开关电源芯片范例6篇

前言:中文期刊网精心挑选了开关电源芯片范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

开关电源芯片范文1

关键词:开关电源 降压输出 升压输出

中图分类号:TN86 文献标识码:A 文章编号:1007-9416(2016)10-0189-02

1 引言

随着电子产品的进步和发展,各种电子产品逐渐进入了人们的生活,而生活中形形的电子产品免不了供电系统的支持,而本产品就是为了电子元器件的各种应用而设计完成。

2 系统应用支撑

LM3481是一款输入电压在2.96V~48V,输出电压在1.275V~300V,最大电流为20A的高性能控制器。被广泛应用于汽车启动―停止、笔记本电脑、机顶盒等电路中。所以此系统可以用于DC 5V供电电源。

3 系统方案

使用LM3481芯片实现在不同电压输入条件下的电压稳定输出。该LM3481器件是开关稳压器通用的低端N-FET高性能控制器。该设备适用于拓扑结构需要一个低边场效应管,如升压,反激式,SEPIC等使用。LM3481装置可在非常高开关频率下工作,LM3481可以通过使用一个外部电阻或通过将其同步至外部时钟被调整到100kHz至1MHz之间的任何值。其输入电压范围在2.97V~48V左右,具有较宽的输入范围,同时其最大输出电流为20A,可满足大部分电子元器件的需求。

4 系统硬件设计

本作品是利用WEBENCH进行的电源设计,设计过程如下:

(1)在WEBENCH Designer 页面输入设计电源的供电要求、输入电压最小值和最大值、输出电压、输出电流和环境温度,然后点击“开始设计”。

(2)之后WEBENCH会给出设计方案,在给出的各个设计方案中根据各个参数选择最符合自己要求的核心芯片,其中可以利用WEBENCH工具的x型、仿真和优化工具帮助自己选择合适的芯片,经过自己的比较分析,我所选用的芯片是LM3481。

(3)选定LM3481,点击“开始设计”, WEBENCH会给出基于芯片LM3481的相关设计,例如:图表、原理图、工作数值、元件清单等等。据此进行自己的电路设计和制作。如图1所示。

(4)已知电源的原理图,在Altium Designer10软件中画出设计电路的原理图和PCB图,如图2、图3所示。

5 仿真结果分析

根据WEBENCH自身的功能,我们进行了对本设计的效率等的仿真如图4~图5所示。

6 实验总结与体会

本次项目,通过WEBENCH网络设计软件设计了一款基于LM3481芯片的DC-DC开关电源。通过在线软件WEBENCH的帮助,成功实现了LM3481电路图,仿真等一系列功能。同时设计的基于LM3481的DC―DC开关电源电路设计简单,性价比高,可靠性好,因此具有较好的应用前景。

参考文献

[1]童诗白,华成英.模拟电子技术基础(第四版)[M].北京:高等教育出版社,2003.

[2]王兆安,刘进军.电力电子技术(第5版)[M].北京:机械工业出版社,2009.

[3]普利斯曼,比德斯,莫瑞.王志强 译.开关电源设计[M].电子工业出版社,2010.

收稿日期:2016-08-12

开关电源芯片范文2

关键词:开关电源;反激式;Flyback;LNK364

中图分类号:TM464 文献标识码:A

1 前言

开关电源的设计涉及到的知识方方面面,不仅涉及到模拟数字电路,半导体元件特性,电磁学知识,还需要考虑产品散热,安全要求、电兼容性能等。传统的设计需要人工来完成,其步骤繁琐,工作量大,效率低。传统控制电路的器件多,结构繁冗,一个环节出现问题,电源就无法正常工作,产品可靠性差。

为了解决上述问题,本文特别选择PowerIntegrations公司的一款反击式开关电源控制芯片LNK364。该器件在一个单片IC上集成了一个700 V的功率MOSFET、新颖的开/关控制状态机、一个自偏置的高压开关电流源、频率抖动、逐周期的电流限制及迟滞热关断电路,仅需要搭配少量阻容原件,即可和脉冲变压器配合实现基本开关电源的所有功能。并且其内部具有一个5.8V的自稳压电路,能够为芯片提供电源,并且提供一个1mA的输出,给反馈电路供电,从而省去了脉冲变压器的一个电源次级绕组,使得电源的设计电路更加简化。

2 整体结构设计

作为一款微功率的电源设计,首选的拓扑结构为反激式,其拓扑结构简单,设计适应范围广,是一般小功率电源的首选拓扑,选用LNK364作为控制芯片。电路设计如图1所示。

整个电路分为缓冲保护部分,EMC部分,整流滤波部分,PWM变送部分,整流输出部分和稳压反馈部分来进行设计。交流电源经过缓冲保护,EMC电路和整流滤波后转化成高电平直流信号,高电平直流信号经过PWM调制和脉冲变压器,转化成低电压交流脉冲信号,低电压交流脉冲信号经过整流输出部分转化成所需要的直流信号,直流信号上再接稳压反馈通过光耦将隔离后的开通/关断信号传输给开关电源控制芯片,从而完成输出端不同负载下的稳压功能。

3 硬件设计

3.1 缓冲保护电路设计

缓冲保护电路共包括两个原件RQ1和MOV1。其中RQ1为辅温度系数电度,其主要用于缓冲开关电源上电瞬间电容充电电流,对电容起到一个保护作用。MOV1位压敏电阻,用于防止雷击等情况发生时的差模干扰,当有差模高电压进来的时候,其与RQ1共同形成一个电阻稳压电路将差模高电压信号滤除。RQ1 选型为MT72-10D7,MOV1选型为14D471K。

3.2 EMC电路设计

EMC电路共有两个元件L1、C1,它们的主要作用为提高电源的电磁兼容性能。其中L1为环形共模电感,C1位X1型安规电容,L1和C1组合成为一个低通滤波电路,从而衰减外部差/共模高频干扰对电源性能的影响。L1选择5.6mH/1A的环形共模电感,C1 选择0.1uF/275V的X1行安规电容。

3.3 整流滤波电路设计

整流滤波电路主要是将交流电源转换成直流,其由DB1、L2-3、C2-3组成。其中DB1为整流桥,根据开关电源控制芯片特性,控制芯片过流保护阈值为250mA,所以此处设计容量为1A就能满足要求,因此整流桥额定电流等于1A,反向击穿电压大于400V(275V*1.414)即可,此处选型GBP08(2A、800V)。L2-3选型为1mH/1A工型电感,C2-3选型为6.8uF/450V电解电容。

3.4 PWM变送电路设计

PWM变送电路由主控芯片,脉冲变压器和续流电路三部分组成。其中主控芯片(LNK364)内部包含一个700V的MOSFET及其控制器。内部连接到漏极的高压电流源在启动阶段提供偏置电流,从而省去了外部启动电路。其内部集成的振荡器能够给输出MOSFET提供132kHz的输出脉冲。

此外,IC还集成了一些功能用于系统级的保护。自动重启动功能可以在过载、输出短路或开环条件下限制MOSFET、变压器及输出二极管中的功率耗散。自动恢复迟滞热关断功能还可以在温度超过安全限值时禁止MOSFET开关。芯片通过控制内部的开关管不断的开通关断,将上级输出的高压直流信号转化成132kHz的脉冲信号。当开关管开通的时候,脉冲变压器的初级内流动的电流增加,达到峰值Ip。当开关管关断的时候,反激电压使输出二极管进入导通状态,同时初级线圈存储的能量为1/2LI^2传递到次级,提供负载电流,同时给输出电容充电。通过电压反馈电路可以调节初级脉冲的占空比来调节Ip的大小,从而起到稳压输出的作用。

这其中关键在于脉冲变压器的选型,根据功率要求我们选择EE16磁芯,材料为PC47,初级绕组为87匝,5V次级6匝,12V绕组14匝。D1为续流二极管,在这里选择超快速二极管MUR160。R2为10K/1W,C4为102/1kV高频瓷片电容。D1、R2和C4共同组成了一个续流缓冲电路,防止开关管关断的时候变压器初级产生瞬间反向高压烧坏开关管。

3.5 整流输出电路设计

整流输出电路设计主要包括单向整流电路和滤波输出电路,单向整流主要是利用二极管的单向导通能力,当一次关断期间,次级整流二极管导通,将铁心中存储的磁能释放,再经过滤波输出电路输出稳定直流电压。二极管选用SF24超快速整流二极管。滤波输出电路由L4-5、C6-9组成,L4、L5为6.8uH磁棒电感。C6-7选用470uF/16V电解电容,C8-9选用220uF/35V电解电容。

3.6 稳压反馈电路设计

稳压反馈电路包括一个TL431,一个反馈光耦和一些阻容组成。是一个典型的稳压开关反馈电路,当输出电压达到5V的时候,U2导通,U1内的MOSFET关断,直到下一个开关周期的到来。U2选用PC817,R7=R9=10K,R6=150R,R8=1K,C=102。

结语

设计中采用了LNK364单片开关电源控制芯片,其内部集成的全部开关电源控制及保护功能,使得开关电源的集成度进一步提高,性价比增强,电路简化,可靠性增强,使得小成本、高要求、高可靠性电源更好地选择。

参考文献

[1] Power Integrations. LNK362-364 Datasheet[Z].

[2]安森美半导体.TL431 datasheet[Z].

开关电源芯片范文3

【关键词】PWM;双闭环;检测仪器;开关电源

0 引言

随着我国科技不断稳步发展,越来越多的设备需要用到电源,如:稳压电源、直流电源、交流电源等等。但随着设备先进性的不断提高,设备的功能越来越强大,对电源的要求也越来越高,特别是检测仪器仪表,精度要求非常高,需要有非常稳定可靠的电源来确保测量精度。因此,开关电源取代普通的电源设备,广泛应用于检测仪器仪表中。本文设计一种基于PWM脉冲宽制调试的双闭环开关电源,采用国外先进的全波整流控制器,该控制器工作模式不仅可以是电流式也可以是电压式,还能够为谐振零电压开关提供高效、高频的解决方案,因此具有非常广阔的应用前景。本文采用全桥整流装置,利用双闭环负反馈的直流-直流变换控制系统,能太太提高开关电源的电压、电流等精度,符合检验检测仪表行业的要求。

1 检测仪器电源系统概况

随着信息时代的发展,便携式电子产品被越来越多的消费者亲睐。与此同时,解决能量消耗即电源管理问题成为重中之重。因此,具有高效节能特型的开关电源在近年来发展迅速,并在计算机通讯等领域的应用越来越广泛。而PWM型开关电源芯片就具备了此类特性,其核心技术集中在控制环节。此设计采用PWM控制电路,适用于开关电源芯片控制。对PWM调制电路为保证开关电源正常工作应具有的功能展开分析,得到设计要求。对PWM控制电路的组成模块、分类、基本原理及各项性能指标,进行细致深入的研究,最后得到调制电路的基本电路结构及满足性能指标的组成模块,对各个模块的功能和逻辑是电路设计的重点,最终该电路实现能产生一定脉冲驱动信号的功能。

2 系统控制原理图

双闭环负反馈PWM秒冲宽制调制系统中,有两级的反馈系统。串级系统即是电流双闭环反馈系统,而转速反馈构成外环系统,内环是电流反馈。本方案设计三处进行系统的电流取样反馈,取拥缌髦岛拖低成杓频牡缌髦迪啾冉希当取样电流值过大时,系统会自动调节降低工作电流;但取样的电流过小时,系统会自动调节提高工作电压,这是内环电流反馈的工作情况。外环的转速反馈系统,系统通过电压检测装置检测系统的电压情况,再与设计的电压值相对比进行电压高低的调节,达到稳定电压的效果。基于双闭环的设计思想,图1中的各个部分相互独立工作、互不影响,如果某一部分出现故障,不影响另一部分系统的工作,系统内部由电流形成负反馈,外部由电压形成负反馈系统。电流电压负反馈一起运作,能太太的提高系统的稳定性和进度,满足检测仪器仪表的使用要求,达到良好的效果。双闭环反馈系统原理如图1所示。

图1所示虚线框中的1#.2#.…….N#是各个高频开关电源,其稳压或稳流精度很高,原因在于该内部自动控制原理图最终可以简化为一阶系统比例积分环节,图中它们工作在稳流状态下。

3 硬件电路设计

图2为开关电源的硬件电路组成部分,设计采用国外先进的放大器作为本设计的核心器件。芯片的1脚与3脚相连接,构成差分放大,能有效的减小误差,提高设计的精度。

图2所示输出法人取样电压通过R5和R6设置,电压输出端与电阻5和6形成零点电位,电阻1/2/3与电容1/2/3形成效应,与PI构成补偿系统,电阻1和7在电路中形成增益作用。在电流内环中加入斜坡补偿以保证系统的稳定性。硬件电路通常容易出现不对称信号的问题,本设计利用电压负反馈补偿信号的作用,将电阻8作为上拉电阻提供直流电压,与RC构成的多谢震荡器作用,提供反馈电压,从而解决波形的不对称性。图中电流检测信号Is经过I-V变换电路转换成电压信号。芯片741是一个PWM脉冲宽制比较器,根据比较器原理,依据三极管放大电路原理,在芯片3脚接地,芯片的2脚相当于一个反相输入端,对信号进行比较。其内部的过流及限流比较器实现逐周期过流及限流保护。当2 V2.5 V时,执行过流保护模式。

4 结语

本设计依据3895芯片,利用双闭环负反馈的原理,引入电流负反馈和电压负反馈,提高了开关电源的精度,利用PWM脉冲宽制调制技术,提高了电源变换的效率和稳定了。开关电源系统设计之后,对该系统多次进行调试测,反馈结果稳定良好,系统稳定性好,动态响应快,证明本方案是可行的。

【参考文献】

开关电源芯片范文4

关键词:开关电源;调频广播发射机;电流浪涌

引言

随着开关电源技术的不断成熟,其应用领域得到进一步拓宽。开关电源与传统串联连续稳压电源相比,在效率、电磁污染、体积及可靠性等方面都得到了较大的改善。另一方面,最新的固态调频广播发射机对电源的要求越来越高,而开关电源技术的成熟,元器件的不断更新,高可靠性控制芯片的应用完全能够满足调频广播发射机的要求。目前固态调频广播发射机中的激励器和功率放大器等组件普遍采用开关电源作为能源支持。未来的数字化控制与管理对于开关电源提出了更高的要求,智能化、数字化、小体积及高可靠性将是调频广播发射机开关电源发展方向。

开关电源

电源是整个调频广播发射机的动力心脏。考虑到发射机房各个设备之间的电磁兼容,发射机整体效率,电源的可靠性和日常维护等问题,开关电源无疑是固态调频广播发射机电源的最佳选择。开关电源的优良特性主要体现在以下几个方面。第一:体积更小。它可与功率放大器集成装配。几百kHz的开关频率使得滤波阻抗元件体积缩成最小,进而既减轻了发射机重量又缩小了体积,便于运输及日常维护。第二:效率更高。包括功率开关管MOSFET等新器件的应用,开关电源多种电路拓扑组合的开关技术是降低损耗,提高电源系统效率的重要保证。第三:电磁污染更少。发射机电源内设的电磁干扰(EMI)滤波电路和相关高尖峰脉冲吸收电路是电源的电流谐波符合要求的重要保证,它不但可以改善电源对电网的负载特性,减少给电网带来严重的污染,也可以减少对其它网络设备的谐波干扰。第四:可靠性得到进一步改善。防雷、防感应或反击过电压的多种保护措施及使用涂有三防漆(防潮、防盐和防霉)的印刷电路板均可将故障几率降至最低。

开关电源应用

开关电源是通过以一定频率连续地控制功率开关管进行通断操作,以便可以通过能量储存元件(如电感器和电容器)向变换器或负载提供电量的电源形式。只要通过改变占空比、开关频率或相关相位,平均输出电压或电流便可得到控制。开关电源的开关频率范围是从20kHz到几MHz。对于电源功率大于90W的工作场合,开关电源通常采取两级变换方式。即功率因数校正(PFC)控制变换器和DC/DC变换器。这里特别应该提到是功率因数校正电路。它是为了保证输入电压和电流同相工作而设置的。其结果是功率因数接近1,视在功率全部转换为有功功率,因而系统效率得到了改善。如果没有PFC校正电路,输入电流会以窄脉宽高峰值脉冲形式输入开关电源引起严重的谐波干扰成分。这些谐波组分不仅没有向负载提供任何能量。而且还引起变压器和其它设grit热。功率因数校正电路分为有源和无源两种类型。调频广播发射机的开关电源大都采用有源功率因数校正电路,它是由具有有源功率因数校正的AC/DC变换器和独立DC/DC变换器两大部分组成。AC/DC变换器主要包括:EMI滤波器、慢启动电路、桥式整流,PFC控制器、功率驱动电路及变换器电路(由功率开关管MOSFET、储能电感L、快速恢复整流二极管和滤波电容等组成),其电路框图见图1。

AC输入经过EMI滤波电路滤除差摸和共摸电磁干扰信号后,输入至慢启动电路,再经延时后全压加到桥式整流电路,输出的直流电压提供给功率场效应管MOSFET的漏极。PFC控制器是由8引脚的LTl249功率因数控制芯片和较少的元件所构成的电路。其第8引脚输出开关频率为100kHz的驱动信号,经驱动电路加到MOSFET功率开关管的栅极,MOSFET变换器开始以一定的占空比进行通断工作,并输出所需求的直流电压。凌力尔特公司生产的LT1249集成芯片内置振荡器、电流乘法器、电流放大器、误差电压放大器、电压比较器及基准电压源等单元。通过对设定的高频率脉宽调制电流进行平均处理,LTl249可以实现尽可能低的电流失真,并且可以工作于连续和非连续的工作模式。另外,内置电流乘法器对来自误差电压放大器的电流进行平方运算可以降低轻载时的AC增益,进而可保持较低的电流失真和较高的系统稳定性。PFC控制器分别从桥式整流、变换器及它们之间传感电阻提取感应信号实现多种保护功能,如峰值电流限制和过压保护等。DC/DC变换器电路简化框图由图2所示。

它主要由开关变压器、MOSFET功率开关管、整流元件、传感电路(包括电压、电流和温度取样)、附属电源、UC3843PWM控制器及相关的驱动电路组成。由前级输入的直流电压加到并联的功率开关管MOSFET的漏极,其栅极输入是由UC3843控制芯片内设定频率开关信号经驱动电路提供的。通过开关变压器升压后,整流滤波得到所需的直流电压。UC3843控制芯片是一种电流模式的PWM控制调整器。它具有优化DC/DC变换器、低启动电流、自动前馈补偿、电流限制、低压闭锁、脉冲抑制、高电流驱动和高达500kHz的开关频率等特性。从UC3843内部电路分析,内部参考信号与变压器次级经整流滤波后电压取样值在误差放大器进行处理,处理后的误差电压与感应电阻形成的电压输入到PWM比较器中,其输出与时钟信号在触发电路中进行波形处理,最后输出频率与时钟频率一致的开关频率信号。

实际应用相关问题讨论

开关电源在调频广播发射机使用过程中出现故障的机会大一些,原因是多方面的。发射机房的环境因素(如通风、温度及湿度)、电源控制柜防雷问题、开关电源本身设计和器件问题、工作人员误操作问题等都是产生故障的隐患。若想设备正常工作,除了掌握必备的专业知识,不断积累经验也是必要的。通过对开关电源内设的附属保护电路的故障显示观察和分析往往可以将故障率降至最低。开关电源由于使用大容量的储能电容器,在工作中产生较大的浪涌电流,使得开关管在交流电压接近峰值时关断。输入交流电压本身瞬间变化也会导致同样的结果。因此在开关电源的实际电路中,常常使用一种负温度特性的热敏电阻串接在桥式整流块前。当电源开关闭合时,热敏电阻温度低,呈高阻状态,浪涌电流得到抑制。随着电流流动热敏电阻温度升高,阻值下降至零,输入电压全压加入负载。然而,这种基本的保护机制在实际使用中略显不足。如果电源开关断开几秒钟的时间又重新闭台,热敏电阻没有充分的时间冷却,此时输入幅值接近峰值的交流电压,将产生比正常时更大的浪涌电流,既便是此电流在感应电阻上产生高于6V的电压,由于LT1249芯片还没加电,无法起到保护作用。这是导致功率开关管MOSFET击穿短路损坏的直接原因。这一点在大连年初强风暴雨灾害时引起多部调频广播发射机电源故障中得到证实。

压敏电阻并联在交流电路输入的两端同样能够吸收电浪涌。在环境温度不变的条件下,压敏电阻阻值随施加的电压增加而急剧减小。因此,它对吸收浪涌有优越的功效。为了防止开合功放电源引起的浪涌电压,采用压敏电阻接在电源线相间,从而起到保护电源设备的作用。

接地线是最基本最简单的安全措施。发射机的机柜、功放盒外壳、电源外壳、面板及门等均已相互连接,并连接到发射机的接地端,发射机安装到位后,应将本机的接地端(位于发射机电源部分的底板上)弯角与机房地可靠地连接在一起,以避免由于漏电而发生不幸事件。同时,还要求将电路中要求接地的各点接地,从而保证需要接地的电流及发射机泄漏的高频电流能顺利流入大地。

开关电源芯片范文5

1 引言

在发电厂和变电所中,为了给控制、信号、保护、自动装置、事故照明和交流不停电电源等装置供电,一般都要求有可靠的直流电源。为此,发电厂和110kV以上的变电所通常用蓄电池作为直流电源,但要求上述电源具有高度的可靠性和稳定性,并且其电源容量和电压能在最严重的事故情况下保证用电设备的可靠工作。

另外,目前由于半导体功率器件、磁性材料等方面的原因,单个开关电源模块的最大输出功率只有上千瓦,而实际应用中往往需用几十千瓦甚至几百千瓦以上的开关电源为系统供电,因此,要通过电源模块的并联运行来实现。大功率电源系统需要采用若干台开关电源并联的形式,以满足负载的功率要求。在并联系统中,每个变换器应处理较小的功率以降低应力,还应采用冗余技术来提高系统的可靠性。电源并联运行是电源产品模块化、大容量化的一个有效方法,同时也是实现组合大功率电源系统的关键。

2 常用的均流方法

由于大功率电源负载需求的增加以及分布式电源系统的发展,开关电源并联技术的重要性也日益增加。但是并联的开关变换器在模块间通常需要采用均流(Current sharing)措施。它是实现大功率电源系统的关键,其目的在于保证模块间电源应力和热应力的均匀分配,防止一台或多台模块运行在电流极限(限流)状态。因为并联运行的各个模块特性并不一致,外特性好(电压调整率小)的模块可承担更多的电流,甚至过载,从而使某些外特性较差的模块运行于轻载状态,甚至基本上是空载运行。其结果必然加大了分担电流多的模块的热应力,从而降低了可靠性。

    开关电源并联系统常用的均流方法有:

(1)输出阻抗法

(2)主从设置法

(3)按平均电流值自动均流法

(4)最大电流自动均流法(又叫自主均流法)。

直流模块并联的方案很多,但用于电力操作电源,都存在着这样或者那样的缺陷,其主要表现在:输出阻抗法的均流精度太低;主从设置法和平均电流法都无法实现冗余技术,因而并联电源模块系统的可靠性得不到很好的保证;外加均流控制器法使系统变得过于复杂,不利于把这一技术转化成实际的产品。而自主均流法以其均流精度高,动态响应好,可以实现冗余技术等特点,越来越受到产品开发人员的青睐。

所谓自主均流技术,就是在n个并联模块中,以输出电流最大的模块为主模块,而以其余的模块为从模块。由于n个并联模块中,一般都没有事先人为设定哪个模块为主模块,而是通过电流的大小自动排序,电流大的自然成为主模块,“自主均流法”因此而得名。

3 220/10A整流模块

笔者设计了一个220V/40A高频开关电源,可用于发电厂、变电所、变电站等电力控制的直流屏系统。该设计方案采用4个220V/10A模块并联来实现模块间的自主均流,从而为电力系统提供了一种重量更轻、体积更小、效率更高、安全性更好的整流模块实现方案。由于篇幅所限,本文只介绍220V/10A整流模块的实现方法。

高频开关电源性能优于相控整流电源,它能否得到广泛工业应用的关键是其可靠性,特别是当输出直流电压较高时应能可靠工作。除元器件及生产工艺等因素外,开关电源的可靠性主要取决于其主电路拓扑结构及控制方法。在设计该电源模块时,笔者选用了可靠性很高的三相电流型PWM整流器来完成三相功率因数校正及移相全桥谐振拓扑,从而实现DC/DC转换;PWM控制则采用电流型控制方法来实现。

3.1 三相PWM整流器

图1所示是一种三相PWM整流器的主电路,该电路的每个桥臂均由2只IGBT和2只二极管组成。其中IGBT的驱动脉冲采用正弦PWM调制脉冲,这样,输入电流和输出调制电压Vd中就只含下式所示的谐波:

式中:Id为输出电感中的电流;Vl为输入线电压有效值:P为0~60°区间内的脉冲数;M为调制系数,M=Uo/Um。

PWM整流器具有输入功率因数高,输入电流的低次谐波电流含量少,PWM调制脉冲易实现以及成本低等优点。

3.2 全桥DC/DC变换器

a.主电路拓扑

根据该高频开关电源的输出功率较大(220V、10A)且工作频率较高(100kHz)等实际情况,笔者选用了全桥隔离式PWM变换器,图2是其电路图。

这种线路的优点有二:一是主变换器只需一个原边绕组,通过正、反向电压即可得到正、反向磁通,副边绕组采用全桥全波整流输出。因此变压器铁芯和绕组可得到最佳利用,从而使效率密度得到提高。二是功率开关可在非常安全的情况下运行。

b.控制与保护

DC/DC变换器采用峰值电流型PWM控制,并采用自主均流法实现多个模块并联运行时的均流控制。这种均流控制方法与电源模块数目无关,且任意1个模块发生故障或退出运行时,均不影响其它模块的均流功能,从而真正实现了N+1冗余运行。

PWM脉冲宽度调制开关变换器的控制芯片采用UC3875移相专业控制芯片,该芯片主要应用于全桥变换器电路。它有电压型和电流型控制模式可供选择。UC3875具有限流、输入过压、输出过压、输入欠压等保护功能。自动均流电路采用以最大电流自动均流法为原理的集成均流芯片UC3907,应用UC3907可以调节电源模块的电压并实现并联模块间的均流。

    用于电力系统中的高频开关电源可满足的技术指标如下:

输入交流电压:380V;

纹波系数:≤0.5%;

电网频率:50Hz;

功率因数:≥0.9;

输出直流电压:220V;

稳压精度:≤0.5%;

模块输出电流:10A;

稳流精度:≤0.5%;

整机输出电流:40A

均流不平衡度:≤0.5%。

开关电源芯片范文6

>> 开关电源模块并联供电系统设计 开关电源并联均流系统 一种用于单片机开关电源的节能控制系统设计 基于PWM控制的开关电源系统仿真研究 开关电源模块并联供电系统的设计 浅谈开关电源模块并联供电系统的设计 一种开关电源模块并联供电系统的设计 基于并联双电源按比例对负载供电控制系统的设计 开关电源设计 高频开关电源双闭环反馈并联系统 基于MSP430单片机的开关电源模块并联供电系统 基于CANopen协议的三相逆变器并联控制系统设计 基于PWM控制的开关电源技术研究 基于PIExpert的反激式开关电源设计 基于小型高效直流开关电源的设计 基于UC3875的开关电源设计 基于ARM的智能数字开关电源设计 基于TOPswitch的反激式开关电源设计 开关电源并联系统自动均流技术的相关分析 基于集中控制的模块化开关电源系统的研究 常见问题解答 当前所在位置:

关键词:开关多电源;移相式变化器;逆变电路

DOI: 10.3969/j.issn.1005-5517.2013.9.007

*基金项目:陕西省自然科学基金资助项目(2011K09-16)

引言

传统的线性稳压电源[1-3]具有稳定性能好、输出电压纹波小、使用可靠等优点,但其通常都需要体积大且笨重的工频变压器与体积和重量都很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管的功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,很难满足现代电子设备发展的需要。开关电源是一种采用开关方式控制的直流稳压电源,通过控制开关的占空比来调整输出电压。它以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源形式。

方案设计

本设计基本要求:实时监控电源的输出电压和输出电流。通过 RS485通信接口与上位机监控系统通信,上位机可实时监控电源的工作状态和各种参数。具有输出过压、过流以及过热等多种检测和保护电路,带有告警指示灯可以在线设置和修正电源的参数和运行状态。具有自动均流功能,可以实现系统的任意扩展,满足现场实际需要。指标要求采用大功率电源设计,输出电源0~100伏,输出电流10A采用4组并联,最大输出电流40A各组电流不平衡误差小于5%。

输入回路将交流电通过整流模块变换成含有脉动成分的直流电,然后通过电容使得脉动直流电变为较平滑的直流电。功率开关桥将滤波得到的直流电变换为高频的方波电压,通过高频变压器传送到输出侧。最后,由输出回路将高频方波电压滤波成为所需要的直流电压或电流,主回路进行正常的功率变换所需的触发脉冲由控制电路提供。

在本系统中采用四路电源并联,由于每个模块的结构相同,故在下面框图中,只画出来了一个模块。其余三个模块跟下图中的模块并联,并同时受监控电路控制。在本设计中,UC3825作为控制电路的核心,产生PWM波以控制主电路的电压输出。UC3907芯片作为均流控制系统的核心,用于保障四个模块的输出电流保持在稳定状态,使系统处于最佳的状态。我们采用STC80S52单片机作为监控电路的核心,单片机的任务是采集每一个模块的输入电压和输出电压、电流,并将其数据通过通信接口电路上传给上位机,相反,上位机同样可以通过此电路设置系统的输出参数。系统一个模块的示意图如图1所示。

均流控制系统设计

大功率电源系统需要采用若干台开关电源并联,以满足负载功率的要求,并联系统中,每个变换器只处理较小的功率,降低了应力,提高了系统的可靠性。由于大功率负载需求和分布式电源系统的发展,开关电源并联技术的重要性日益增加。但是并联的开关变换器模块间需要采用均流措施,它是实现大功率电源系统的关键。用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在电流极限(限流)状态。在本设计中,采用基于最大值电流自动均流法的集成芯片UC3907作为均流控制系统的核心。

电路工作过程如下:UC3907的调节放大器将模块自身的电流和均流母线的电流相比较,当模块自身的电流小于均流母线的电流,即它为从模块时,调节器使基准电压升高100mV,使输出电压增大,对应的输出电流增大。当模块自身的电流和均流母线的电流差不别不大时,该模块有可能是主模块。但是下一次,该模块又可能是从模块,如此循环往复。在本设计中输出电流最大值为10A,采用电阻来检测电流。根据芯片资料,UC3907内部电流放大器的输出最高电压可达5V。为此,我取4V。根据测算,此时需要送给UC3907检测的电压为0.2V。UC3907内部的驱动放大器将电压放大器输出电压转换成电流信号送给光耦电路。根据所选择的光耦电路参数,光耦电路原方电流应小于1 mA。根据芯片资料和调试经验,可以得到相关参数。R1=330kΩ,R2=2kΩ,R3=10kΩ,R4=7kΩ,R5=10kΩ,R6=5kΩ,R7=10kΩ,C1=C2=0.22μF。

所以加在输出整流二极管上最高的反压为705.7V。输出整流二极管流出的电流即为流过输出滤波电感的电流,所以其有效值为11.51A。所以根据以上分析,同时考虑一定的裕量,选取RURU3O12O作为输出二极管。该二极管的耐压为120V,额定电流为30A。控制和保护单元电路的设计采用PWM(脉冲宽度调制)作为控制方式。在本系统中我们选用的PWM集成控制器为UC3825。UC3825适用于电压型或电流型开关电源电路,实际开关频率可达到1MHz,输出脉冲的最大传输延迟时间为50ns,具有两路大电流推拉式输出,具有软启动控制功能,并具有良好的保护功能。并采用IR2110作为驱动芯片。过流保护我们采用了三重保护:一是在系统的输入级的三相交流引入处安置熔断保险管,在系统出现短路和其它意外重大故障的时候切断外部电源的输入以保护系统免受损坏;二是在用于控制软启动的触发器后级安置熔断保险管,以防止启动浪涌电流的过大而破坏功率器件;三是系统的最主要的过流保护部分,通过对系统电流的检测来控制PWM信号脉宽从而达到过流保护的目的。在本设计中,监控单元采用STC80S52单片机作为控制核心。系统主监控模块作为一个独立的模块,可以监控整个电源系统各单元的运行状况,具有对系统的运行参数进行采集、显示及设置的功能。监控单元还能不断接受上位机的送来的命令,并根据命令对电源系统进行操作或者将电源系统的运行参数反送给上位机,完成远程控制。

系统主控制程序设计

系统主控制程序流程图如图4所示。

系统实际测试

(1)稳压测试

测试条件:Uin=15V,负载由1kΩ减少到2Ω(表1)。

(2)均流测试 (表2)。

参考文献:

[1] 康华光. 电子技术基础数字部分[M]北京:高等教育出版社.2006.1