨性桥接。有学者用纳米羟基磷灰石人工骨充填慢性根尖周炎及根尖囊肿手术后的骨缺陷区内以及下颌智齿拔除后的牙槽窝内,均取得令人满意的疗效。颌骨囊肿是口腔科的一种常见疾病,为减少术后出现感染概率,缩短术后修复时间,防止患者面部出现畸形,可加入纳米羟基磷灰石人工骨,纳米羟基磷灰石人工骨在充填骨缺损的同时,使感染问题得以解决,而且对骨诱导作用明显,手术操作简便易行,应在口腔外科临床工作中广泛推广。

3.纳米控释系统在肿瘤治疗中的应用 纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500 nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗,这样可以减少治癌药的毒副作用,提高药物疗效。恶性肿瘤血管组织的通透性较大,细胞的吞噬能力较强,用静脉给药方式把纳米粒子运送到肿瘤组织,可使药物疗效得到提高,降低毒副作用和减少给药量。Lebold T等[32]把针孔结构的纳米硅石当作载体,结合多柔比星,将两者制成薄膜,与其他给药方式比较其释药时间显著延长。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。纳米颗粒乳剂载体与分散于人体内的癌细胞容易融合,临床上可利用它将抗癌药物包裹。有人用聚乙烯吡咯烷酮纳米粒子将抗癌药物紫杉醇包裹用于肿瘤治疗,结果表明,含紫杉醇的纳米粒子与同浓度游离的紫杉醇在治疗肿瘤疗效方面,前者疗效明显增加。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势[33],因为其对药物、基因、成影剂有较好的包封率。

综上所述,随着纳米材料与纳米技术的兴起和快速发展,为口腔材料学的研究提供了一种全新的方法和手段。使我们能以全新的思维模式从纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。

参考文献[1]王程越,李曦光.纳米技术与口腔医学[J].辽宁医学院学报,2004,25(4):6870.

[2]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):3033.

[3]胡文祥.分子纳米技术在生物医药学领域的应用[J].化学通报,1998(5):3238.

[4] Song CX,Labhasetwar V,Murphy H,et al.Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery[J].J Controlled Release,1997,43:197212.

[5]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004:116166.

[6]支 敏,李长福,韦界飞,等.纳米SiO2在PMMA口腔义齿修复材料中的应用基础研究[J].天津医科大学学报,2007,13(4):493496.

[7]吴伟力,张修银,朱邦尚,等.氧化锆的用量对纳米氧化锆/PMMA复合材料挠曲性能的影响[J].口腔颌面修复学杂志,2008,9(1):4347.

[8]王 云,王青山.牙体修复性纳米羟基磷灰石复合材料的机械性能研究[J].现代口腔医学杂志,2011,25(2):115117.

[9]Xia Y,Zhang F,Xie H,et al.Nanoparticlereinforced resinbased dental composites[J].J Dent,2008,36(6):450455.

[10]Xu HH,Sun L,Weir MD,et al.Nano DCPAwhisker composites with high strength and Ca and PO4 release[J].J Dent Res,2006,85(8):722727.

[11]Xu HH,Weir MD,Sun L,et al.Strong nanocomposites with Ca,PO4,and F release for caries inhibition[J].J Dent Res,2010,89(1):1928.

[12]宋 欣,杜 滢,肖 月,等.添加四针状氧化锌晶须抗菌剂对义齿软衬材料机械性能的影响[J].黑龙江医药科学,2011,34(1):3940.

[13]Niu LN,Fang M,Jiao K,et al.Tetrapodlike zinc oxide whisker enhancement of resin composite[J].J Dent Res,2010,89(7):746750.

[14]李 平.新型纳米羟基磷灰石根充糊剂(nHA)的应用基础研究[D].四川大学华西口腔医学院硕士学位论文,2005.

[15]苏 勤,叶 玲,周学东.纳米羟磷灰石/聚酰胺66对牙髓细胞生物学作用的实验研究[J].华西口腔医学杂志,2005,23(1):7981.

[16]方厂云,曹 莹,夏 宇,等.大鼠牙细胞与纳米羟基磷灰石的体外复合培养[J].中南大学学报:医学版,2007,32(1):114118.

[17]王艳玲.纳米级HA根充糊剂根管密合度及抑菌性的实验研究[D].佳木斯大学口腔医学院硕士学位论文,2006.

[18]董 波,刘陆滨,刘玉杰.纳米羟基磷灰石修复慢性根尖周炎骨缺损的研究[J].黑龙江医药科学,2006,29(4):103.

[19]杨青岭,李文婷,王健平,等.壳聚糖/纳米羟基磷灰石治疗髓室底穿的实验研究[J].黑龙江医药科学,2007,30(2):37.

[20]程玉华,陈 东,赵广军,等.骨形成蛋白复合羟基磷灰石用于盖髓根管充填的临床观察[J].医药,1998,10(2):9394.

[21]刘秀丽,刘 曦.复方羟基磷灰石充填根管临床疗效观察[J].西安医科大学学报,2000,21(3):257258,295.

[22]Jallot E,Nedelec JM,Grimault AS,et al.STEM and EDXS characterisation of physicochemical reactions at the periphery of solgel derived Znsubstituted hydroxyapatites during interactions with biological fluids[J].Colloids Surf B Biointerfaces,2005,42(34):205210.

[23]Krisanapiboon A, Buranapanitkit B, Oungbho K.Biocompatability of hydroxyapatite composite as a local drug delivery system[J].J Orthop Surg (Hong Kong),2006,14(3):315318.

[24]孙海燕,裴玉岩,梁 楠.羟基磷灰石根管充填诱导根尖形成的临床研究[J].黑龙江医药科学,2003,26(1):21.

[25]温 波,陈治清,蒋引珊,等.纳米羟基磷灰石骨细胞相容性的研究[J].华西口腔医学杂志,2004,22(6):456459.

[26]崔 阳,刘一,陈学思,等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):50745077.

[27]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状[J].中国组织工程研究与临床康复,2007,11(5):936939,943.

[28]Huber FX,Belyaev O,Hillmeier J,et al.First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone[J].BMC Musculoskelet Disord,2006,7:50.

[29]Kalita SJ,Bhardwaj A,Bhatt HA.Nanocrystalline calcium phosphate ceramics in biomedical engineering[J].Materials Sci Eng C,2007,27:441449.

[30]张 莉,马 宁,车彦海,等.纳米羟磷灰石和胶原复合膜修复下颌骨缺损[J].国际口腔医学杂志,2009,36(6):647649,654.

[31]孙 波,李月玲,杨德龙.纳米羟基磷灰石胶原骨植入治疗根分叉病变的临床研究[J].口腔医学,2010,30(6):358359,366.

[32]Lebold T,Jung C,Michaelis J,et al.Nanostructured silica materials as drugdelivery systems for Doxorubicin:single molecule and cellular studies[J].Nano Lett,2009,9(8):28772883.