正弦波逆变电源范例6篇

前言:中文期刊网精心挑选了正弦波逆变电源范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

正弦波逆变电源

正弦波逆变电源范文1

关键词:逆变电源 脉宽调制 SPWM

交变电源在供电电源产生波动或负载发生变化时仍能使输出电压(或电流)保持恒定,在工业领域中,被广泛用于半导体器件、材料参数测量、低压电器性能测试、仪器供电等场合。交变电源质量的好坏直接影响着检测结果的准确性,有时更可能造成安全上的隐患。传统逆变式交变电源的波形质量和控制精度不高,无法满足面向测试的应用场合。基于PWM方式的 逆变电源由于通过高频载波对正弦波进行调制,输出波形叠加了与载波相关的谐波分量,同时为防止逆变桥直通短路而设置的死区也对输出波形质量产生影响,一般PWM调制式逆变电源的失真度较高(阻性负载下3%左右)。逆变电源虽然出现时间不长,但发展迅速,是一种更新换代的革命性电源。在新理论、新技术的指导以及新器件、新材料的支撑下,逆变电源无论是可靠性还是性价比,以及高效节能方面,都拥有较大优势,有着广泛的市场和发展前景。但传统逆变式交变电源的波形质量和控制精度不高,无法满足面向测试的应用场合。

1、线性放大式电源

线性电源主回路的工作过程是输入电源先经预稳压电路进行初步交流稳压后,通过主工作变压器隔离整流变换成直流电源,再经过控制电路和单片微处理控制器的智能控制下对线性调整元件进行精细调节,使之输出高精度的直流电压源。国内面向测试的电源(含恒压输出和恒流输出)为满足波形失真度和输出精度要求基本上以线性放大(变频)或调压器(工频)方式实现,效率约在30%-40%。

目前国内的交变电源市场,基本上由国外与我国台湾地区的品牌主导,如美国的Elger、日本的Kikusui(菊水)、台湾的 ACPower(艾普斯)、Extech(华仪)、AllPower、Chroma(致茂)等品牌。国内的电源公司,在产品上大多以仿制台湾公司产品为主。面向测试的交变电源,对电源的输出品质要求较高,一般要求稳压精度要达到0.1%,总谐波失真度(THD)要小于1%。现在市面上常见满足性能要求的交变电源,功率大都在1KVA以下,在功率放大上还是采用线性推挽放大方式,如华仪的6100,6200系列,艾普斯的AFC系列等[1]。

线性电源的主要特点就是功率器件工作在放大状态,具有稳定度高、可靠性好、成本低等优点,但是效率低、笨重和体积大的缺点。只能做中、小功率的电源。

2、脉宽调制逆变式交变电源

高频开关电源是一个能量转换器,作为电源的功率器件工作在开关状态(开关管、电感、高频变压器、电容、整流二极管)-开或关状态,其特点是频率高、功耗低、工作效率高、体积小、输入范围宽通过闭环系统调节,使输出电压保持稳定。开关电源交流输入电压范围比较宽,可以从几十伏到上千伏。就目前而言,开关电源的控制方式有两种:脉宽调制和频率调制,脉宽调制方式比较常见[2]。

脉宽调制技术是用一种参考波为调制波,以N倍于调制波频率的三角波为载波进行波形比较,由于载波三角波的上下款度是线性变化的在调制波大于载波的部分产生一组幅值相等,而宽度正比于调制波的矩形脉冲序列用来等效调制波,用开关量取代模拟量,并通过对逆变电源开关管的通/断控制,把直流电变成交流电。而基于脉宽调制(PWM)的逆变式交变电源效率可达75%以上。

但基于脉宽调制方式的逆变电源由于通过高频载波对正弦波进行调制,输出波形叠加了与载波相关的谐波分量,同时为防止逆变桥直通短路而设置的死区也对输出波形质量产生影响,一般PWM调制式开关电源的失真度较高(阻性负载下3%左右)。由于交变电源大多还是采用模拟调制与控制的方法(基准正弦波与三角波的比较产生SPWM波、运算放大器组成PID调节器),很难在输出波形上有较大的改善,特别是当负载变动,接非线性负载引起的波形质量的下降将无能为力。因此将PWM脉宽调制技术引入交变电源领域需要研究新的数字化控制平台和研究新的波形控制算法。

3、SPWM逆变式交变电源

SPWM正弦脉宽调制法是调制波为正弦波,载波为三角波或锯齿波的一种脉宽调制法,正弦波逆变电源利用SPWM 技术对正弦波逆变电源的频率和幅值进行控制调节[3]。电路主要由:逆变主电路、控制电路、驱动电路、滤波电路等组成。直流信号输入供给逆变电路,逆变电路在驱动信号作用下将整流滤波后的直流信号变成某一幅值、频率的交流信号,再经滤波后供给负载。采到的输出电压经过转换后送给处理器,对采样信号采取一定的控制算法处理后输出修正的SPWM控制信号,使输出电压稳定在所设定的期望值上。

4、数字化逆变电源

在交变电源领域应用PWM调制技术需要引入数字化控制方法,数字化控制是先进控制算法的实现基础。目前在电源数字控制策略上,常见的有以下几个方法[4]:PID控制、无差拍控制、滑模变结构控制、模糊控制、重复控制等。其中瞬时电压反馈PID控制、瞬时电流反馈PID控制及重复控制技术研究较多,并已进入实用化阶段。美国APC、日本三菱、法国梅兰日兰、东芝、SIEMENS、PWOER WARE、APC等已推出品质要求不高的数字化逆变电源产品。

无差拍控制是一种基于电路方程的控制方式,它利用状态反馈实现零点和极点的对消,并配置另一个极点于原点,输出电压理论值接近于参考电源、由负载变化和非线性负载引起的输出电压误差可在一个开关周期内得到校正。但是对数据的运算速度要求很高,另外由于无差拍控制的鲁棒性差,计算量更大且算法复杂,很难实现。

在交变电源领域,美国的Elger公司产品已具有并联功能,通过使用该公司的定制并联柜,可以具备一定能力的并联功能,事实上该公司的并联形式,还是通过简单的公共并机控制母板来实现,与真正的无主从并机系统还有一定的距离。

常见的逆变电源并联控制策略有以下几种方法:有功、无功并联控制;电压、频率下垂控制;瞬时调制控制技术。瞬时调制控制技术由于其均流速度快,容易构成高可靠性的逆变电源并联系统,而成为研究热点。该控制技术要求在每个并联的模块单元的均流控制电路即时地获取“环流”信息,或者将本模块实际输出电流值和要求输出值的差异信息,提供给逆变电源模块单元的PWM输出控制系统,实时地调整输出电流的大小。由于瞬时调制技术的算法复杂性,使得有关它的研究还是停留在仿真和分析阶段,硬件实现有诸多速度瓶颈。

目前,国内在交变电源的研究中,基本上仍局限于算法的研究,许多算法由于没有合适的高速计算平台还处于模拟仿真阶段。

国际上许多研究机构都已开展了可重构计算的研究,德国Kaiserslautern大学开发的Kressarray是基于二维网格结构的动态可重构的硬件,对图像处理等应用效果好;美国卡耐基·梅隆大学的PipeRench是基于一维阵列结构的协处理器,用于基于流多媒体应用;美国华盛顿大学的RaPiD是基于一维阵列结构,主要用于规律性强的计算密集型算法;加州大学伯克利分校的Garp是基于查找表的二维网格结构可重构阵列, 主要对任务中的循环进行加速;我国在可重构技术方面的研究相对较少,目前已有中科院计算所、中科院微电子所、西北工业大学等科研机构开展了研究工作,但是公开发表的文献资料很少。

用FPGA硬件实现一些控制算法,把通用处理器中串行实现的程序,由硬件并行实现,其计算速度将呈数量级的提升。通过FPGA的动态可重构计算能使控制平台实现多个算法,在不同的应用场合做到自适应控制,自动根据不同的控制对象,找出最优控制算法。这种方案既大大加快了算法处理的速度,同时又使硬件规模和成本大大降低。

参考文献

[1]吕小涛.基于DSP的正弦波逆变电源研究[D].武汉理工大学,2009.

[2]武伟.高频逆变电源并联控制策略的研究[D].合肥工业大学,2009.

正弦波逆变电源范文2

关键词:不间断电源(UPS);正弦脉宽调制;电压电流双闭环控制

中图分类号:TN86 文献标识码:A 文章编号:1674-7712 (2013) 12-0000-01

一、设计方案论证

方案一:采用DSP作为核心控制器,主电路采用半桥逆变。这种方案控制部分功能强大,可同时控制逆变主电路和各个分支电路。但半桥逆变电压利用率低,要求输入电压很高。而且DSP控制的成本较高,程序复杂,给设计增加了难度.

方案二:SPWM逆变器

SPWM型变换器是给逆变器固定的直流电压,通过开关元件有规律的导通和关断,得到由宽度不同的脉冲组成的电压波形,削弱和消除某些高次谐波,得到具有较大基波分量的正弦输出电压。

方案三:采用U3988作为控制核心,逆变主电路采用全桥逆变。这样可以做到硬件电路简单,电路可靠性增强,设计周期变短。这样输入电压不用提到很高就可输出要求的电压。

方案四:采用SA866控制芯片,SA866所有的运行参数,包括载波频率、波形、最小脉冲宽度、死区脉宽等都是通过外接的EEPROM编程,由于数字电路在高频电路中会受到严重干扰,因此SA866在应用上有了一定的局限性。

方案五:采用多重移相叠加阶梯波合成逆变器阶梯波合成逆变器的输出波形为阶梯波,其阶高按正弦规律变化。这种阶梯波中的谐波含量比方波显著减少,如阶梯波数为18的阶梯波总谐波含量为基波的9.48%。如果阶梯数越多,则总的谐波含量就越小。但这种电路过于复杂,因此本方案不予采用。

综上所述,在方案二中,由于采用恰当的芯片,使电路简单,无须编程,成本低廉,能够满足系统设计的要求,所以选择方案二。

二、组成单元

主电路单元:采用全桥逆变电路共有四个臂,可以看成是两个半桥逆变的组合而成,成对的两个桥臂同时导通,两对交替各导通180度,全桥逆变电路是单相逆变电路中应用最多的。

主控制单元:采用采用U3990F6-50控制芯片,在逆变状态下,OUTA输出的SPWM脉冲序列经过逆变后对应正弦波的正半周;OUTB输出的SPWM脉冲序列经过逆变后对应正弦波的负半周,并且要注意的是加在反馈引脚上的电压必须是实时的。

反馈单元:利用变压器将生成的交流信号变到9V,再将整流之后的电压反馈给U3990F6-50的2脚,从而实现稳压、调压。

辅助电源单元:采用UC3842控制芯片,此芯片构成的反激电源,电路简单而且效率高,可以满足各个用电单元的需求。

充电单元:采用的是恒流充电电路,充电电流可以达到0.4A,而且还具有过充保护功能。设计采用运放LM358,通过调节同相端与反相端的分压电阻可以实现对电池过充的保护。本设计的过充电压设定为38V。当电池电压超过36V时,反相端的电压将超过同相端的设定值,使得放大器输出发生翻转,输出低电平,三极管截至,使得TIP42截至,停止充电,实现了过充保护的功能。

功能保护单元:过流保护和短路保护是利用电流互感器来实现的,通过示波器的观察电流互感器能快捷准确的采集输出的交流信号,这样使得保护动作快,整个电路受到的冲击降到了最小。欠压保护和升压变换通过运放构成的比较电路来控制继电器实现的,在实际运行过程中有完美的表现,完全到达了要求。

驱动单元:采用的光耦隔离驱动能很好的将主电路与控制电路分开,达到了利用弱电控制强电的目的。

显示单元:采用的是单片机89S52和TLC2543组成的信号采集处理方案,可以准确的显示输出的电压、电流以及输出功率。

Boost升压电路单元:为保证交流输出幅度维持在24V,逆变之前的直流电压至少为24×1.4=33.6V,但蓄电池工作电压范围的下限为29V,如果逆变前的电压不做处理,会使电压调整率降到很低。所以本设计在输入滤波和逆变之间加入一级Boost升压电路,主控芯片采用UC3843

三、部分电路的分析

(一)控制电路的分析

控制电路共分两部分,一部分为逻辑量控制,一部分为模拟量控制,根据主逆变电路为单极性的要求,电路采用正负半周分别驱动的方式,当正半周时,LM339比较器输出为低电平,通过与非门4011B转换成高电平,从而打开与门4081B,使得输出脉冲在整个正半周期间通过与门4081B的4脚,控制输出主电路开关管Q2、Q3导通;同理,当正弦波为负半周时,LM339输出为高电平,从而控制对角桥臂Q1、Q4导通,这样就实现了SG3525双组驱动脉冲在每个半周期内同时输出的要求,保证了整流后的正弦波与三角波比较,完整输出的要求。

模拟量控制采用电压、电流双闭环控制调节,其基准为标准正弦波,电压反馈通过电压互感器再经放大器放大后进入PI调节器与标准正弦波进行比较,从而达到消除误差正弦跟随的目的,PI调节器的输出作为电流比例调节器的基准输入,同时电流反馈信号经电流互感器输入比例调节器,经比例调节器对电压信号和电流信号的综合调节,输入至精密整流电路,达到SG3525仅能输入单极性的要求,其中重要的一点电流反馈信号的引入对增加系统的阻尼、改善波形的失真度都起到了良好的作用。

考虑输出空载情况,电压上升过高,故此该电路设计了空载电压限制电路。

(二)充电单元的分析

充电电流较小,主控制管损耗不大,所以蓄电池充电电路采用线形电源结构,线形电路的主调节管为2SC3281,控制调节管为C2383,调节器采用OP37放大器,充电电路的最大充电电流为0.5A,最高充电电压为40V,采用倒接二极管的形式,当电池电压升至40V时,二极管自然截止,防止电池过充。

四、结论

由于在电源逆变之前加入了Boost升压电路,使逆变电源的电压调整率很小;所有经过大电流的线路均尽量采用粗导线,开关器件均选用优良器件,器件的各项指标参数均远大于额定值,所以电压调整率和负载调整率均得到提高;充电电源采用恒压恒流的形式,输出电流达到250mA,浮充电压41.4V,既能快速充电又能产生过充;逆变器的控制芯片采用正弦波逆变器专用芯片U3990F6-50Hz,大大降低了输出正弦波的失真度。所以本设计具有效率高、正弦失真度小、电压和负载调整率低、其他保护功能齐全等特点。

五、创新点

(1)逆变之前加入了Boost升压电路,提高了电压和负载调整率;

正弦波逆变电源范文3

关键词:独立式;太阳能;光复逆变电源

一、独立光伏发电系统组成

独立运行太阳能光伏发电系统主要由太阳能电池方阵,蓄电池组,控制器和逆变器四部分构成。

1.1太阳能电池方阵

光伏电池是组成太阳能光伏发电系统最基本的单位。但单体光伏电池发出的电能很小,工作电压约0.45~0.5V,工作电流20~25mA/cm2,而且是直流电,在大多数情况下很难满足实际应用的需要。为满足负载要求的输出功率,一般都将电池组串并成太阳能电池组件。

1.2蓄电池组

太阳能发电系统只能在日间有阳光的时候才能发电,而多数情况人们主要在夜间大量用电,所以需要存储太阳能电池方阵发出的电能并随时向负载供电。光伏系统对蓄电池组的要求是:1、自放电率低;2、使用寿命长;3、深放电能力强;4、充电效率高;5、少维护或免维护;6、工作温度范围宽;7、价格低廉。配套200Ah以上的铅酸蓄电池,一般选用固定式或工业密封免维护铅酸电池;

1.3控制器

控制器是光伏发电系统的核心部件之一,主要用于实现整套系统地充、放电管理。太阳能光伏阵列发出的直流电能,经过控制器对蓄电池充电,在蓄电池未充满时,控制器的作用是最大限度地对蓄电池充电,当蓄电池被充满时,控制太阳能充电,使蓄电池处于浮充状态。当蓄电池放电至接近蓄电池过放点电压时,控制器将发出蓄电池电量不足报警并切断蓄电池的放电回路,以保护蓄电池。随着光伏产业的发展,控制器的功能越来越强大,有将传统的控制器、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。

1.4逆变器

对逆变器的基本要求是:

1、能输出一个电压稳定、频率稳定的交流电,无论是输入电压发生波动还是负载发生变换,都要能达到一定的电压精度;

2、具有一定的过载能力,一般能过载125%~150%;

3、输出电压波形含的谐波成分应尽量少;

4、具有短路、过载、过热、过电压、欠电压等保护功能和报警功能,且具有快速的动态响应。

二、逆变电源基本工作原理及逆变电路设计

2.1逆变电源基本工作原理

逆变电源的拓扑结构很多,各自的工作过程不完全相同,但最基本的逆变过程是相同的。下面以最基本的单相桥式逆变电路为例,具体说明逆变器的“逆变”过程。单相桥式逆变电路如图1所示,T1,T2,T3,T4是桥式电路的4功率管,由电力电子器件及辅助电路组成。输入直流电压为Vcc,Z代表逆变器的负载。当开关T1、T4接通时,电流流过T1,Z和T4,负载上的电压极性是左正右负;当开关T1、T4断开,T2、T3接通时,电流流过T2,Z和T3,负载上的电压极性反向,把直流电变成了交流电。改变两组开关的切换频率就可以改变输出交流电频率,得到的是正负半周对称的交流方波电压。负载为纯阻型时,负载电流电压波形相同,相位也相同;负载为感性时,电流滞后于电压,波形也不同。

2.2逆变电路设计

逆变电路的功能是将升压得到的高压直流电经SPWM全桥逆变,变成220V的SPWM电压,再经输出滤波电路滤波为220V、50Hz正弦交流电压输出,包括功率桥的设计、控制电路设计和保护电路设计。

2.2.1逆变环节的主电路

如图2所示为逆变环节主电路图。对输入的直流电进行SPWM调制,经过LC滤波输出,采用电压瞬时值反馈,对输出电压进行采样隔离,反馈信号送给控制芯片经过A/D变换保存,得到脉宽控制量,通过SPWM生成环节产生各功率管的开关信号,控制功率管的通断,使输出电压尽可能跟踪基准正弦给定信号。

2.2.2控制电路设计

逆变环节的任务是使直流变交流,为使交流输出电压稳定,本系统采用闭环控制,对输出电压进行采样分析,系统中CPU根据采样电压值来控制SPWM波发生器输出SPWM参数,产生SPWM波驱动逆变桥,从而得到稳定的交流电。系统CPU采用ATB9C51,SPWM波发生器采用SA838单相SPWM波发生器,功率逆变桥选用PS21865,其内部集成了驱动电路,因而外部驱动电路可以不再添加。控制电路功能包括:控制脉冲产生,交流输出稳定,保护和报警显示,电路框图如图3所示。

三、逆变器控制方案比较

光伏逆变器的性能很大程度上决定了整个光伏发电系统的性能和效率,随着光伏发电系统的应用越来越广,人们对光伏逆变器输出电压的质量要求也越来越高,不仅要求逆变器的输出电压稳定以及工作可靠,而且要求其输出电压正弦度高。所以光伏逆变器的控制技术也得到了不断的发展。

逆变器要实现输出纯正弦波,控制方案的实现通常分为模拟控制和数字控制,具体实现方案有如下几种。

(1)模拟控制。控制脉冲的生成,控制算法的实现全部由模拟器件完成。优点是技术非常成熟,有很多可以参考的实例。但其存在很多固有的缺点:控制器的元器件比较多,电路复杂,所占的体积较大;灵活性不够,硬件电路设计好了,控制策略就无法改变;调试不方便,由于所采用器件特性存在差异,致使电源一致性差,且模拟器件工作点的漂移导致系统参数漂移。逆变电源数字化控制是发展的趋势,是现代逆变电源研究的一个热点。

(2)由单片机实现数字控制。为改善系统的控制性能,通过A/D转换器,将微处理器与系统相连,在位处理器中实现数字控制算法,然后通过输入、输出口或脉宽调制口(PWM)发出开关控制信号,微处理器还能将采集的功率变换装置工作数据显示或传送至计算机保存。一些控制中所用到的参考值可以存储在微处理器的存储器中,并对电路进行实时监控。微处理器的使用在很大程度上提高了电路系统的性能,但由于微处理器运算速度的限制,在许多情况下,这种微处理器辅助的电路系统仍旧要用到运算放大器等模拟控制元件。

(3)由DSP实现数字控制。随着大规模集成电路、现代可编程逻辑器件及数字 信号处理器(Digital Signal Processor,DSP)技术的发展,逆变电源的全数字化控制成为现实。DSP能够实时地读取逆变电源的输出,并实时地计算出PWM输出值,使得一些先进的控制策略应用于逆变电源控制成为可能,从而可对非线性负载动态变化时产生的谐波进行动态补偿,使输出谐波达到可以接受的水平。但DSP入门门槛较高,开发成本高,造价也较高。

结束语

太阳能作为绿色生态能源,以光伏技术与电力电子技术为依托,结合我国的实际利用它为人类服务,是能源工作者的重要任务之一。充分利用这些无电地区的太阳能资源,有计划、有步骤地推广光伏技术,解决缺电地区的用电问题,促进这些地区的经济文化发展,提高人口素质,对于全国的平衡协调发展,缩小地区间差距,均具有战略与现实意义。

参考文献:

[1] 沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005.87

[2] 王常贵,王斯成主编.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005.6

[3] 倪海东,蒋玉萍.高频开关电源集成控制器[M].北京:机械工业出版社,2005.1

[4] 郭同生.光伏系统逆变器数字控制技术研究[J].西安交通大学硕士学位论文,2003.3

正弦波逆变电源范文4

>> 基于FPGA+DSP的高速中频采样信号处理平台的实现 光伏逆变辅助电源的设计 基于DSP平台的人民币编号识别系统的设计与实现 基于DSP的可扩展实验平台的设计与实现 基于DSP平台的语音编解码模块的设计与实现 银河飞腾DSP平台以太网接口的设计与实现 基于STM32的数控稳压电源的设计与实现 基于单片机的数控直流稳压电源设计与实现 数字中频接收机的设计与实现 数字中频调制解调系统的设计与实现 基于EDA技术的航空电源逆变控制电路设计 X―DSP ALU与移位部件的设计与实现 数控电火花加工脉冲电源的设计与实践 便捷式数控电源的设计与制作 基于DSP的稳定平台设计 基于DSP的单相正弦波变频电源设计与应用 基于FPGA+DSP的数字中频收发机的设计 数控沙盘系统的设计与实现 基于FPGA数控变频电源的设计 数控稳压电源的设计 常见问题解答 当前所在位置:

关键词:逆变电源;串联谐振;数字信号处理器(DSP)

DOI: 10.3969/j.issn.1005-5517.2013.10.008

引言

随着电力电子技术、信号处理技术及计算机控制技术的迅速发展和广泛应用,对逆变电源的性能及效率等要求也越来越高。串联谐振中频逆变电源是感应加热的关键设备,在现代工业生产中,熔炼金属及对工件进行透热、淬火和弯管等,常常采用中频(150Hz~20kHz)谐振逆变电源装置作为感应加热电源。

传统的串联谐振中频逆变电源控制仍然多为模拟控制或模拟与数字相结合的控制系统[1-2],存在如控制电路结构复杂、采用较多的元器件,体积庞大、电源一致性差;系统工作不稳定、控制精度不高、开发调试复杂等缺点。克服以上缺点的方法是应用数字处理技术,将传统的模拟电源升级改造为数字化电源(DPS:Digital Power Supply)。数字电源控制电路的核心器件是数字信号处理器(DSP),通过微处理器的精确运算来控逆变电源的各项性能和工作全过程,使控制电路高度集成、简化,且实现了数控化。本文设计了基于DSP芯片TMS320LF2407的10kW/10kHz 的串联谐振中频逆变电源,并通过试验验证了该设计方案的有效性和可行性。

中频逆变电源设计

电源主电路设计

串联谐振中频逆变电源系统主电路结构如图1所示。三相380V/50Hz交流电经空气开关、熔断器后加到由二极管模块组成的三相不控整流桥,三相整流桥输出的直流电压Ud经电解电容Cd滤波成平直的电压,再加到由四个IGBT和四个反并联二极管组成的单相全桥逆变器,逆变器输出的电压Uo经中频变压器T隔离并降压后送到由补偿电容C和负载感应器Lo组成的串联谐振电路的两端。中频变压器T用于负载匹配,感应线圈等效电感Lo和电阻R以及谐振电容C组成变压器次级串联谐振槽路。

串联谐振逆变电源工作原理

串联谐振逆变电源等效电路如图2所示,其移相控制原理及工作过程分析如下[3]:

图2所示的主电路的控制采用了如图3所示的移相控制策略。其基本原理是:检测逆变器输出电流 利用其过零点来产生滞后桥臂管VT4的驱动信号4gVTu(VT2管的驱动信号2gVTu与之互补);由VT1和VT3组成的超前桥臂的驱动信号1gVTu和3gVTu 分别超前于4gVTu和2gVTu,超前的角度为移相角α或者调节逆变桥输出电压的宽度o u,从而调节基波电压的幅值,就能对电路输出功率调节进行调节。

数字锁相环(DPLL)控制

串联谐振逆变电路工作在谐振状态时,谐振回路呈电阻性,工作频率等于负载的谐振频率。由于逆变输出所接负载的规格不同,感应线圈的等效电感和等效电阻也将改变,谐振频率会发生变化,如果不改变逆变电路IGBT的驱动频率,将使逆变器偏离谐振点,不仅使逆变桥上IGBT偏离零电流开关点,而且引起开关损耗增大,当逆变器工作频率高于负载谐振频率较大时,在一定的P值下,还会使负载阻抗增大,逆变器的无功功率增加,输出功率因数下降,功率容量不能充分利用。因此逆变控制系统必须具备频率跟踪功能,使逆变器的工作点保持在谐振点附近,从而实现IGBT的ZCS开关,并且有效利用逆变器的输出功率容量。一般的频率跟踪采用锁相环控制(PLL),通过检测输出电压和电流的相位差,控制锁相环电路的触发信号输出频率,达到频率跟踪的目的。本设计采用基于DSP技术的数字锁相环(DPLL)来实现频率

的自动跟踪[4]。

串联谐振中频逆变电源系统结构框图如图4所示。电源控制系统采用以TMS320LF2407为控制核心的硬件控制平台,传感器采集的各种检测信号经转换后作为DSP的输入信号,DSP根据检测输入的信息对系统进行实时控制,逆变器中功率主开关管的驱动信号由DSP的事件管理模块EV产生,并对最终产生的PWM波形输出进行死区控制;通过对负载电流和电压的检测、采样、滤波、电平转换和A/ D 变换处理后,与给定频率作比较,进行频率锁相跟踪及移相功率控制;当过流或过压等故障信号产生时,硬件电路会封锁逆变器的触发信号来实现保护功能,同时,保护信号会使中断口XINT发生中断,立即进行系统的其他保护处理。系统具有电压、电流、工作频率及谐振频率等各项参数的显示;电路设有过流、过压、过热、缺相等全面的保护系统,并指示出各种故障便于维修;同时,还具有上下位机通讯功能,可以实现远程网络化控制或用计算机自动控制[5]。

实验结果及结论

正弦波逆变电源范文5

【关键词】DSP;UPS;锁相

Abstract:In order to avoid a big impact on load when the UPS inverter switching,UPS inverter’s output voltage must be consistent with the grid voltage in frequency and phase.Fast and reliable software phase-locked tracking technology can accurately provide the standard sinusoidal voltage for the digital inverter with the same frequency and phase to the grid voltage.This paper mainly discusses the phase-locked technology of full digital UPS based on TMS320LF2407.

Key words:DSP;UPS;phase-locked

1.引言

UPS,不间断电源,是指在市电正常或故障情况下均可为负载提供可靠、稳定的电源形式。多用于在一些关键性的负载如计算机机房、医院等场合,为负载提供了最多的电源故障保护。然而传统的在线UPS有多个功率部分和模拟控制器,是一个非常复杂、昂贵的系统。因此,适合现代科技发展的高质量、高可靠性全数字UPS(不间断电源)的研究就成为人们十分关注的课题。数字化控制以控制简单、灵活,输出性能更加稳定,可以实现模拟控制所难以达到的功能等诸多优势成为电源研究领域的一大热点。随着微电子技术的发展,为电力电子提供了越来越多的解决方案,使UPS电源的全数字制、各种先进控制策略的引入逐步成为现实。

本文主要讨论在基于TMS320LF2407数字化控制平台的UPS中的关键技术之一--锁相控制技术。

2.锁相意义

不间断电源工作过程中存在两次切换:一是电源启动时由旁路向负载供电,逆变器空载运行,同时启动锁相功能,调整逆变输出跟踪电网频率和相位,当逆变输出跟踪上电网频率时切换至逆变器为负载供电;二是当逆变电路发生故障,或者当负载有冲击性(例如启动负载时)或过载时,控制系统将封锁PWM输出停止逆变器对负载的供电,同时接通旁路开关,由电网直接向负载供电[1]。

为有效保证逆变旁路切换过程不对负载产生过大的冲击,UPS逆变输出电压必须与电网电压的频率及相位保持一致。因此,UPS系统引入了锁相控制技术,软件锁相技术是数字化UPS的重要环节之一。快速可靠的软件锁相跟踪技术可以准确地为逆变器数字化控制提供与电网电压同频同相的标准电压参考正弦波。

3.锁相环基本原理

锁相环是一个闭环的相位控制系统,能够自动跟踪输入信号的频率和相位[2]。它由相位比较器、低通滤波器、压控振荡器三部分组成,其控制框图见图1。

其工作原理为:将压控振荡器的输出信号uo(t)与电网的采样信号ui(t)两路频率与相位不同的信号送入相位比较器,生成的误差信号ue(t)的幅度与uo(t)和ui(t)信号的相位差成正比。ue(t)经低通滤波器处理后将向外送出一个相当于ue(t)信号的平均值的控制电压信号uc(t),压控振荡器在信号uc(t)的控制下将调整输出电压信号uo(t)的频率和相位,从而使uo(t)与ui(t)两路信号的频率和相位差逐渐减小。

4.在线式UPS的锁相控制技术

根据单相UPS逆变器的控制电路产成SPWM波方式的不同,实现UPS的锁相控制方法有很大区别,下面分别讨论。

4.1 在线式UPS的模拟锁相控制技术

传统的在线式UPS电源,其锁相控制原理框图如图2所示[3]。当供电正常时,电网电压检测电路输出高电平,50Hz电网电压经波形变换电路被转换成周期为20ms的单极性“倒置全波整流”信号,再送到模拟开关1的输入端,经过模拟开关2后产生一串电网电压同步跟踪信号。由于变频器的输出信号是周期为20ms的同步捕捉信号,因此加在多谐振荡器控制端上的电网同步跟踪信号可对高频振荡器的高频输出脉冲进行相位调整,以确保正弦波发生器输出50Hz的基准正弦波。经过锁相同步电路,即“锁相环”,该正弦波总是与电网电压处于同频同相的同步跟踪状态。当供电异常时,则由多谐振荡器产生本振频率为20kHz的信号,经分频器输出500Hz的脉冲序列,然后经正弦波发生器产生稳频的50Hz标准正弦波。

传统的正弦波信号发生器采用反馈振荡电路,利用电路的自激振荡和选频作用输出正弦波,但是低频模拟振荡器有一个缺点:受电压和温度的影响大,输出信号的频率和幅度稳定性差,很难达到作为交流基准的要求;而且完全用模拟器件使得控制电路结构相当复杂,不便于生产,难以调试[4]。

4.2 在线式UPS的数字锁相控制技术

在线式UPS的数字锁相控制技术中采用微处理器作为核心控制芯片,并采用软件实现相位锁存的方法,其电路一般由以下几部分组成:交流电压互感器,精密整流电路,过零比较器,低通滤波器,反相器,模拟切换开关及微处理器.其电路组成框图见图3。

该电路工作原理为:电网交流电压经过电压互感器隔离降压成为与电网电压同频同相的低压交流信号,一路经过精密整流电路成为正极性的半波直流电压信号,通过微处理器内部的A/D转换器,测得电压的幅值;另一路经过电压过零比较器输出交流信号的正负极性,经过I/O口进入单片机,这样就可测得外部交流电压的实时波形数据,在将采集的波形数字序列经过D/A转换,即可以输出正弦波。由于电网电压中含有大量谐波成分,经电压互感器采集的交流电压信号并不是纯净的正弦波,所以采用直接输出方式产生的波形并不是稳定纯净的正弦波。

因此,在PWM输出后加入数字低通滤波器以滤除高频谐波成分,从而保证输出电压的稳定性和纯净度[5]。

其具体实现过程是:首先,用数字序列调制单片机内部的PWM脉宽调制电路,使之产生的脉冲方波宽度正比于信号幅度,如果微处理器采用20MHz晶振,PWM输出为8位分辨率时,输出方波的最高频率为78KHz,所以在PWM输出端加一个积分常数很小的RC低通滤波器就可以得到很平滑的半波输出波形,低通滤波器造成的相位延迟可以忽略不计。该信号一路直接送到模拟开关,另一路送到反相电路成为负极性的半波电压信号,再送到模拟开关,这正负极性两路电压信号经过单片机控制的模拟开关切换,就输出与外部电网相位同步的正弦波信号。当电网出现故障时,微处理器将读取其存储器中储存的标准50Hz正弦波序列以控制逆变输出。

4.3 在线式UPS的软件锁相控制技术

随着微电子技术的发展,出现了许多性价比高的用于电机控制的专用微处理器,微处理器内部集成了PWM波产生电路,可以通过软件编程来改变PWM波输出频率。UPS中的软件锁相控制就是基于此类微处理器,以程序计算方式来实现。其软件实现的方式有两种。一种是需要对市电电压和逆变输出电压两路信号进行滤波整形,变换为与其同频率的方波信号,通过微处理器的捕获引脚捕获方波上升沿的跳变,由捕获值来计算频率及相位差,以此调整输出SPWM波的频率,使得两路信号的频率与相位保持一致,其锁相同步控制原理框图如图4所示。另一种方法只需对市电电压进行方波变换,在对市电变换方波的捕获中断中,通过判断SPWM输出波的相位相对于市电相位的超前或滞后,通过改变SPWM定时器周期值来调整SPWM波下周期的输出频率,从而实现频率跟踪[38]。两种方法的共同之处是:都事先设定电网电压频率为50Hz,根据SPWM载波频率将每个电压周期分为N等份(当载波频率为78KHz时,N=150),将对应时刻的正弦值制作成表存在微处理器的存储器中,保持每SPWM周期输出序列个数N值不变,调整载波频率实现对输出电压频率的调整;它们的实现过程都依赖于两个中断,一个是SPWM载波周期定时器中断,一个是捕获中断(可通过设置捕获中断方式使得捕获中断发生在正弦波周期的零相位时刻)。

由于两种方法都是通过调整SPWM频率实现逆变输出对市电电压的锁相,稳态时其跟踪精度较高,但动态性能不好,锁相环启动时的跟踪调整速度较慢,因此同步响应速度有待提高,且需进一步增强同步的抗干扰和容错能力[6]。

5.结论

本文所研究的基于TMS320LF2407数字化控制平台的UPS的软件锁相技术,锁相精度高,易于实现,可以很好地满足不间断电源的锁相技术要求。

参考文献

[1]林新春,康勇,熊建等.UPS逆变电源波形补偿技术研究[J].电气传动,2002.

[2]单鸿涛.陈息坤.康勇,鹿婷.一种新型实用数字化并联UPS系统[J].电气应用,2005.

[3]祁亚萍,戴瑜兴.基于DSP的数字化UPS锁相设计[J].低压电器,2004.

[4]BusoS.Robust.Control of Single Phase UPS.IEEE And electrConf,2004,19:825-831.

[5]Malesani L,Mattavelli P,Buso S.Robust Dead-beat Current Control for PWM Rectifiers and Active Filters.IEEE Trans Ind Application,2005,35:613-620.

正弦波逆变电源范文6

引言

本监控系统是为铁路用4kVA/25Hz主从热备份逆变电源系统设计的。

4kVA/25Hz主从逆变电源是电气化铁路区段信号系统的关键设备,有两相输出:110V/1.6kVA局部电压(A相);220V/2.4kVA轨道电压(B相);两相均为25Hz,且要求A相恒超前B相90°。由于逆变器是给重要负载供电,且负载不允许断电,故采用双机热备份系统,一旦主机发生故障,要求在规定时间内实现切换,因此,备份逆变器一直处于开机状态。由于逆变器经过了整流,逆变两级能量变换,功率较大,且指标要求较高,必须要采用先进的控制技术;同时为了安全实现主从切换,也必须要有完善的监控系统来实现锁相,保证整机的安全。

1 监控系统总体设计要求

根据实际情况,本系统主要完成以下功能:

1)主从切换功能主从控制之间实现准确无误的切换,具有自动和手动两种功能,保证切换时电压同频率,同相位,同幅值;

2)锁相功能主从机组局部电压同频同相,同一机组内A相恒超前B相90°;

3)完善的保护功能具有软起动功能,以避免启动瞬间电压过冲对逆变器及负载的冲击,以及输出过压、过流保护,频率、相位超差保护,桥臂直通保护,过热保护等;

4)显示功能实时显示运行参数及工作状态并具有声光报警功能,以提示值班人员及时排除故障;

5)通信功能具有主从机组之间通信,与监控中心(上位机)通信等功能;

6)抗干扰功能系统具有良好的抗干扰能力。

2 系统硬件电路设计

2.1 DS80C320单片机简介

DS80C320是DALLAS公司的高速低功耗8位单片机。它与80C31/80C32兼容,使用标准8051指令集。与普通单片机相比有以下新特点:

1)为P1口定义了第二功能,从而共有13个中断源(其中外部中断6个),3个16位定时/计数器,两个全双工硬串行口;

2)高速性能,4个时钟周期/机器周期,最高振荡频率可达33MHz,双数据指针DPTR;

3)内置可编程看门狗定时器,掉电复位电路;

4)提供DIP,PLCC和TQFP三种封装。

2.2 基于DS80C320的监控系统硬件电路设计

按照上述系统设计要求,设计了如图1所示的监控系统。监控系统采用模块化的设计思想,分为微处理器及外设模块,模拟量采集模块,开关量采集模块,频率及相差测量模块,控制量输出模块,人机接口模块,同步信号模块以及通信模块。

1)微处理器及外设模块微处理器采用DS80C320,非常适合于监控。本系统充分利用前面已提及的特点,简化了硬件设计与编程,从而提高了整个系统的可靠性。根据系统需要扩展了一片8255,一片E2PROM和一片8254。

2)模拟量采集模块根据采集精度要求以及被采集量变化缓慢的特点,采用AD公司的高速12位逐次逼近式模数转换器AD574A,其内部集成有转换时钟,参考电压源和三态输出锁存器,转换时间25μs,并通过ADG508A扩展模拟量输入通道。

3)开关量采集模块首先经光耦进行隔离后,再通过与门送入单片机的外部中断口,同时通过8255送入单片机,采取先中断后查询的方式。

4)频率及相差测量模块信号先经过具有迟滞特性的过零比较器转换为方波,然后通过双四选一开关4052送入单片机,通过定时器T0来计算频率和相差。

5)控制量输出模块通过光耦控制输出,实现可靠隔离。

6)人机接口模块包括按键和显示部分。通过简单的按键选择,实现电流、电压、频率及相差的显示。显示部分采用8279驱动8位七段LED显示,同时通过发光二极管和蜂鸣器提示运行状态。

7)同步信号模块本模块用来实现锁相。单片机控制8254产生局部同步脉冲和轨道同步脉冲,同步脉冲用来复位正弦基准。通过软件控制同步信号的频率,可实现主从锁相和局部及轨道的相位跟踪。具体实现过程将在下文详述。

8)通信模块采用了RS232和RS485两种通信方式。利用串口0采用RS232实现与另一机组监控单元的双机通信,获取对方机组状态信息;利用串口1采用RS485标准接口实现与上位机的通信,完成传输数据和远程报警等功能。

3 系统软件设计

3.1 系统软件流程

主程序流程图如图2所示。系统上电复位后,首先对单片机,外围芯片及控制状态进行初始化;然后读取AC/DC模块的工作状态,若正常则启动DC/AC模块,否则转故障处理;开启DC/AC后,读入其工作状态并判断输出电压是否满足要求,有故障转故障处理,正常则开启故障中断;接下来进行主从机组判断和相位跟踪,实现主从相位同步和局部及轨道电压的锁相;只有在实现锁相后,才采用查询方式处理键盘及测量显示。在软件编制中,键盘中断是关闭的。实验证明,对人机交互通道采用这种查询处理方法,完全可以满足系统的实时要求。开关量的输入采取先产生中断,后查询的方法,保证了响应的实时性和逆变系统的安全性。

3.2 系统采用的主要算法和技术

3.2.1 交流采样算法

测量显示大信号的交流量时,通过互感器得到适合A/D转换的交流小信号,然后对小信号进行采样,最后对采样数据采用一定的算法,得到正确的显示值。均方根法是目前常用的算法,其基本思想是依据周期连续函数的有效值定义,将连续函数离散化,从而得出电压的表达式

式中:n为每个周期均匀采样的点数;

ui为第i点的电压采样值。

3.2.2 数字滤波算法

A/D转换时,被采样的信号可能受到干扰,从采样数据列中提取逼近真值数据时采用的软件算法,称为数字滤波算法。目前常用的方法有程序判断滤波、中值滤波、算术平均滤波、加权平均滤波、滑动平均滤波等。根据本系统对采集精度有较高要求以及被采集的模拟量变化缓慢的特点,采用程序判断滤波法和算术平均滤波法相结合的滤波方法,即进行多周期采样,取其算术平均值作为有效采样值。每次采样后和上次有效采样值比较,如果变化幅度不超过一定幅值,采样有效;否则视为无效放弃。

3.2.3 单片机锁相技术

本监控系统一个很重要的功能是实现相位同步,即保证主从机组的相位同步和机组内局部电压相位恒超前轨道电压相位90°。本系统锁相的基本原理是,对于频率相同而相位不同步的两路信号,比如A路和B路,若A路为基准,B路超前(滞后)一定的相位,可以通过适当降低(增大)B路信号的频率来实现相位调整进而锁相,最后再把B路频率置为原频率值。

本系统中,单片机控制8254产生25Hz同步脉冲,同步脉冲用来复位正弦基准,使基准正弦波重新从零值开始。基准正弦波与三角波比较产生SPWM波,经逆变得到与基准正弦同频的交流输出,因此,通过调整同步脉冲的频率可改变正弦基准的频率,进而可改变被调整输出电压的相位。要实现系统的锁相要求,需要从机组局部电压跟踪主机组的局部电压,各机组轨道电压跟踪本机组的局部电压。因此,要有主从局部锁相和局部轨道相位跟踪两个子程序。

锁相的流程图如图3及图4所示。首先由多路开关选择要锁相的两路信号,由单片机测量相位差,并对所得相位差数据进行必要的运算和处理后,判断有无超差。倘若相位超差,则根据超差范围确定同步脉冲的频率值。如果是主从局部锁相,则应同时改变从机组局部和轨道的同步脉冲;否则,若为局部、轨道相位跟踪,则只改变本机组轨道的同步脉冲。通过调整同步脉冲,可实现相位调整。实现锁相后,同步脉冲的频率置为25Hz返回。

4 抗干扰措施

由于该监控系统工作于强电环境,很容易受到各种干扰的影响。干扰一旦串入系统,轻则会引起误报,严重时就会导致整个系统瘫痪,甚至造成重大事故。本系统从硬件和软件两方面采取了抗干扰措施,保证了监控系统的可靠运行。

4.1 硬件抗干扰措施

1)光电隔离在输入和输出通道上采用光耦合器件进行信息传输,在电气上将单片机与各种传感器、开关、执行机构隔离开来,可以较好地防止串模干扰。

2)加去耦电路在电源进线端加去耦电容,削弱各类高频干扰。

3)合理布置地线系统中的数字地与模拟地分开,最后在一点相连,避免了数字信号对模拟信号的干扰。

4)数字信号采用负逻辑传输骚扰源作用于高阻线路时易形成较大干扰,而在数字信号系统中,输出低电平时内阻要小些,因此,定义低电平为有效(使能)信号,高电平为无效信号,可减少干扰引起的误动作,提高控制信号的可靠性。

4.2 软件抗干扰措施

1)利用可编程硬逻辑看门狗将单片机从死循环和跑飞状态中拉出,使单片机复位。而DS80C320提供了内部可编程硬逻辑看门狗,不须外加电路,就能够实现可靠的超时复位。同时,DS80C320还为一些重要的看门狗控制位提供了访问保护,防止单片机失控后对这些重要的控制位进行非法操作,进一步保证了程序的安全性。

2)对于数字信号采集,利用干扰信号多呈毛刺状且作用时间短这一特点,多次重复采集,直到连续两次或两次以上采集结果完全一致才认为有效。数字信号输出时,重复输出同一个数据,其重复周期尽可能短,使外部设备对干扰信号来不及作出有效反应。

3)对模拟量的采样和处理,采用数字滤波技术。

4)采用指令冗余和软件陷阱,防止程序跑飞。