地质测绘范例6篇

前言:中文期刊网精心挑选了地质测绘范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

地质测绘

地质测绘范文1

关键词:矿山地质灾害;3S;数字化测量技术精度分析优化实施

中图分类号:TL372 文献标识码: A

引言

在矿山建设和开采过程中,为获得各种矿图图纸和解决与开挖、回采等有关的各种几何问题所进行的测绘工作统称为矿山工程测量。矿山测量工作是矿山生产建设的基础性工作,在整个矿山生产系统中是十分重要的。3S对于矿山地质灾害的作用非常明显,能够对其进行合理的预测和恰当的防治。现代数字化测量技术的应用和优化实施极大的降低了矿山测量劳动工作量,提高了测量工作效率与测量质量,为矿山企业的健康发展奠定基础。

一、3S技术在矿山地质灾害评估、监测与防治中的应用

(一)、GPS的应用

所有的地质灾害关非一触即发,其形成与发展与时间密切相关,在力学上表现为蠕变过程。一般而言,蠕变的规模与速率都比较小,一旦发生力学失衡,地质灾害则表现为根本的质变过程。运用全求定位系统可以对地质灾害的形成与发展全程进行动态监测,它的差分精度可控制在1mm以下,因而能够准确分析、预测灾情的演变。GPS技术在地质灾害四大类中都有所应用,但主要用于分析与防治由岩土体变形所导致的灾害。为了准确分析此类灾害的变化与发展趋势,GPS技术采用点、线、面的结合技术,形成了监测与警报的综合信息处理平台,为及时捕捉灾情信息提供了可靠依据,且观测精度准,勘测效率高,为地质灾害监测与防治带来了革命性的影响。

RTK测量技术的优点主要有:作业效率高;定位精度高,数据安全可靠,没有误差积累;降低了作业条件要求,即RTK技术不要求两点间通视;作业自动化、集成化程度高,测绘功能强大;操作简单,容易使用,数据处理能力强等。RTK测量技术的不足主要有:受卫星状况限制;受天空环境影响;数据链传输受干扰和限制,作业半径比标称距离小;初始化能力和所需时间问题;存在高程异常问题;存在电量不足问题;精度和稳定性问题等。

RTK精度分析:本文以肇庆市某矿区的一级附合导线控制测量成果同RTK的复测比较结果来说明RTK的精度和可靠性。详细信息见表1。

表1导线控制测量与RTK成果比较

(二)、遥感技术(RS)的应用

遥感技术为GIS提供信息源,具有经济性、动态多时相收集空间信息等特点。

(1)遥感技术在滑坡、泥石流、地裂缝、崩塌等地质灾害调查和监测应用

通过研究滑坡与地应力形变的关系,可预测和划分滑坡发生区域,从技术上克服了地形等条件的限制,在防治矿山滑坡的应用上,“数字滑坡”RS技术成效明显,它充分利用了GIS数据分析与管理功能;矿区泥石流多与气候有关,通过泥石流形成要素(即固体物质松散、地形陡峭、暴雨或水溃突发)的分析研究,或直接破译泥石流。RS技术可直观显示供给区、通过区、和沉积区的情况,因而能够实现快速识别、重点防治泥石流灾情。此外,遥感技术在动态监测地裂缝、崩塌方面具有十分广阔的前景,高分辨遥感图像与统计数据的结合可对地裂缝、崩塌实时监测。

(2)遥感技术在灾前预测和灾后评估的应用

遥感技术在此方面的应用分为两个阶段,即灾中实时评估与灾后恢复重建评估。通过灾前与灾后的影像数据分析对比,以受灾图表及灾情评估报告的形式来综合反映受灾情况、灾情影响、灾情控制等评估内容。由于RS技术具有动态多时相收集空间信息的特点,因此能够准确反映常见地质灾害特征,从而绘制灾情分布图并划定灾害危险等级,以便及时做好应急预案使灾情所造成的影响与损失控制在最小程度。

(三)、GIS地质灾害信息管理、评估、监测与防治中的应用

针对过去数据存储和管理方式在分析地质、水文等信息与模型存在的缺陷,GIS以强大的空间数据管理系统为平台以有效获取、处理与查询数据信息作为手段,实现了地质灾害分析的及时性与准确性。

(1)地质灾害的危险等级区划评估

GIS技术通过构建矿山地质环境评价模型来评估地质灾害的危险性级别,并采取多种方法分析地质灾害危险性指数,因此能够有效地管理和预警和防治灾害的发生。例如通过矿山形态与地貌特征分析可评判对周边环境的影响,通过几何与力学方法分析可预测灾害形成的内外因,此外,通过对历史数据分析可预测未来地质灾害发展趋势。

(2)地质灾害危险性评价

通过分析地质灾害活动程度与形成条件,并结合空间与时间联系方法,可大致确定灾害的发生概率、位置和范围。GIS对灾害危险性评价精度高、效率高、采有制图的方法后结果更具有说明性与直观性。

(3)GIS在地质灾害监测与防治中的应用

利用空间统计分析方法将地质灾害历史数据、测绘空间数据、气象资料等数据在万维网地理信息系统中汇总成灾情数据库,从而实现对地质灾害实时监测与预警,并对未来灾害发展趋势进行预测。GIS还可以与RS相结合共同发挥其在地质灾害监测与防治中的作用。

二、三维激光扫描技术及其在矿山测量中的应用

三维激光扫描技术是一种新兴的基于高密度点云数据进行体积计算的实景复制技术,其核心是激光发射器、激光反射镜、激光自适应聚焦控制单元、CCD技术、光机电自动传感装置。

三维激光扫描测量技术的特点主要体现在实现远距离非接触测量,数据点密集、精度高、速度快、成本低、安全系数高、管理方便等。它有效地解决了复杂矿山开采区的测量精度问题,特别是在开展露天矿山测量工作中,丰富的可视化数据分析模型形象直观,不用到实地踏勘就能使管理者对矿山的开采过程和状态一目了然,达到矿区实际开采图像、数据和开采状态的高度一致,是目前露天矿山测量中应用广泛的技术手段,实现了矿山储量真正的动态监测。从而使矿产储量登记统计更加真实,对于建立以资源消耗量为基础的矿产资源补偿费征缴制度、维护矿产资源国家所有权益、矿业权人权益、矿业权市场的健康发展,都具有十分重要的现实意义。

三、AutoCAD制图软件及其在矿山测量中的应用

AutoCAD是计算机辅助设计的简称,简单说就是指利用计算机技术完成各种信息在图纸上进行信息检索、分析、计算、综合修改等工作。它是人类在20世纪取得的重大科技成就之一,它几乎推动了工程领域的革命,彻底改变了传统的手工绘图方式,把广大的工程技术人员从传统的纸笔、绘图板中解放出来,以极其丰富的制图功能,极大的提高绘图效率和绘图质量,在很大程度上也降低了绘图人员劳动强度。相对于传统手工绘图,AutoCAD制图技术具有准确性和方便快捷性等特点。

(一)、属性管理

数字化绘制的矿山图形涉及很多图形属性,因此,对图形属性的管理是数字化地图的重要内容。但是,图形属性要通过数据库完成,而AutoCAD不具备数据库管理功能。因此,为了提高图形属性管理效率,可以使用AutoCAD提供的OBJECTARX控件进行图形属性数据库操作。这样不仅保证了管理效率的简单、高效,也使得属性库易于修改、便于管理,提高了系统稳定性。

(二)、属性维护

由于图形数据和属性数据在两个不同的系统中完成,容易造成图形和属性的不一致,因此要对相关数据进行维护,监视所有操作,一旦图形发生变化,就要对属性进行修改。

结束语

在科学技术迅速发展的今天,现代化测量技术逐步取代了传统的矿山测量技术。现代化测量技术在矿山测量的应用一方面需要矿业企业领导对于测量工作认识的提高,另一方面还需要加强测量人员技术水平的培养与提高。矿山测量不仅仅关系到矿山的生产安全性,还关系到矿山开采、科学生产等重要工作。因此,相关企业与工作人员在从事矿山测量工作时,应广泛使用先进的现代化技术,并合理优化使用各种现代化测量技术,提高矿山企业的安全生产效率,促进矿山企业的可持续发展。

参考文献

[1]孔祥元,梅是义.控制测量学[M].武汉:武汉大学出版社,2002.

地质测绘范文2

关键词:工程地质测绘技术

地质测绘长期依靠经纬仪、平板仪、水准仪“老三仪”进行工作,新技术的应用较局限。在未来的发展中,随着现代测绘技术的逐步扩大应用,向“老三仪”告别的时代已经到来。现代测绘技术的核心是卫星导航定位技术、遥感技术和地理信息系统技术。其中,卫星导航定位技术和遥感技术是航天技术、卫星技术、传感器技术、现代通信技术、计算机技术等高新技术综合集成的结果,地理信息系统技术是计算机技术、数据库技术、空间分析与模拟(虚拟现实)技术综合集成的结果。因此,现代测绘技术是空间技术和信息技术等现代高新技术

的综合集成,也是国家高新技术的重要组织部分。

1工程地质测绘

工程地质测绘是岩土工程勘察的基础工作,在诸项勘察方法中最先进行。按一般勘察程序,主要是在可行性研究和初步勘察阶段安排此项工作。但在详细勘察阶段为了对某些专门的地质问题作补充调查,也进行工程地质测绘。工程地质测绘是运用地质、工程地质理论,对与工程建设有关的各种地质现象进行观察和描述,初步查明拟建场地或各建筑地段的工程地质条件。将工程地质条件诸要素采用不同的颜色、符号,按照精度要求标绘在一定比例尺的地形图上,并结合勘探、测试和其他勘察工作的资料,编制成工程地质图。这一重要的勘察成果可对场地或各建筑地段的稳定性和适宜性作出评价。

工程地质测绘所需仪器设备简单,耗费资金较少,工作周期又短,所以测绘工作在结合岩土工程时应力图通过它获取尽可能多的地质信息,对建筑场地或各建筑地段的地面地质情况有深入的了解,并对地下地质情况有较准确的判断,为布置勘探、测试等其他勘察工作提供依据。高质量的工程地质测绘还可以节省其他勘察方法的工作量,提高勘察工作的效率。

根据研究内容的不同,工程地质测绘可分为综合性测绘和专门性测绘两种。综合性工程地质测绘是对场地或建筑地段工程地质条件要素的空间分布以及各要素之间的内在联系进行全面综合的研究,为编制综合工程地质图提供资料。在测绘地区如果从未进行过相同的或更大比例尺的地质或水文地质测绘,那就必须进行综合性工程地质测绘。专门性工程地质测绘是对工程地质条件的某一要素进行专门研究,如第四纪地质、地貌、斜坡变形破坏等;研究它们的分布、成因、发展演化规律等。所以专门性测绘是为编制专用工程地质图或工程地质分析图提供资料的。无论何种工程地质测绘,都是为工程的设计、施工服务的,都有其特定的研究目的。

2现代测绘技术

2.1全球定位系统(GPS)的发展

GPS即全球卫星定位系统(Global Posi―tioning System)。它最初是由美国国防部开发的,

利用离地面约两万多公里高的轨道上运行的24颗人造卫星所发射出来的讯号,以三角测量

原理计算出收讯者在地球上的位置。GPS采用的是全球性地心坐标系统,坐标原点为地球质量中心。

2-2遥感技术的发展

遥感技术在近一、二十年内飞速发展,这种发展主要表现在新型传感器的研制和应用的

日新月异,其发展的特点如下:

a.不断研制新型传感器,既有框幅式可见光黑白摄影、多光谱摄影、彩色摄影、彩红外摄影、紫外摄影,又有全景摄影机、红外扫描仪,红外辐射计、多光谱扫描仪、成象光谱仪,CCD线阵列扫描和矩阵摄影机、微波辐射计、散射计,合成孔径雷达及各种雷达和激光测高仪等。

b.形成多级空间分辨率影象序列的金字塔,以提供从粗到精的观测数据源。传感器的研制在向更高的空间分辨率方向发展的同时,也向全方位的立体观测能力方向发展。

c.可反复获取同一地区影象数据的多时相性。一般是空间分辨率低的而时问分辨率高。遥感多时相性,提供了人们长期、系统和动态研究地球表面的变化及其规律的可能性。

2.3地理信息系统的发展

从系统角度看,在未来的几十年内,地理信息系统(GIS)将向着数据标准化、数据多维

化、系统集成化、系统智能化、平台网络化和应用社会化(数字地球DE)的方向发展。Intemperable GIS互操作地理信息系统(Interoperable GIS)是GIS系统集成平台,它实现在异构环境下多个地理信息的系统或其应用系统之间的互相通信和协作,以完成某一特定任务。GIS三维(四维)地理信息系统(3D&4DGIS)目前研究重点集中在三维数据结构的设计,优化与实现,以及体视化技术的运用,三维系统的功能和模块设计等方面。GIS面向对象和构件技术的地理信息系统(Com GIS)是把GIS的功能模块划分为多个控件,每个控件完成不同的功能,通过可视化的软件开发工具集成起来,形成最终GIS应用。GIS基于www的地理信息系统(web GIS)是利用Intemet技术在Web上空间信息供用户浏览和使用。

Digital Earth它是对真实地球及其相关现象统一性的数字化重现和认识,其核心思想是用数字化手段统一地处理地球问题和最大限度地利用信息资源,从而完成数字地球的核心功能,光缆、卫星通信技术以及计算机网络等技术则完成海量空章数据的传输任务。

3地质测绘技术发展

3.1大地控制测量

控制测量是地质测绘的基础,地质矿区布设平面控制的方法,一是在国家一、二等三角控制下进行三、四等三角点的加密,另一是在国家一、二等三角点下不能加密情况下布设独立的三、四等三角或五秒小三角锁网作为矿区基本“平面控制. 独立的三角锁网必须测定锁网的起算边长。对于内部范围不大的测区来说,采用光电测距仪、全站仪进行三角锁、导线的测量,生产效率比丈量基线也提高几十倍。所以对于小范围测区来讲,光电测距(半站仪、全站仪)除测定起算边外,还应用于测边网、测距导线代替常规的测角网。大地控制测量成果的平差计算,以往用对数表人工计算,进度慢、差错多,现在也普遍引入计算机软件进行处理,象GPS后处理软件、控制精灵等等,又提高效率也减少误差出现的几率,所以在短时间内就得到了很大的普及。

3.2地形测量技术

地形测量的加密图根控制,传统的方法是在矿区基本控制点下布设测角图根线形锁及测

角交会点,现在则采用导线测量、GPSRTK模式,极大地减少工作量,也提高了精度。地形测量是地质测绘工作重要的任务,长期以来的测图方法,以大平扳仪测图,至今在大比例尺地形测图中仍然是普遍采用的主要手段之一。但是占主导地位的已经是全野外数字化测量了,采用全站仪、RTK一天的工作量已是大平板仪所不能比拟,完全不可同日而语了。

4 结束语

现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间

地质测绘范文3

2.1矿山测量方面。遥感技术在矿山测量中的应用已经历了较长的时间,并积累了丰富的经验。应用遥感资料,可获取矿区实时、动态、综合的信息源,对矿区环境进行监测,为矿区环境保护提供决策支持。遥感资料用于找矿、矿区地质条件研究、煤层顶底板研究等方面都已得到应用,所有这些,都说明遥感技术应用于矿山测量是矿山测量实现其现代任务的重要保证。

2.2湿地方面。利用遥感技术对湿地生物资源的分布、生长状况及其变化进行估测。利用遥感技术多层次、多时相的动态监测功能获得及时可靠的数据,通过地理信息系统技术进行相关数据的实时更新,并对这些数据进行空间分析,可得到湿地的动态变化情况。

2.3水利工程方面。遥感技术能够实时地对大江、大河和湖水水位进行监测,可实时监测洪水灾害面积。RS和GIS集成能及早预报洪水淹没范围和干旱灾情范围,为防灾、抗灾提供准确信息。在水利枢纽工程竣工后,需对水库大坝、大型桥梁等进行连续的、精密的监测。现代测绘技术提供了连续、实时的安全运行监控手段。

2.4地理信息系统的发展。从系统角度看,在未来的几十年内,地理信息系统(GIS)将向着数据标准化(Interoperable GIS)、数据多维化(3D&4D GIS)、系统集成化(Component GIS)、系统智能化(Cyber GIS)、平台网络化(Web GIS)和应用社会化(数字地球DE)的方向发展。Interoperable GIS 互操作地理信息系统(Interoperable GIS)是GIS系统集成平台,它实现在异构环境下多个地理信息的系统或其应用系统之间的互相通信和协作,以完成某一特定任务。攀 GIS 基于WWW的地理信息系统(Web GIS)是利用Internet技术在Web上空间信息供用户浏览和使用。Digital Earth 它是对真实地球及其相关现象统一性的数字化重现和认识,其核心思想是用数字化手段统一地处理地球问题和最大限度地利用信息资源,从而完成数字地球的核心功能,光缆、卫星通信技术以及计算机网络等技术则完成海量空章数据的传输任务。

3地质测绘技术发展 3.1大地控制测量。

控制测量是地质测绘的基础,地质矿区布设平面控制的方法,一是在国家一、二等三角控制下进行三、四等三角点的加密,另一是在国家一、二等三角点下不能加密情况下布设独立的三、四等三角或五秒小三角锁网作为矿区基本“平面控制.独立的三角锁网必须测定锁网的起算边长。我单位在上世纪末期引入载波静态相对定位技术即多台套GPS接收机结合后处理软件以来,精密控制测量就不再限制于通视条件、距离条件这些因素,控制测量的工作模式有了很大的改观,对于相对独立断点分布的矿区工程点不再需要长远距离的测三角锁从其他地方引入控制点,只需从起算点采用边点连接跳跃式地可以直接引入到测区,极大地简化了工作步骤,节省了时间和人力。

3.2地形测量技术。

地形测量的加密图根控制,传统的方法是在矿区基本控制点下布设测角图根线形锁及测角交会点,现在则采用导线测量、GPSRTK模式,极大地减少工作量,也提高了精度。 地形测量是地质测绘工作重要的任务,长期以来的测图方法,以大平扳仪测图,至今在大比例尺地形测图中仍然是普遍采用的主要手段之一。但是占主导地位的已经是全野外数字化测量了,采用全站仪、RTK一天的工作量已是大平板仪所不能比拟,完全不可同日而语了。4. 结语 现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间的相互交叉与渗透,测绘学与其它门类科学的联系增强加大,测绘学吸收和移植其它学科成果的速度加快,这种学科内外的综合化发展,将使现代测绘学不断开拓出新的领域。测绘将成为构建“数字地球”、“数字中国”的主力军。

参考文献:[1]曹幼元,贺跃光. PDA GPS在地质测绘中的应用[J].测绘技术装备,2005,(4).

[2]魏建华,张展,许月光.工程地质测绘中的几个研究对象[J].黑龙江水利科技,1999,(4).

地质测绘范文4

1、GIS技术

GIS技术是将很多学科内容进行整合的地理信息系统,其以地理纵向范围和横向范围作为基本依据,构建地理模型来开展研究,不断更新不同领域的环境和现状情况,目的是为进行地理信息分析和地理决策进行服务,是一种计算机技术系统。GIS技术的基本使用原理是将实际数据类型的内容通过模拟化的地理图形进行展现,然后将实际的地理环境和模拟化的地理图形进行比较分析,来实现有效的研究和运用,GIS技术显示的地形图具有范围大和具体性两方面的特征,既可以显示各大洲的地理图形,也可以显示具体的街道地理图形,在实际应用中涉及的对象有:道路交通路线、人口流动、销售情况等。GIS技术主要是进行三维信息分析的技术,在资源和环境的使用范围中,具有积极的技术指引作用,能够对时空分布内的各种资源实现有效地管理,同时对环境的监管和利用进行可靠的数据计算和分析,实现科学化以及精确化地决策,同时还可以对各种时间的资源环境情况和生产活动变化进行实时观察和测量,便于对数据进行有效的分析和管理,以及将测量的数据信息、环境的地理分布、决策的规划进行综合,实现一个整体的流程,有效地增强工作时效和经济发展,为资源环境的有效决策提供必要的技术指导。

2、GPS-RTK技术

当前的地质勘察测绘中,GPS-RTK测绘技术具备快速定位、高自动化水平、较小的误差、勘测精度高、使用方便等优势,所以,在地质勘察测绘中应用较多,GPS-RTK测绘技术由三个部分组成:第一,卫星信号系统。其最少具有两台GPS接收设备,安装在GPS基准站与GPS流动站,当GPS基准站同一时间为多个客户进行服务,要应用双频GPS接收机,以保证采样速度和GPS流动站的采样速度没有差别;第二,软件解算系统。该系统能可靠准确的确保RTK数据无误,利用在接受时刻接收的卫星信号的相位相对于接收机产生的载波信号相位的测量值为观测量的RTK测量。第三,数据传输系统。UTS主要由GPS基准站的数据发送设备和GPS流动站的数据接收设备构成,是达成RTK测量的关键装置。

二、地质测绘中GPS-RTK技术的优点

1、采用GPS-RTK测绘技术使测绘效率提升。特别在地势复的环境中,实时动态控制系统一次能够测量直径四千米的范围,相比传统测量方式,很大程度降低了测量控制点数量与设备移动的频率,一般的电磁条件下就能够迅速取得地点坐标,实行迅速测量,且工作强度要求不高,与此同时,还节省了外业成本,很大程度提升测量效率.

2、可以消除环境因素的不利影响。传统测量方式较易遭到各种外界因素的不利作用,导致测量精度和测量速度都受到很大影响,此外,在通视较差的环境中,一些工作不能进行,可GPS-RTK测量技术的出现,可以彻底消除此类因素的不利作用,许多不利因素下都能实行高速精准的测量。

3、GPS-RTK测绘技术的自动化程度与集成化水平较高。GPS-RTK测绘技术能够满足各类工作,GPS流动站能够通过各类控制系统,在无人为干涉的条件下,就可以自动完成各类的测绘工作,切实降低了误差的发生概率。

三、地质测绘中现代测绘技术的应用

1、GIS技术的应用

将GIS技术应用在地质工程测量和绘制地质图中,最主要的就是将GIS技术测量的数据和模拟的地形图和实际勘测的部分数据相对比,确保GIS技术得到数据的真实性,同时还要将勘测对象地质的内部结构和内部成分通过图形进行展现。具体的工作流程有以下内容。

1.1对开展的地质对象首先要进行大概的了解和基本的测量,对整个地质范围内的环境进行真实的记录和描述,利用数学图形进行表达,比如:柱形图、平面图、折线图、立体图等,其中主要将平面图作为地质工程的基本图。

1.2通过地理信息系统技术即GIS技术进行分析,输入基本的数据和环境描述,在计算机上显示模拟化的地形图和内部构造。

1.3对地形图内的各种勘测目标进行标注,比如:地层厚度、地下水位高度、勘测工程可达到的深度等,便于绘制详细的地质工程图。

1.4凭借GIS技术的制图功能,对所测量的图进行更详细化的绘制,标明地理方位坐标、以及精确的数据信息,从而形成地质工程勘测所需的地质测绘图,确保地质工程有效安全的开展。由于地质工程行业是将自然环境和地球环境作为基本前提,来对地质结构进行调查、勘测矿产资源的分布、了解某些地质内层的构造等问题开展研究,运用数学统计、地质勘测、遥感定位等学科技术,以此实现研究目标并促进地质工程的实际建设。通常在进行地质工程的研究中,使用地质测绘技术进行地质表层和内部进行勘测和研究,对其结构、成分、环境、地形等进行严格的数据,制定可行可靠的方案,实现地质研究的目的。

2、GPS-RTK技术的应用

2.1当前,大部分GPS-RTK测绘设备均选用OTF法解算整周未知数,很大程度减少了计算时间,所以,在干扰较小或无干扰的地区,设备锁定卫星超过五颗,五秒内实时动态控制系统测量就能得到固定解,手簿反应的收敛值通常不高于2厘米,该收敛值准确地表现测量的仪器多次测量对比的较差,如果实时动态控制系统测量超过60秒才取得固定解,该收敛值有很大几率不够准确,需要再次进行确认.

2.2采用已知控制点通过观察,分析,找出研究对象的相同点和不同点,为实时动态控制系统测量起算数据的高级控制网,通常由GPS静态测量得到,可靠性相对较高,为检查核实坐标转换参变量、已知数据录入及实时动态控制系统测量每个阶段的正确性,能够利用将已知控制点添加到测量链中的模式实行检核,该方案切实有效,能在所有条件下应用。

2.3少部分测量地区存在产生妨碍无线电接收信号的那些杂乱的电波导致实时动态控制系统测量质量有误,造成测量结果发生误差或者存在伪值的状况,此类状况在测量的过程中容易遭到忽略,观测手簿反映的收敛值产生时间较长,收敛值范围通常在2-8厘米,这时候,手簿反映的收敛值或许不够真实,有时误差值从数十厘米到数米之间,当发生此类状况,要细致处理收集的信息,最佳方式为重置整周未知数再次收集数据并检查核定测量质量,也能采用另一个移动站多次收集数据并且进行测量,每次将变量赋为默认值后,要多次测量1个或者2个已经测量过的控制点,以检核GPS基准站设置的正确性和测量链太长导致的点位坐标漂移误差。

地质测绘范文5

关键词:GPS-RTK测绘技术 地质勘察测绘 应用

随着科学技术的进步,在现代的地质勘探工作中通常会应用到各种高新技术和先进的勘探仪器。GPS—RTK技术是现代地质勘探中一种常用的技术,该技术能够大幅度提高地质勘探工作的效率和质量,并且其还有精度高和使用经费低等优势,因此其在现代的地质勘探工作中备受青睐。在地质勘探工作中,地质勘察测绘是地质勘探工作中的重要环节,现本文就针对地质勘查测绘中常用的GPS-RTK技术的应用进行分析。

1、GPS-RTK技术在地质勘查测绘中的应用与发展

随着科学技术的日新月异,GPS-RTK的技术水平和使用设备都有了大幅度的提升,从而为现代的地质勘探工作提供了有利的条件。然而就目前GPS-RTK策划技术在地质勘查策划中应用的实际情况而言,其具有作业效率高、定位精度高,数据安全可靠,没有误差积累、RTK作业自动化、集成化程度高,测绘功能强大等优势,从而大幅度提高了现代地质勘察测绘工作的效率和质量。

2、GPS-RTK技术基本原理

GPS - RTK 测量系统是GPS 测量技术与数据传输技术相结合而构成的组合系统, 是以载波相位观测量为依据的实时差分GPS 测量技术。它是在基准站安置一台GPS 双频接收机,对所有可见的 GPS卫星进行连续观测, 并将连续观测所得信息和基准站自身的信息通过无线电传输实时传送出去。在流动站上,GPS 接收机上除接收卫星信号外, 同时还接收来自基准站发来的数据信息, 并通过仪器内置软件实时解算出3 维坐标信息及其精度信息。

3、实例应用

3.1测区概况

某矿地质详查项目的勘查面积为1.1平方公里。并且该矿区交通非常方便,矿区位于某山区中部,并且该山区属于中低山区。矿区内最高海拔标高460米,河床标高190米,地势比高352米。“V”形沟谷教发育,为构造侵蚀地形。矿区地形复杂,地面坡度达25度以上,是大片高大毛竹覆盖着的高山森林区段。

3.2控制点测量

全区采用位于矿区周围外布设的GPS点D001、D002和XTL-2三点作为为已知控制点。将基准站架设在已知点D002上,流动站测取每个控制点的WGS84国家大地坐标系统的平面坐标和大地高,通过已知点D001,D002,XTL-2号点解算出转换参数,从而的解算出矿区加密控制点X01、X02…X14成果坐标。测量工作严格按照《地质矿产勘查测量规范》(ZBD10001-89)进行,作业方法及成果精度均符合规范要求。

3.3地质点、槽探端点、坑道、钻孔的测量

地质点、槽探端点的测设均以地质人员随指随测的原则测定。钻孔放样,严格按照初测、复测、终测三道作业程序进行放样。坑道口的测设按照设计坐标测定,在坑道口定设两个图根点作为图根点,以便于架设全站仪控制坑道的走向和深度控制。

3.4作业精度统计

在作业时,我们采用以下3种方法进行了精度检测:(1)在已知点架设移动站,采集数据,得出坐标与正确值比较,共检测3个点;(2)分不同时间段对特征点进行重复测量,比较其差值,统计此类点23个;(3)随即使用索佳SET530全站仪和钢尺量距检测相邻两地形点的高差和距离,检测了32个点。3种方法累计检测58个点,统计总的作业精度为:平面精度±0.11m;高程精度±0.18m,满足工程精度要求。

4、应用体会

通过上述实例分析以及多次的实践经验,笔者总结出了在地质勘查测绘过程中采用GPS-RTK技术进行地质测绘的应用体会:即采用GPS-RTK技术具有公正效率高、测量数据准确、误差小、测量方便简单、自动化程度高、易于操作等诸多优点,是一种值得大力推广与应用的现代地质勘测测绘技术方法。其具体的应用体会分析如下:

4.1 工作效率高。在实际的地质勘查测绘中,采用GPS-RTK技术可以在一个测定点一次性完成对周边4km范围内的地质勘查,这不仅极大的节省了传统测绘技术中需要设定的多个测定点,减少了测量机械搬运的次数,而且这种测量技术只需要一人操作就可以完成,且得出的测量结果较快,极大的提高了地质测绘的工作效率。

4.2定位准确,误差值较小

如果在使用GPS-RTK技术时能够完全按照技术要求的规范操作进行地质测绘,就可以快速得出其所能勘查的范围内所有的平面精度与高程精度,且定位非常准确,其精度所得数据值误差非常小,几乎可以忽略不计。

4.3降低了对测绘工作条件的要求

RTK技术不要求两点间满足光学通视,只要求满足“电磁波通视”,因此,和传统测量相比,RTK技术受通视条件、能见度、气候、季节等因素的影响和限制较小,在传统测量看来由于地形复杂、地物障碍而造成的难通视地区,只要满足RTK的基本工作条件,它也能轻松地进行快速的高精度定位作业。

4.4自动化、集成化程度高,功能强大

采用GPS-RTK技术进行测绘作业,其适用范围是非常广泛的,几乎所有的地质勘查测绘工作都可以采用该技术进行测绘作业,且这种测绘技术在完成基础的测绘操作后,系统软件可以制动分析处理,无须人工操作就可以自动完成所有设定的测绘工作,测绘功能非常强大,且辅助测量工作非常少,集成化程度高,最大限度的保证了测绘工作的精准度。

4.5易于操作,数据处理能力强

GPS-RTK技术在应用中的操作是非常简单的,且只需要做好一定的简单设置,就能够边行走变测绘,或者也可以坐标放样,所测得的数据会自动输入系统中,进行存储和处理,再经过自动转换输出测绘所需的数据结果。极大的方便了其与计算机的数据传输。

4.6 RTK测量成果的质量控制

在布测控制网时用静态GPS或全站仪多测出一些控制点,然后用RTK测出这些控制点的坐标进行比较检核。每次初始化成功后,先重测1-2个已测过的RTK点或高精度控制点,确认无误后才进行RTK测量。

地质测绘范文6

关键词:地质测绘 数字化制图技术

1、引言

为了充分推进国民经济的快速发展,需要相关的部门提供较为准确的社会发展规划数据,这些规划数据能够有效对地质测绘工作进行分析,并且最终保障整个测绘工作的顺利执行。随着当前技术力量的不断发展,需要进一步的提高整个测绘管理工作的指令和效率。在提高上述效率的过程中,利用数字化制图技术可以对该领域的测绘成果进行比较充分的展示,最终确保其在地质测绘领域具有较为广阔的应用前景。

2、数字化制图技术

2.1 数字化制图技术的内涵

在当前的测绘领域当中,现代化的计算机技术构成了比较先进的数字化制图技术,这种数字化制图技术可以将当前的信息技术、测绘技术以及计算机技术进行有效的融合,这样可以从根本上提高计算机硬件技术和软件技术的应用能力。在传统的模拟方式和制图方式中,根据数字化的地图设计技术可以对传统的制图技术进行改进和颠覆。上述技术已经被证明应用到了各个行业当中。通过对上述的数据进行内部分析和内部抽象,可以有效保障整个地质测量中制图工作的精度水平。

2.2 数字化制图技术的特点

当前的数字化制图技术主要包括以下几个方面的重要特点:首先是数字化制图技术能够自动对各个范围内的数据进行收集并进行地质信息的有效分析,并且上述收集的各种图形信息非常丰富,这种地图信息的收集需要依赖较为丰富的图像处理技术和计算机技术,上述技术能够实现数字记录和各种自由格式的转换,并且上述的数据转换具有较高的自动化程度。在数字制图技术当中,还需要依靠各种比较先进的数据测量技术,这样能够从根本上减少相应的误差,并且保证地质测绘的相关精度要求。

3、地质测绘中应用数字化制图技术的重要意义

在地质测绘技术中可以对数字化的制图技术进行有效分析,并且采取各种有效的方法和手段来提供测量精度和测量效率。除此之外,通过对一定符号的图形或者尺寸比例来进行选择可以保证整个平面图形能够直观的进行展示。在当前的系统化的资料收集过程当中还可以根据工程地质或者水温信息来进行各种普查工作,这种普查工作需要花费较多的人力、物力或者财力,上述测量工作还存在着一个比较明显的问题,那就是图形的复杂性会影响到整个测量过程的测量精度,保证其在比较复杂的环境中难以找到有效的测量结果。因此,在这种情况下,地质测绘人员的工作量会得到一定程度的减少,相应的工作效率也会大大提高。因此这种地质测绘手段和测绘技术能够保证工作效率得到较为根本性的提高,除此之外,还可以在测绘的过程当中获得更加丰富的地质测绘信息,这些信息对数字化的制图技术有着比较明显的影响。除此之外,利用数字化的制图技术还能够对地质测绘人员的管理素质和管理水平有着较为深刻的影响。

4、在地质测绘中对数字化制图技术的具体应用

4.1选择合适的制图方法

在数字化的制图技术分析中,需要首先对合适的制图方法进行分析,通过对上述这种制图方法进行分析能够保证信息在抽象化的过程当中不会出现缺失,并且根据描述图像坐标来对地质结果进行精确的测量。在进行测量图的绘制过程当中,还可以对复杂化的工作进行简化,当前也存在着三种比较常用的数字化制图技术,这些制图技术需要地质测绘工作人员来进行详细的操作。在具体的数字化制图技术的分析过程当中还需要对原本比较复杂的工作进行简化,这种简化工作可以为数字化制图技术的分析提供强有力的工具。如果在地质测绘工作中,需要以人工操作作为前提来对数字化制图技术进行详细的分析。因此在进行各种信息跟踪技术的分析过程中需要对各种信号进行记录并进行有效测量,通过及时有效的图纸分析可以保证测量结果得到完善,并且从根本上来实现数字化的发展需求。但是在这种制图方式当中需要进行大量的毕竟繁琐的数据操作,这些繁琐的数据操作需要购置毕竟昂贵的设备,昂贵的设备具有较高的数据测试性能,能够从根本上确保测试工作的有效开展与进行。

上述测量工作需要在有效的矢量化环境当中进行运用图像编辑系统来进行图像分析,这种图像分析需要直接利用计算机软件来进行各种数据修改分析。在人工跟踪矢量化输入算法中,当前的地质测绘工作也有着比较充分的分布范围。这些能够极大的提高整个系统中的原始资料分析结果,并且通过扫描仪可以对各种扫描数据和结果进行有效分析,对分析的数据进行存储。通过智能化的分析手段能够为整个数字化过程提供强力的技术保障。

4.2 数字化制图基础的具体操作

如果需要在地质测绘技术中进行数字化制图技术的分析就需要对整个地质测绘数据的准确性和有效性进行分析,通过这种数字化制图软件可以完成数据分析与数据录入工作,上述工作能够进行矢量转变分析。矢量图的元数据还可以对画图和图形编辑功能进行点和面的分析。在上述的地质测绘中还可以对地址情况进行有效的绘图分析,基于分析结果来对数字化制图技术进行校正功能的分析。根据输入数字图形的相关分析结果来处理当前的文件数据,并且对文件数据进行相关的分析与整理,最后结合地质工程的实际需求来调整当前的文件数据格式,确保打印的电子文档中能够生成完整有效的地图。在图形设备的结合过程当中还可以通过调整图形数据格式来绘制当前所需要的地图图形,最终降低地图图形的误差。

4.3 在地质测绘中应用数字化制图技术的注意事项

在进行地质测绘工作当中,目前的数字化制图技术具有十分明显的应用,数字化制图技术在当前有着十分关键性的应用背景。但是大量应用数字化制图技术需要较高的技术要求和较为严格的使用条件,因此在各种场合对地质测绘技术进行应用的条件下需要确保整个数据来源的有效性、准确性以及可靠性水平。这样才能够对原始数据进行有效的分析和处理。在数字化制图技术的绘图过程当中还需要对模型法进行运用,这样可以在点测绘工作获得完善的条件下来建立一套比较稳定可靠的数据模型。在进行地表模型的分析中,还可以通过点与面的关系来建立一套比较完善的地表模型。

5、结语

数字化制图技术是一种比较高端和先进的技术,它的主要原理就是将计算机技术与制图技术进行有效结合,在这种情况下充分展现地质测绘技术与原技术之间存在的较大差别。利用这种地质测绘效率和测绘质量来对当前的测量结果进行有效提高,因此该种测量技术具有较为广阔的应用前景。除此之外,还需要对工作人员的各种技术素养和技术水平不断进行提高,这种提高能够帮助工作人员不断积累较为丰富的数字化制图技术和制图经验,通过这种测绘水平最终确保我国地质测绘工作的稳定可持续发展。上述测量工作需要在有效的矢量化环境当中进行运用图像编辑系统来进行图像分析,这种图像分析需要直接利用计算机软件来进行各种数据修改分析。在人工跟踪矢量化输入算法中,当前的地质测绘工作也有着比较充分的分布范围。这些能够极大的提高整个系统中的原始资料分析结果,并且通过扫描仪可以对各种扫描数据和结果进行有效分析,对分析的数据进行存储。通过智能化的分析手段能够为整个数字化过程提供强力的技术保障。

参考文献

[1]⑿氯,煤矿地质测量里的数字测量图应用,民营科技,2016.

上一篇梁实秋散文

下一篇空调控制器