前言:中文期刊网精心挑选了复合材料范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
复合材料范文1
1+1=2,这一点地球人都知道,但我要说,在材料领域,一加一可能会等于三甚至无穷,当两种或两种以上的材料一旦进行复合,就会产生新的材料,这种新的材料在性能上能够避免合成它的材料的缺点,同时也兼具它们的优点,在当今,人们无休止地开采利用有限的自然资源,因此复合材料的研发就理所当然地成为材料发展的新趋势之一。
复合材料与工程专业所要解决的就是了解复合材料的发展历程、组成特点、主要应用领域、复合原理、主要制备工艺、复合材料的研究热点与最新进展等问题,在此基础上培养同学们的创新精神以及把所学的理论应用到实践过程中的能力,从而解决资源短缺的问题,“术业有专攻”,复合材料与工程分为复合材料设计与加工和复合材料工程两个专业方向,这样可以使同学们在成为本专业通才的同时又是某个方向的专才。
本专业毕业生可成为航空航天等高科技领域的工程师,各类体育用品、汽车、建筑、工业用品等涉及复合材料制造企业的设计师与工程师,高分子合成与加工、化工等相关企业的生产研发、营销人员,相关科研院所的研发人员等,总之,本专业就业面比较广,就业前景一片看好,此外,本专业毕业生的薪酬也不会很低,刚
转贴于
刚毕业一年你的月薪就有望达到3000元,即使算上地域、单位等因素,平均薪酬基本上也能在2000~4000元/月。
专业课程
高等数学、材料复合原理、复合材料学、复合材料工艺设备、材料学概论、复合材料的实验技术、离分子化学、高分子物理等。
就业方向
本专业毕业生主要到国防、航天航空、汽车、化工、能源等复合材料与工程的相关领域从事相关工作。
推荐院校
重点大学:哈尔滨工业大学、华东理工大学、武汉理工大学等。
复合材料范文2
[关键词]钛基;复合材料;专利
钛及钛合金是一种物理性能优良、化学性能稳定的材料,但当温度较高时,钛金属的强度和蠕变抗力急剧下降。相对于钛合金,钛基复合材料具有较高的比强度、比刚度以及优异的耐高温、抗腐蚀性能,其在航空航天、军工等领域具备广泛的应用前景[1-2]。随着对钛基复合材料的研究的逐渐深入,中国市场涉及钛基复合材料的相关专利申请量也逐步提升。本文从申请量随年代变化的态势、申请来源国等角度分析了钛基复合材料在中国市场的专利申请状况。并对该领域的专利技术进行了技术功效分析,进一步的对研究热点之一:单一颗粒增强的专利技术进行了详细的分析。
1专利申请量态势
钛基复合材料的专利申请主要经过1990~2000年,2001~2009年,2010年-至今三个阶段。上述三个阶段与目前我国的钛基复合材料研发趋势基本一致。2010年至今,随着航空航天以及特种工程材料领域的需要,钛基复合材料处于较为快速的发展阶段,反应在专利申请量方面就是出现较为明显的增长趋势。
2主要申请来源国专利申请技术构成
中国作为最主要的申请来源国,而美国、日本、英国和新西兰作为国外申请人来源国,其具体申请技术构成参见图2。从图2也可以清楚地看出,其他国家或地区在中国钛基复材方面的专利申请中,技术要求更高的纤维增强钛基复材比例是高于中国申请的,这一方面是因为本申请复合技术方面的差距所致;另一方面也是由于我国在纤维材料制备领域,在成本和性能上与国外先进国家相比本就具备较大差距。
3技术功效分析
当前,钛基复合材料主要包括颗粒晶须增强和纤维增强两类。图3是钛基复合材料领域技术功效矩阵图,横轴表示各技术手段能够实现的功能效果,纵轴表示各技术手段,交叉点圆球面积表示该相应技术实现该功能效果的专利数量多少,即技术点专利越多球面积越大。从纵坐标可以清晰地知道目前专利技术中,有关钛基复材的主要技术分支、以及主流技术手段。而从横坐标可以清楚知道目前该领域的研究方向。进一步通过图中圆圈大小以及密度分布,可以了解本行业的研究热点和成熟技术。从空白区域研究技术盲点存在的可能性。
3.1对于颗粒类增强钛基复材
在颗粒增强钛基复材领域,集中解决的技术问题或者说是研究较为全面成熟的领域集中在提高钛材力学性能、提高塑性以及降低成本三个主要方面,且各种技术手段的选择覆盖全面,研究已经较为成熟全面,不存在明显的技术盲点。对于改善耐磨性和增韧性方面,可以明显看出颗粒增强钛基复材领域所采用的技术手段集中在颗粒种类的选择上,并不涉及具体的复合工艺,存在明显的技术空白。对于该技术空白,可以做为以后颗粒增强钛基复合材料领域的一个主要突破方向。而且不仅仅是针对改善耐磨性和增韧性,对于整个颗粒增强钛基复合材料领域,相对于颗粒种类的选择,如何突破现有的传统复合工艺限制,将成为该领域突破发展瓶颈,引来新的爆发式技术革新的关键。而对于针对性较强的特殊技术效果领域,颗粒增强钛基复材主要集中在选用特殊的颗粒类型而赋予相应的特殊性能,整体专利研究数量不多,存在较大技术空白。随着以后钛基复材在民用领域的扩展,对其的特殊功能性需求必然会更加多样化,而通过加入合理种类添加颗粒,往往就能满足需求,因而这方面的研究存在较大的发展空间,也容易实现。当然随着不同颗粒的引入,最终不可避免面对的技术问题仍然是最终复合工艺的革新。
3.2对于纤维类增强钛基复材
相较于颗粒增强钛基复材,应该说纤维增强复材无论是从申请量还是技术手段的覆盖领域来说都存在较大差距,也说明后者的研发还不如前者成熟,但是也说明纤维增强钛基复材存在较大的研究空白,发展潜力巨大。对于纤维增强钛基复合材料领域,存在较多的申请空白点或盲点。尤其是在如何提高界面性能、提高耐磨性这两个领域,还未出现相关专利。究其原因,这也和我国高分子复合材料工艺起步较晚,技术水平较低有直接关系,相信随着相应的复合材料制备工艺的提升,纤维增强钛基复材的研究方向会相应地向通过复合工艺提高复材性能的方向发展,此方面的专利申请数量应该在未来数十年内有较大的提高。综上,在纤维增强钛基复材领域,今后的研究热点主要有两方面,一方面,在现有可选纤维种类和复合工艺基础上,进一步开拓纤维在钛基复材中的应用领域,增加其在钛基复材中多种性能需要方面的改进作用。另外一方面,除了合理选用纤维种类外,可以考虑从复合工艺方面改善纤维增强钛基复材性能。
参考文献
[1]袁武华等.钛基复合材料及其制备技术研究进展[J].材料导报,2005,19(4):54-57.
复合材料范文3
关键词:导电高分子复合材料;导电性;应用
中图分类号:TQ 316 文献标识码:A 文章编号:1672-3791(2016)06(a)-0000-00
导电高分子材料就是在高分子材料的基础上,根据使用的要求,加入了相应的导电体,经过多重技术的处理之后,使其具有了较高的导电能力。而由于这种材料在制造的过程中,使用对材料的要求不高,使用的技术加工手段简单,使用的生产成本较低,导电性能较好等原因,受到了社会各界的广泛重视。因此,为了使导电高分子复合材料在当前阶段中更好的应用,在当前的科学研究中,加强对其进行研究成为了必然趋势。
1导电高分子复合材料的导电理论
1.1 统计渗滤模型
在高分子复合材料的导电理论中,首先就是统计渗滤模型,这一模型通常是几何模型为基础上建立的,就是将复合材料中基本物质使用一定技术将其抽象化,使其存在一定形状的分散体系,然后根据一定的机理要求,将其进行重新的排列,使其重新组合成一个整体,使高分子材料中的基本物质成为了连续相,而加入的导电体材料根据其功能的不同,有些成为了连续相,有些成为了分散相,这些有效的分散相以及连续相,就在导电高分子复合材料中构造出了导电通道。在这一模型的基础上,对导电高分子复合材料的电阻率与导电体进行深层次的分析,在两者之间建立相应的联系。最具有代表性的就是在建立统计渗滤模型时,根据不同的需求,将基本物质抽象为形状、大小不同的球型、规则的多面体等,同时将导电体抽象成连续性的珠串等[1]。这种模型有效的将高分子材料的导电理论进行了阐述,但是其也具有一定的缺点,就是其只能使用在较为简单的复合材料中,复合材料中只能有一种基本物质以及导电体材料,对于具有多种基本物质或者导电体材料的复合材料时,虽然也能建立相应的模型,但得到的理论与实际之间会存在较大的差异。
1.2 热力学模型
随着统计渗滤模型的使用,人们逐渐的发现其有一些缺点,例如在构建模型时,往往忽略了基本物质与导电体之间的作用关系,使得到的结果具有一定的偏差,不满足当前社会发展的需求,在这种情况下,就研究出了热力学模型来对导电高分子复合材料导电理论进行了阐述,使结果得到了很大的改进。这一理论是以热力学原理的基础上建立的,在这项理论中,认为构建导电通道的过程中,导电体处于临界状态的体积与模型中多余的自由能具有一定的联系,当模型中多余的自由能达到一定的程度后,就会在模型的内部自动的构建出导电通道。并且,高分子材料中基本物质的熔融粘度较大,更好的阻止了平衡相的分离;导电体粒子的直径较小,更好的帮助平衡相分离。使用这种模型来对导电高分子复合材料进行阐述与实际更加接近[2]。
2 导电高分子复合材料的特殊效应理论
导电高分子材料的性能往往不是一成不变的,在特定的环境中,其性能也会逐渐的在变化着。例如一些导电高分子复合材料在拉力或压力的作用下,就会出现一些特别的效应,例如压敏效应、拉敏效应等,可以根据这些特殊的效应来对地导电高分子复合材料进行阐述。
在压敏、拉敏效应理论中,可以利用通道理论对其进行阐述。在不同的高分子材料,所中具有的临界范围不同,在压敏的情况下,材料中的导电体相对就不是很多,使得导电体的分布不是很好,无法直接构造出导电通道,如果在这时向复合材料施压,压力不是很高时,没有达到材料的最大临界值,复合材料仍然具有高阻态;当所施加的压力过高时,超过了最大临界值,就会使复合材料发生一定的形变,使其内部构建出了导电通道,从而使其具有了导电性。在拉敏的情况下,材料含有大量的导电体,其内部具有一定的导电通道,这时在对其使用拉力时,当垃圾过大,超过最大临界值时,复合材料就会发生形变,致使其全本具有的导电通道遭受了损坏,从而使复合材料不在具有导电性[3]。
3 导电高分子复合材料的应用以及发展趋势
3.1 导电高分子复合材料的应用
导电高分子的原材料一般为聚合物或者具有导电效果较强的填充物,随着科学技术的不断发展,目前已经成功研制出了具有良好导电性的高分子复合材料,且随着高分子复合材料的广泛应用,也增加了抗静电、电磁波屏蔽等功能,使得导电高分子材料获得了巨大的技术突破,目前,根据导电高分子材料的性能不同,可以将其分为半导体材料、高导电体材料、热敏导体材料等,其材料成分不仅有金属材料,如铜、铝等,同时也含有碳系聚合物,大大增加了导电高分子复合材料的稳定性,同时降低了制作成本。另外,由于导电高分子复合材料的优点,使得基于传统的工作方式有了极大程度的改善,如在开关元件生产过程,传统的导电材料的在开关中虽然能够保证电流的有效传输,但是金属材质会产生无用功率,同时导体过热还会引发安全事故,因此,在开关元件的生产中应用高分子复合材料,能够有效的保护用电安全,同时,利用高分子复合材料的热效应,能够制作出热敏传感器,提高能源的利用率,另外,导电高分子复合材料也在航电器的制作、煤电系统、建筑施工中有着广泛的应用[4]。
3.2 导电高分子复合材料的研究进展
由于高分子复合材料具有非常良好的应用前景,因此,我国重视并鼓励高分子复合材料研究的创新和发展,但是高分子复合材料具有较强的不稳定性,其性能容易受到制作工艺、制作环境等外在因素的影响,近年来,先进的导电理论指出寻研制能与复合材料稳定结合的导点模型是未来高分子复合材料的研究发展方向。随着科学技术的不断发展,目前已经得出复合体系的构建是建立导线模型的前提要素,利用拓扑学方法能够有效的对复合材料的参数进行测量,同时能够有效的观测出不同添加剂对导电高分子复合材料的影响。由于高分子复合材料必须具有实用性,因此,导电高分子复合材料的研究上也偏向于增加其稳定性、轻便型、降低制作工艺与成本,同时使导电高分子复合材料能够适应不同的温度及湿度,扩大导电高分子复合材料的应用范围,尽管在理论研究上存在诸多的困难,但是在应用方面已经取得了巨大的突破[5]。
4 总结
综上所述,在现阶段的发展中,导电高分子复合材料占据重要的作用,有效的对其进行使用,可以更好地促进社会的发展。并且随着不断对其进行研究,相关的理论知识已经得到了一定的发展,处在了一个瓶颈阶段,很难在使其继续发展。因此,在当前阶段对导电高分子复合材料进行研究时,就要向着应用方面进行研究,使其在实际中起到更大的作用,有效的促进我国社会的发展。
参考文献
[1]陆昶,胡小宁,赫玉欣等.特殊形态结构导电高分子复合材料的电学性能[J].材料研究学报,2012,07(01):37.
[2]屈莹莹,赵帅国,代坤等.各向异性导电高分子复合材料的研究进展[J].塑料工业,2012,06(05):22.
[3]徐晓英,王世安,王辉.复合导电高分子材料微观网络结构及导电行为仿真分析[J].高电压技术,2012,10(09):2221.
复合材料范文4
1、细粒复合材料:在基体中均匀分布了一些硬质细粒,如弥散强化合金,金属陶瓷等等。
2、夹层复合材料:由不同性质的芯材和表面材料组成,面材强度较高、薄,但具有一定刚度和厚度。
3、纤维复合材料:是将各种纤维增强体置于基体材料内复合而成的,如一些纤维增强塑料、纤维增强金属等等。
4、混杂复合材料:是由两种或者两种以上的增强相材料混杂在一种基体材料中构成的一种复合材料。
(来源:文章屋网 )
复合材料范文5
1、复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属。
2、复合材料是人们运用先进的材料制备技术将不同性质的材料组分优化组合而成的新材料。
(来源:文章屋网 )
复合材料范文6
关键词:离心铸造 梯度功能材料 场耦合
中图分类号:TB33 文献标识码:A 文章编号:1672-3791(2012)12(a)-0071-01
近代科学技术的发展,特别是宇航、火箭、原子能以及机械和化工等工业的发展,对工程材料性能的要求越来越高,如高比强度、高比刚度、耐高温、抗腐蚀、抗疲劳等。这对于单一的金属材料、陶瓷材料或高分子材料来说多是较难实现的,因此就促进了金属基复合材料的问世与发展。与传统材料相比,颗粒增强金属基复合材料不仅兼有金属的高韧性、高塑性优点和增强颗粒的高硬度、高模量优点,而且材料各向同性,可采用传统的金属加工工艺进行加工,因此备受大家关注。碳化硅颗粒增强铝基复合材料的密度仅为钢的1/3,但其强度比纯铝和中碳钢都高,且还具有较高的耐磨性,可以在300℃~350℃的高温下稳定工作,目前已应用于发动机活塞、连杆和刹车片。
1 铝基复合材料的应用
颗粒增强铝基复合材料具有高的比强度和比刚度、耐磨、耐疲劳、低的热膨胀系数、高的微屈服强度、良好的尺寸稳定性和导热性等优异的力学性能和物理性能,以及材料的可设计性、并可用传统金属材料加工方法加工成形等特点,是最具广阔发展前景的金属基复合材料之一,可广泛应用予航空航天、军事、汽车、电子、体育运动等领域。因此,从20世纪80年代初开始,世界各国竞相研究开发这类材料,从材料的制备工艺、微观组织、力学性能与断裂韧性等角度进行了许多基础性研究工作,取得了显著成效。目前,各国相继进入了颗粒增强铝基复合材料的应用研发阶段,在美国和欧洲发达国家,该类复合材料的工业应用已逐步开始,并且被列为2l世纪新材料应用开发的重要方向。由于铝基复合材料是由基体铝或者铝合金与另外一种或者几种不同物质以不同方式组合而成,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。
2 复合材料的性能特点
复合材料是一种混合物,在很多领域都发挥了很大的作用,可代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:(1)纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。(2)夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。(3)细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。(4)混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。
3 铝基复合材料的制备
国内外关于颗粒增强铝基复合材料的制造方法,按照增强颗粒的加入方式可分为强制加入和原位生成两种方法。对于电子封装用高体积分数铝基复合材料制备工艺有多种,国内比较成熟的有粉末冶金法、压力铸造法、浸渗法(真空浸渗、真空压力浸渗)等。粉末冶金法是将陶瓷粉末和基体合金(如铝合金)粉末按照一定配比混合,在一定形状的磨具中加压成型,制成毛坯,然后在真空中加热、加压使其烧结到一起成为零件。这种工艺可以制成形状比较复杂的零件,成形精度较高,从而减少后期的机械加工。缺点是原材料以及设备成本和工艺成本较高,材料致密度较低,气密性较差,由于加热时间较长,往往存在界面反应压力浸渗法是指将液态金属在一定压力下浸渗到增强体预制块空隙中,并在压力下凝固获得复合材料的方法,常用来作高体积分数的铝基复合材料。工艺概述:先把预制块预热到一定温度,然后将其放到预热的铸型中,浇入液态金属并加压使液态金属浸渗到预制体的空隙中,保压直到凝固完毕,从铸型中取出即可获得复合材料。
无压浸渗法是Aghaianian等于1989年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺将基体合金放在可控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。[4]我们实验室采用的就是真空压力浸渗法,我们采用的真空压力浸渗法在坩埚底部放上预制件,上面放上金属基体,然后用真空对坩埚抽真空,真空度达到-200 kPa,然后升温炉体,温度升到700 ℃铝液全部熔化后,再对坩埚加压,压强达到10~40 MPa。由此得到的复合材料的致密性最好,因为他是在抽过真空以后又在压力下浸渗进去,克服了无压浸渗和粉末冶金的致密性不高和气密性差的缺点。
4 铝基复合材料的加工
为了制成实用的铝基复合材料构件,需要对铝基复合材料进行二次成型加工和切削加工。由于增强物的加入给复合材料的二次加工带来了很大的困难,颗粒增强铝基复合材料增强物硬度高、耐磨,使这种复合材料的切削加工十分困难,对于纤维增强铝基复合材料构件一般在复合过程中完成成型过程,辅以少量的切削加工和连接即成构件。而对于短纤维、晶须、颗粒增强铝基复合材料,则可采用铸造、塑性成形、焊接、切削加工等二次加工制成实用的铝基复合材料构件。目前铸造成形方法按增强材料和金属液基体的混合方式不同,可分为搅拌铸造:可分为液态机械搅拌法和半固态机械搅拌法;正压铸造:分为挤压铸造和离心铸造;负压铸造:真空吸铸法和自浸透法。
由于增强颗粒与基体的润湿性较差我们可以采取以下措施:金属基题中加入Mg、Li等合金降低表面张力,改善润湿性;对增强颗粒表面进行预处理,去除表面污染物,改善颗粒与基体的润湿性。在铸造法中增强颗粒一般与基体密度相差较大,且两者互不润湿因而容易出现上浮,下沉的情况。解决办法:提高金属熔体的粘度,减小增强颗粒的粒径使颗粒上浮、下沉的速度变小,从而使组织均匀、性能提高。增强体的存在使温度场和浓度场、晶体生长的热力学和动力学过程发生变化。在非平衡凝固条件下,这些变化将对复合材料的组织性能有着明显的影响。
参考文献