工厂数字化规划范例6篇

前言:中文期刊网精心挑选了工厂数字化规划范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

工厂数字化规划

工厂数字化规划范文1

【关键词】数字化工厂;仿真;虚拟制造

1.引言

在市场竞争日趋激烈,新产品上市周期越来越短,生产设备和制造系统日趋复杂、昂贵的情况下,为了获取最佳利润和保持市场占有率,制造企业必须从传统制造模式向数字化制造模式转变,实现产品的多元化,缩短产品上市时间,缩短生产准备时间,并进一步提高产品的质量。由此,数字化工厂作为优化生产过程的解决方案也越来越成为研究的热点。

2.数字化工厂含义

数字化工厂(Digital Factory,简称DF)是基于仿真技术和虚拟现实技术的发展而产生的,是以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式,通过对生产过程进行分析和优化,保证产品在可制造的前提下,实现快速、低成本和高质量的制造,从而实现柔性制造和并行工程[1]。

3.数字化工厂平台架构

数字化工厂软件是虚拟制造平台,对于缩短新产品的开发周期、提高产品质量、减少制造成本和降低项目决策风险都具有重大意义。

数字化工厂软件还是实现并行工程的工具。产品设计部门和制造工艺部门可以在产品的制造特征(焊点、定位点、装配位置等)领域紧密协作,在产品设计的早期阶段进行工程制造的仿真,在新产品的制造中尽量对标准化的工艺和工装卡具重复利用,从而实现产品设计和产品制造的并行互动的工作方式,缩短新产品的开发周期、降低制造成本和加快新产品投放市场[2]。

数字化工厂在工艺层面的主要应用包括工厂布局仿真优化、工艺流程规划及仿真验证、虚拟装配设计与验证、物流仿真。工厂布局仿真优化是建立车间厂房、物流通道、制造资源等的三维数字模型,为工艺、装配、物流仿真建立基础。是工艺流程规划及仿真验证在三维数字环境下对产品的工艺进行规划,制定工艺路线,如NC编程、流程排序、资源分配、工时定额,成本核算等,并对加工工艺过程进行三维仿真,仿真工艺路线,刀具切换,装夹过程等。虚拟装配设计与验证是提供一个虚拟制造环境来规划验证和评价产品的装配制造过程和装配制造方法,检验装配过程是否存在错误,零件装配时是否存在碰撞。它把产品、资源和工艺操作结合起来来分析产品装配的顺序和工序的流程,并且在装配制造模型下进行装配工装的验证、仿真夹具的动作、仿真产品的装配流程,验证产品装配的工艺性,达到尽早发现问题、解决问题的目的。物流仿真是工厂布局规划与仿真的辅助工具之一,在三维环境下对物流仿真逻辑进行建模,主要分析工位装配任务分配的合理性,物流路径规划的合理性,物流设备的分配以及利用率等,从而评价和优化物流规划方案;基于建立的物流仿真模型,可以调整参数和物流方案,实时获得仿真结果。

数字化工厂平台在制造层面的主要应用为MES系统,包括制造数据管理、计划排程、生产调度执行、现场数据采集及归档、产品跟踪等功能。

4.数字化工厂收益

一个制造企业完善的企业信息平台应由三大块构成,即:PDM/CAD系统,为企业提品数据结构和数学模型,进行产品数据管理;ERP系统,为企业提供物质资源、资金资源和信息资源集成信息,进行企业资源管理;数字化工厂平台,即制造过程管理系统,为企业提供数字化的制造信息平台,进行制造工艺规划设计,工程仿真和生产过程管理。成为数字化工厂,首先要做到柔性制造,即通过自动化的理念把产品的工艺设计与自动化设计集成到一个平台上。系统能够根据加工对象的变化或原材料的变化而确定相应的工艺流程。第二点,也是比较关键的部分,即虚拟投产,即借助虚拟化过程来检验整个生产过程,验证产品。

国内制造企业通过利用数字化工厂技术能够带来的收益包括:

(1)在3D的环境下进行制造工艺过程的设计,提高工艺设计、现场工人、数控测量的效率;

(2)用数字化的手段验证产品的制造工艺可行性,避免工艺制造与设计脱节,提高工艺设计质量;

(3)现场的工艺问题在数字化仿真环境下提前得到分析,避免在后期对产品和流程进行改变返工,避免规划的失误,对风险可进行精确掌控;

(4)掌握产品和流程的复杂性,提高产品的变种及对流程影响的透明度,建立典型工艺,经验库,减少重复工作;

(5)缩短产品工艺准备周期,缩短新产品投放市场时间(6)结合MES现场数据的及时采集、反馈,实现成本的及时统计、工艺的持续改进,支持产品的后期维修。

5.实施关键因素

数字化工厂平台涉及多层仿真层次,不同仿真目的,需要对物流,装配,加工等进行独立仿真,并在统一的可视化环境下进行结果分析。数字化工厂贯穿整个工艺设计、规划、验证、直至车间生产工艺整个制造过程,不是一个独立的系统,需要与设计部门的CAD/PDM系统进行数据交换,并对设计产品进行可制造性验证(工艺评审),同时,所有规划还需要考虑工厂资源情况数字化工厂与设计系统CAD/PDM和企业资源管理系统ERP的集成是必须的。同时,数字化工厂还有必要把企业已有的规划知识(如工时卡、焊接规范等)集成起来,整个集成的底部是PLM构架。所以,需要与其他部门的信息系统进行数据交换,并在PLM体系框架的指引下开展实施工作。

6.小结

数字化工厂涉及生产,设计,工艺、物流,管理,IT部门等业务单位以及多领域的技术人员,需要相关专业部门的全力配合,需要对整个生产链的数据进行整理和整合(包括产品,工艺,车间等)。对企业各方面的影响巨大,可能需要流程重组。因此,企业在具体的实施过程中,需根据自己的生产制造的实际过程和企业资源条件来决定,即需要在设计、工艺规划、加工、装配、物流的哪一部分加强,进而采取先点后面、循序渐进的实施策略,不要一下铺得太大。

参考文献

[1]张浩,樊留群,马玉敏,等.数字化工厂技术与应用[M].北京:机械工业出版社,2003:5-12.

工厂数字化规划范文2

关键词:数字化工厂 校企合作 准职业环境

中图分类号:P631.4+24 文献标识码:A 文章编号:1672-3791(2013)05(a)-0200-01

在当今激烈的市场竞争中,制造企业已经意识到他们正面临着巨大的时间、成本、质量等压力。“数字化工厂”技术与系统作为新型的制造系统,为制造商及其供应商提供了一个制造工艺信息平台,使企业能够对整个制造过程进行设计规划,模拟仿真和管理,并将制造信息及时地与相关部门、供应商共享,从而实现虚拟制造和并行工程,保障生产的顺利进行。在制造行业,数字化工厂更是发挥着重要的作用,相应地对具备“数字化工厂”相关知识的人才的需求越来越突出。

1 数字化工厂的含义

数字化工厂以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。主要解决产品设计和产品制造之间的“鸿沟”,实现产品生命周期中的设计;制造;装配;物流等各个方面的功能,降低设计到生产制造之间的不确定性,在虚拟环境下将生产制造过程压缩和提前,并得以评估与检验,从而缩短产品设计到生产的转化的时间,并且提高产品的可靠性与成功。其工作流程如下:(1)从设计部门获取产品数据;(2)从工装工具、生产部门获取资源数据(2D/3D);(3)工艺规划;(4)工艺验证、仿真;(5)客户化输出。

2 采用“校企合作”办学方式培养具备“数字化工厂”人才存在的问题

随着教学改革的不断进行“产教结合、校企合作”模式越来越受到各大院校的推崇。为了培养学生具备“数字化工厂”的相关知识,加强学校与企业的合作,使教学与生产的结合,校企双方互相支持、双向介入、优势互补、资源互用、利益共享,使教育与生产可持续发展的重要途径。但在我国能够做到这点的并不容易,原因如下。

2.1 政府推进校企合作的政策法规与管理机制不健全

国家和省级政府职业教育校企合作的政策法规缺失与滞后,以及运行机制不健全是造成校企合作不深人、不稳定的主要原因。目前,政府出面统筹协调校企合作、联合办学、制定人才规划的作用缺位,没有出台校企合作、工学结合、顶岗实习的政策法规,致使未能真正建立起校企合作的运行机制、体制和模式。

2.2 企业参与职业教育发展的动力不足

企业作为市场经济的主体,为了自身的生存与发展,盈利是经营目标之一,其社会活动多少会考虑到这一要素,是否参与职业教育的发展,对于企业的投入和收益均不能产生影响。因此,在没有相关规定和应激政策的机制下,企业对于职业教育发展关注较少。企业不愿意与职业院校合作的原因主要有以下几点:(1)增加企业成本。在与学校合作的同时,企业需要派专人辅导学生,安排学生食宿问题,由于学生刚刚走入实习工作岗位,劳动效率不高,增加原材料的使用费用。(2)增加企业风险。学生由于不熟悉工作流程,一旦发生劳动事故,企业需承担相应的责任和医疗赔偿。(3)很难保证产品质量,影响企业声誉。

2.3 校企合作的有效模式尚未形成

现在还没有形成有效的校企合作模式,不能使校企合作变成来自学校和企业自身内在发展的一种动力需要,急需创新校企合作的有效模式。校企合作由学校和教育部门推进成效甚微,多数是短期的、不规范的、靠感情和人脉关系来维系的低层次的合作,尚未形成统一协调的、自愿的整体行动。校企合作缺乏有效的合作模式和机制、缺乏校企双方沟通交流的平台,企业利益得不到保证、传统的职业院校管理体制、运行机制、投入政策等因素,都不同程度地影响了校企之间的合作,校企合作的有效机制模式没有形成。

3 高职院校建立数字化工厂的意义

高职院校建立数字化工厂准职业环境教育模式的培养过程在教学过程中实施双向化,教师是学习的指导者、促进者、组织者和管理者,为学生学习提供资料、咨询等方面的支持,学生不再是被动接受者,而是主动探求者,教和学成为双向式教学过程。其意义在于以下几方面。

实现了高职教育的培养目标,即面向生产和服务第一线的高级技术应用型人才。高职毕业生不但懂得某一专业的基础理论与基本知识,更重要的是他们具有某一岗位群所需要的生产操作和组织能力,善于将技术意图或工程图纸转化为物质实体,并能在生产现场进行技术指导和组织管理,解决生产中的实际问题。通过数字化工厂准职业环境方式的教育,高职学生能具备与高职人才需求相适应的基本知识、理论和技能。通过一系列的训练加强了学生的职业教育,提升其知识、能力的职业性。

在高职院校建立“数字化工厂”,使高职院校的人才培养目标与企业需求更为一致,增强职业院校自身产品研发能力和技术服务能力。改变职业院校传统的教学模式,即:追求理论的系统性和完整性,缺乏针对性、实践性和职业特色。逐渐形成与企业岗位职业能力相对应的独立实践教学体系,学生在校所学知识和技能与现代企业要求趋于一致,从而实现职业院校毕业生达到顶岗实习的要求。

数字化工厂准职业环境方式的教育要有过硬的师资队伍。不仅要求教师具有较扎实的专业理论功底,也要具有较熟练的实践技能,更要具有理实结合的教材分析及过程组合的能力,教师不仅是传统意义上的双师型人才,更要具有创新综合能力。促使教师主动参加具体岗位技能培训;到企业参加专业实践;重点了解新技术应用以及进行产学研实践探索等等,以提升教师的综合水平。

4 结语

如今随着国家对教育的投入力度加大,越来越多的中高职学校以示范校建设为契机,全力开展与企业接轨的专业建设,汲取企业的先进制造经验,数字化工厂项目仿照企业模式,通过现代实训车间、8S管理等内容建设构建出数字化工厂模型,再配合企业应用广泛的CAD/CAPP/CAM/PDM等软件,完成数字化工厂核心内涵建设,并由此展开教学模式改革,做到真正与企业接轨。

参考文献

[1] 王金庆.数字化工厂及其关键技术研究[D].南京航空航天大学,2001.

[2] 钱新华.基于数字化工厂概念的乙烯装置生产过程模拟及其应用[D].大连理工大学,2010.

工厂数字化规划范文3

如果先生产100辆卡车,则会产生大量的待售品,占用更多的现金流。理想的生产状况是进行灵活的小批量、多批次生产,使生产得以均匀、连续,这样产生的库存待售品才最优,而且生产过程的原材料消耗会更少,现金流也更为顺畅。未来制造工厂所追求的目标必然不再是工业化大生产,而是建立在端对端数字化之上的多品种、个性化、高效优质的生产。

位于德国安贝格的西门子电子制造工厂(EWA)就是智能数字化未来工厂的梦想雏形,今年上半年,我多次前往EWA进行学习。同行的德国伙伴告诉我,就是这样一座“朴素”的工厂,不仅实现了从管理、产品设计、研发、生产到物流配送的全过程数字化,还能通过先进的信息技术,与美国研发中心进行实时的数据互联。

在EWA生产车间,员工们身着蓝色的工作服,有序地走在一尘不染、蓝白相间的PVC地板上。齐胸高的灰蓝色机柜整齐地排成一行,在安置其间的显示器上,数据洪流如同瀑布一般,倾泻而下。在这里,一场工业领域的“数字革命”正悄然拉开序幕。

自己生产自己

一直以来,EWA都被誉为西门子集团王冠上的宝石。现在,这个占地10000平方米的高科技生产车间,则成为了西门子实施“数字化企业平台”的典范。

“数字化企业平台”是实现数字制造的载体,它可以实现包括产品设计、生产规划、生产工程以及生产执行和服务的高效运行,能以最小的资源消耗获取最高的生产效率。在这种生产环境中,每个产品都有自己的代码,产品可自行控制其本身的生产过程。换句话说,生产代码只需要告诉机器有哪些要求,接下来必须执行哪道工序,产品就像会“说话”一样,通过数字化的“语言”让其从设计到服务都畅通无阻。

EWA主要生产Simatic可编程逻辑控制器(PLC),以及其他工业自动化产品,产品种类达到了1000种。现在,它们已经将数字化工厂所需的主要组件部署完成,让产品与生产机器之间可以互相“通信”,全部生产过程均为实现IT控制进行了优化,从而使故障率最小化。

依靠智能系统,EWA员工的工作流程与结果也发生了翻天覆地的变化:新的生产流程伴随着不计其数的变化因素和错综复杂的供应链不断得到优化,在生产面积几乎没有扩张,员工数量也没变的情况下,产能却提升了8倍,产品质量更是比25年前提高了40余倍。EWA的负责人自豪地说:“EWA的产品质量合格率高达99.9988%。据我所知,全球没有任何一家同类工厂可以实现如此低的故障率。”EWA每年能生产约1200万件Simatic系列产品,按每年生产230天计算,即平均每秒就能生产出一件产品。

目前,EWA的生产设备和计算机可以自主处理75%的生产价值链,以前需要用人工完成的动作通过“智能算法”固化在机器中,让机器代替人工,只有剩余四分之一的工作需要由工人来完成。也就是说,仅在最开始的时候,需要人工将印刷电路板放置在生产线上,此后所有的工作均可以由机器自动控制进行。Simatic系列产品的生产过程正是由它自身控制的,换句话说就是“自己生产自己”。在这里,每条生产线几乎都运行着大约千台Simatic控制器,自动化流水线正在生产的就是西门子自动化产品,这就好像美国科幻电影里的机器人生产机器人一般。

可见即可得

研发是数字化工厂“数据链条”的起点。在数字化制造的前提下,产品的设计和制造都基于同一个数据平台,消除了EWA研发部门与生产部门工作的时间差,彼此同步进行让各方配合得更加默契,这大大改变了传统制造的节奏。另外,由于在研发环节产生的数据能够在工厂各个系统之间实时传递,同时数据的同步更新又避免了传统工厂由于沟通不畅产生的误差,更大大提升了EWA的生产效率。

作为EWA研发新产品的载体和工具,西门子PLM的产品开发解决方案――NX软件,可以支持产品开发过程中从设计到工程和制造的各个方面,并通过集成多种学科仿真,来提供全系列先进零部件制造应用的解决方案,这是其他计算机辅助设计软件都难以实现的。研发部门的工程师们可以通过NX软件进行模拟设计,在设计过程中进行模拟组装和性能测试,真正实现“可见即可得”,这为研发人员节约了大量的时间和精力。当然,这对工程师们也有一定要求,他们对将要用于制造产品的机器的属性了解越透彻,所编写的模拟程序就越精确。

在NX软件中完成设计的产品,都会带着自己专属的数据信息继续“生产旅途”。这些数据一方面通过CAM(计算机辅助制造系统)向生产线不断传递,为完成接下来的制造过程做准备;另一方面也被同时“写进”数字化工厂的数据中心――Teamcenter软件中,供质量、采购和物流等部门共享。采购部门会依据产品的数据信息去采购零部件,质量部门会依据产品的数据信息进行验收,物流部门则依据数据信息确认零部件。

共享数据库是Teamcenter最大的特点。当质量、采购和物流等不同部门调用数据时,它们使用的是共享文档库,并能通过主干快速地连接到各责任方。即使数据发生更新,不同的部门也都能在第一时间得到最新的数据,这就使得EWA研发团队的工作变得更加简单、高效,避免了传统制造企业在研发和生产环节之间由于数据平台不同而造成的信息传输壁垒。

流程更少更快

在EWA生产产品的过程中,高度的数字化得以充分体现。西门子全集成自动化解决方案(TIA)将数字化与生产成功结合:PLC引导生产流程,视觉系统识别产品质量,自动引导车进行产品传递,这都使得工厂产品的一次通过率(FPY)达到99%以上。

一名PLC装配工位上的普通员工告诉我,他现在的日常工作都在电脑上完成。每天,由西门子MES系统生成的电子任务单都会显示在装配人员的电脑上,而实时的数据交换间隔小于1秒,这意味着操作人员随时可以看到最新的版本,并可以细致入微地观察每一件产品的生命周期。

而西门子MES系统SIMATIC IT则充当了传统制造企业的生产计划调度者。它采用虚拟化技术,由MES系统统一下达生产订单,在与ERP系统高度集成之下,可以实现生产计划、物料管理等数据的实时传送。此外,SIMATIC IT还实现了工厂信息管理、生产维护管理、物料追溯管理、设备管理、品质管理和制造KPI分析等多种功能的集成,能够保证工厂管理与生产协同。当自动引导车送来一个待装配的产品时,传感器就会扫描出产品的代码,将数据实时传输到MES系统,然后电脑上就会显示出它的信息,MES系统再通过与西门子TIA全集成自动化的互联,等到相应零件盒的指示灯亮起,装配人员便可根据指示灯进行操作。这满足了自动化产品“柔性”生产的需求 ,即在一条生产线上同时生产多种产品。有了指示灯的提示和对应,即使换另外一种产品也不会怕装错零件了。

待装配人员确认装配完毕,按下工作台上的一个按钮,自动化流水线上的传感器就会扫描产品代码,记录它在这个工位的数据。SIMATIC IT以该数据作为判断基础,向控制系统下达指令,指挥引导车随即将它送去下一个目的地。

在到达下一道工序前,产品必须通过严格的检验程序,以PLC产品为例,在整个生产过程中针对该类产品的质量检测节点超过20个,可以充分保证产品的质量。1000多台扫描仪实时记录着每一道生产工序以及诸如焊接温度、贴装数据和测试结果等详细的产品信息。在此过程中,Simatic IT每天会生成并储存约5000万条生产过程的信息。其中,视觉检测是EWA数字化工厂特有的质量检测方法,相机会拍下产品的图像与Teamcenter数据平台中的正确图像作比对,一点小小的瑕疵都逃不过SIMATIC IT品质管理模块的检测。

在经过多次装配并接受多道质量检测后,成品将被送到包装工位。经过包装、装箱等环节,一箱包装好的自动化产品就会通过升降梯和传送带被自动送达物流中心或立体仓库。这样一个完整的生产环节,在传统的制造企业要通过几十甚至上百人的手去完成,而在EWA的车间内,绝大多数的工序都借以自动化设备完成,实现了“又好又快”的生产操作模式,节省了大量的人力和时间。

“全程透明”的数字化物流

在EWA中,研发和生产过程通过数字化科技被发挥到了极致。同样,在物流环节,数字化的优势依然明显,这体现在EWA的数字化物流系统的运用中。

在物流上,ERP、西门子MES系统SIMATIC IT以及西门子仓库管理软件发挥着重要的作用。例如,自动化流水线上的传感器会对引导车上的产品代码进行扫描,扫描得到的数据就会“告诉”软件系统在该装配环节需要的物料是什么,员工只需按动按钮,物料即从物料库自动输送出,并通过流水线上传感器的“指挥”,送到指定位置。这一过程“全程透明”且不需要人工干预,完全实现了从原材料、产品从起点至终点及相关信息的有效流动。相对于传统制造业,这种方式不但节省了时间,提高了效率,同时还避免了因信息传递不及时等原因造成的错误生产和重复生产。

在物料的中转环节,依照精益生产中的“以需定产”原则和“拉式生产”概念,生产流程的各工序只会在收到实际需要的数量时才进行生产,这就保证了工厂能够“适时、适量并在适当地点生产出质量完善的产品”。

在EWA布局紧凑的高货架立体仓库,有近3万个物料存放盒用来存放更大批的物料。但其物料的存取并不用叉车搬运,而是通过“堆取料机”用数字定位的模式进行抓取,所以不必考虑叉车通过的距离,这让物料库的设计更加合理,从而节约了更多的空间。

在EWA,真实的生产工厂与虚拟的数字工厂同步运行,真实工厂生产时的数据参数、生产环境等都会通过虚拟工厂反映出来,而人则通过虚拟工厂对真实工厂进行把控。“工业4.0”的中心是智能化工厂,智能化工厂的基石是数字化信息处理系统。在西门子的概念中,EWA是真正意义上的智能化工厂,其自动化不是简单的机械对人力的代替,而是既包含了自动化生产,也包括了自动控制和自动调节,是建立在数字化生产基础上的自动化。

EWA的生产过程代表了西门子面向未来的技术,更展现了“工业4.0”未来的愿景――实现真实世界和虚拟世界在生产过程中的完美融合,产品之间以及产品与机器设备间的通信将使生产路径进一步优化。

工厂数字化规划范文4

任何一个城市的发展,都要经历从无到有、从小到大、从落后到先进、从工业化到现代化的过程。而城市管理在伴随着城市发展和不断进步的过程中,传统城市管理模式已越来越不适应城市现代化和发展的需要,数字化城管模式是一种与现代化城市管理相适应的全新模式,其在全国大多城市已普及应用并取得成功实践,已经成为时展的必然。

“数字化城市管理”就是指以信息化手段和移动通信技术来处理、分析和管理整个城市的所有部件和事件信息,促进城市人流、物流、信息流、交通流的通畅与协调。具体就是把各类城市部件,如路灯、井盖、垃圾箱等纳入城市管理信息库,有关部门主动巡查发现问题,并精确定位、相关管理部门在第一时间进行处置。

目前,数字化城管正在我国各城市悄然兴起,国家建设部对数字城管工作进分重视,要求加快推进数字化城市管理试点工作,提出2005年---2007年为试点阶段,2008年---2010年为全面推广阶段,并于2007年1月29日,建设部了《关于加快推进数字化城市管理试点工作的通知》,要求各地建设和城市管理主管部门要从提高城市管理水平,推动城市社会经济发展,促进社会主义和谐社会建设的高度,充分认识推广数字化城市管理新模式的重要性和必要性,切实抓好数字化城市管理推广工作。全国各个城市纷纷开始推进数字化城管建设,但数字化城管建设资金投入大,如何在小城市建设数字化城管便值得仔细研究。本人在参与山东省青岛市平度市(县级市)数字化城管建设中,对小城市数字化城管建设总结了几点经验,供大家参考。

数字化城管的建设

充分整合已有资源

在数字化城管建设过程中,往往重建设,轻整合,这样即造成了重复建设,又加大了建设资金投入。因此在建设数字化城管过程中,首先应对已有资源进行全面调查,应充分利用和共享已有资源。各地国土资源部门都已有地理信息数据库,在数字化城管地理信息普查与建库过程中,应尽量以国土资源部门的地理信息数据为基础,统一坐标、统一数据编码要求,以方便数字化城管数据库与其他电子政务系统实现资源共享。

现在,全国各地公安、交警均已建设视频监控系统,在数字化城管系统建设前,应到相关部门了解已建成系统数据接口、传输方式等,对上述监控资源进行共享,以最大限度节省资金,避免重复建设。特别应注意的是,公安的视频监控共享方式因涉及公安网络安全问题,应尽量采取前端共享(系统外共享)方式。

合理确定数据采集范围

目前,我国城市化进程速度正在加快,各地城市建设规模也在扩大,我所在的平度市是一个县级市,市区规划面积由原来的规划区面积126平方公里。进行城市规划调整后,调整为719.9平方公里,市区范围大大扩大。在原市区内,也正在进行大规模的旧城改造,大部分城中村已拆除或面临拆除。在确定地理信息数据普查范围时,考虑到正在建设区域内的公用设施无法进行数据采集,在开发区等工业区域,大部分市政公用设施依附主要道进行建设,工厂厂区内,的设施由各个工厂自己负责管理。针对上述情况,在确定地理信息数据普查时,对上述区域采集方案进行调整,对正在进行旧城改造拆除区域和即将进行旧城改造拆除区域暂不采集,待旧城改造完成后,再补充进行数据采集与建库,对开发区等工厂密集区域,数据采集以道路为主,按里程计算采集。通过上述调整后,实际完成采集控制面积由原先设计的48平方公里扩大为78平方公里。

系统平台建设

在平台建设中,建议采取集中建设,集群发展模式。平度市数字化城管就未进行独立的平台开发,而是使用青岛市数字化城管系统平台,仅此一项便节省资金200多万元。

集中进行平台建设的主要优势是节省资金和系统维护资金,数据通用性强。但也存在系统功能设置相对固定,无法满足各个城市个性化管理方面的需求。

另外,面对信息技术的高速发展,系统的设计应考虑今后的扩展及应用,应采取模块化结构设计,保证系统的开放性和可扩充性,应事先设计预留数据接口,以方便系统升级。

中控大厅建设

目前,各个城市的数字化城管中心一般采用大屏幕加座席的形式,从使用效果上看,大屏幕一般在重要活动或领导参观、试查中使用,大屏幕建设投入资金大,维护费用高,使用率低。我市在建设中采用高清投影仪替代大屏幕的方案,从实际使用上看,完全可以满足要求,而且维护方便、费用低,推荐小城市建设指挥中心时,可考虑使用投影仪的方案来降低初期建设费用。

数字化城管的运行

数字化城管的核心问题就是“及时发现与迅速处置”,在建设过程中,应尽量避免重系统建设,轻体质改造。数字化城管系统的建设,只是解决了及时发现的问题。但如何做到迅速处置,就需对原各个责任单位的工作程序、工作方式等进行流程再造,已适应数字化城管的要求。我市数字化城管系统建成后,通过近半年的运行,总结出了几点经验:

运行区域的确定

数字化城管属于新兴事务,在实际运行过程中,应先在部分区域进行试点运行。通过试点运行,整理出对信息采集的管理方法、方式及人员巡查密度及工作责任网格的合理设定,及相关参与职能部门处置数字化城管指挥中心派遣问题的工作流程,然后再全面实行。

参与部门的确定

工厂数字化规划范文5

中国航天科技集团总工程师杨海成先生在主席致辞中说:“此次大会召开之时,恰逢中国制造2025 颁布和互联网+ 全面推动,在我国与德国及其他友好国家密切合作之际,我相信,本次大会将会提供丰富的“大餐”,帮助参会嘉宾洞察和了解全球先进企业的经验和优胜之道。”在会议期间,来自大中型骨干企业、行业研究机构和解决方案供应商的多位专家、学者畅谈“工业4.0”和“智能制造”,本刊记者辑录片断于此,以飨读者。

走向智慧工厂时代

中国航天科技集团总工程师杨海成

基于中国制造2025 整体规划,中国制造业将走向何方?现代信息技术的发展,使人类进入到了一个基于智慧和网络的智能机器大生产时代,这是新一轮工业革命的重要特征。过去,机器替代人的一部分体力,今后,将替代人的一部分智力,这将使人类进入到一个智慧的大生产阶段。中国制造从传统工厂向数字工厂的迈进,需要大量付出,从数字工厂迈向智能工厂,则更为艰苦,在国家战略框架的引领下,中国的制造业一定能产生翻天覆地的变化,一定能走在全球制造业的前列。

数字化工厂是工业4.0的基础

同济大学中德先进制造技术中心执行主任沈斌教授

工业4.0 的核心是“产业价值链相关的活动、能力和速度,实时掌握所有信息,在任何的时间点导出优化的价值”,可以概括为“信息”和“速度”。工业4.0 的基础,首先是数字,企业的所有活动都要数字化,数字化工厂是迈向工业4.0 的第一步,数字化工厂是工业4.0 的基础。

工业4.0有多远

新松机器人自动化股份有限公司总裁曲道奎

第一,工业4.0 是否已经来临,还是悬浮在空中?前三次工业革命的最大区别在于,以前是生产效率、生产质量的大幅提高和生产成本的降低,基核心点在于规模化,而第四次工业革命更着重于灵活性,即柔性和智能,同时深度考虑资源要素,其核心点是以智能设备为支撑的数字化、智能化和万物互联。工业4.0 本质上依然是制造模式的变革,制造装备的变革。现在信息化的平台、环境和设备都已出现并已相对成熟,完全可以支撑起工业4.0,不过自身需要继续向更完善、更精细化的方面发展。

第二,工业4.0 不是单独的工业4.0 革命,还将带来更广泛的社会相关变革,是一种系统化的变革。

从Physical到Cyber,再到Physical

中航工业信息技术中心首席顾问宁振波研究员

想了解智能制造,必先深入了解CPS,欲深入了解CPS,必须了解Cyber。Cyber 被译为“信息”,但其实Cyber 的含义与信息(Information) 概念迥异。Cyber 有控制、网络、协同、众创、虚拟的含义,Cyber 实质上指的是一种控制机制,而控制的载体才是信息(Information)。所以,现在CPS,只能有一个译法,那就是:赛博—物理系统,而非信息—物理系统。

在Physical 物理时代,制造业用的方法是制作出实体后的试错法,而在Cyber 时代,能通过建模的方法,来确定是否可以投产。Cyber 空间中的Physical,是指从数字样机到实物产品。所以未来的制造模式是从Physical 到Cyber,再到Physical。

加强中德交流,共同发展

德工业4.0产业联盟常务副理事长李万林博士

除智能生产外,德国业界把“智能服务”添加到工业4.0 的范畴中,这就使得整个产业都实现了数字化,可以实时地获取数据,凭借数据支持在产业链中随时对解决方案进行优化。工业4.0 可以实现了人—物体—系统的有机结合,开创大规模生产下的个性化定制模式。

针对工业4.0,全球几大国都提出了相似的方针对策,本质区别不大。中德之间要增加多层次、全方位的交流,这对两国战略目标的达成都会大有裨益。

深入研究中国的智能制造战略

工厂数字化规划范文6

关键词:数字化电厂;概念;数字化系统

中图分类号:TM62 文献标识码:A

一、数字化电厂的概念

随着科技的迅猛发展,数字经济也呈现出快速发展的趋势,逐渐覆盖到了政府、企业以及消费者等多个层面上。数字经济指的是在经济发展和参与的每个环节和每个要素中都广泛地采用软硬件技术及应用和通信技术。数字化工厂的出现就是数字经济发展的产物。对于数字化电厂的概念,目前还没有一个统一的定义。我国电力行业将数字化电厂的概念定义为电厂的各级控制和管理系统均进入数字化后称之为数字化电厂。可见,数字化电厂的建立要求电厂的数字化必须达到一定的程度,或者说数字化的全面覆盖。

二、数字化电厂建设的方案

(一)数字化工程

1数字化设计。这是指在整个设计的过程中都利用数字化方式来进行产品的设计。目前与建设数字化电厂有关的数字化设计包括了三维数字化的设计模型,电厂数字化的设计模型以及系统数字化的设计模型。其中三维数字化的设计模型是用来管理电厂建设时期的工程项目,在电厂的运行期,该模型会构成三维数字化的管理系统,将各个系统的信息加以整合,实现电厂运行和维护的统一管控。而电厂数字化的设计模型包括了数字化管理的设计方案,将确定数字化电厂在建立时的系统结构,建立起各个系统之间的关系,明确各项基本技术的要求,保证系统和软件平台的技术。系统数字化的设计模型包括了电厂整体的系统图、安装的仪表和管道图、现场的总线图,还包括了被控对象、控制设备、控制信号等的相关数据。这些数字化的信息将直接用在数字化管理当中。

2数字化采购。数字化采购是建立在数字化设计的基础之上的。在采购之前,要将工作进行步骤分解和编码,对工程物资也要进行编码,然后在采购的过程中按照工程的需要制定采购单,实施整体采购、分批交货的管理模式。数字化的工程采购实现了工程的规模化采购,是数字化工程的实施重点。

3数字化移交。这是数字化电厂建立的基础,是指在数字化的移交平台上将电厂建设中各个环节和阶段的相关数据、资料和信息进行收集、整理、分类,最后通过审批后移交给业主。通过数字化移交,对电厂建设时期数据的移交过程进行全面的管控,从而提高数据移交时的质量以及电厂的管理能力。

(二)数字化控制

传统的电厂工人能够有效监控的只有工艺的过程和设备的状态。而在数字化电厂中,锅炉、电气系统、汽轮机、现场仪表以及控制设备都将实现智能化,使设备的整定和维护信息能够以数字化的形式进行控制系统,从而让设备的运行和维护更加的轻松。电厂的数字化控制将包含了单元机组的分散控制系统、电气的控制系统和全电厂辅助车间的控制系统。

(三)数字化管理

在传统的火电厂中,管理系统一般是由管理信息系统MIS,即management inform ation system和厂级监控信息系统SIS,即supervisory information system共同组成,两个系统是相互独立的,但是系统中的功能却存在着重叠。数字化的管理系统中的数据具备了准确性和唯一性,运用了先进的设备来实现生产运营管理和控制的优化,使电厂的资产管理和决策支持等方面都能在数字化的管控下更加的科学。数字化的管理系统主要包括了以下四个部分:(1)生产运营管理系统;(2)财物资产管理系统;(3)优化控制管理系统;(4)决策支持管理系统。其中生产运营管理系统不但包含了对生成操作票和技术监督等方面的管理,而且还能够对电厂的重要设备进行早期的故障诊断、故障分析和故障预警,通过这类预测性的维护来帮助电厂降低生产成本,有效提高电力企业的效益。而决策支持管理系统也具备了非常重要的作用。它不但为电力企业的高效管理提供了技术支持,而且为电力企业的发展经营决策提供及时有效的信息和指标,使企业的决策能够更加的科学和可靠,有效提高企业的生产效益和盈利水平。

三、数字化电厂的优势

(一)数字化

利用先进的信息处理技术能够将电厂建设和发展各个阶段所反映的现象、本质、规律等的相关文字、符号、数字、声音、图像等模拟信息都转换成数字信息。

(二)信息化

信息化指的是在充分利用信息技术的基础上,对信息资源进行开发和利用,促进信息的交流和共享,从而提高经济增长的质量,并推动经济社会的发展和转型。我国政府一直努力将工业化和信息化进行深度的融合,而数字化电厂不管是在电厂的设计、施工,还是在电厂的生产、管理等多个环节都采用了信息技术,所以具备了信息化的优势,成为了推进我国信息化建设的重要部分。

(三)智能化

数字化电厂广泛地采用了现代先进的信息处理技术、通信技术、控制技术和智能测量技术、智能决策的支持技术,使电厂的运行实现了智能化、高效化。保证了电厂生产的经济、安全、环保,符合了社会和时展的要求,保障了电力企业的可持续发展。

(四)可视化

数字化电厂可以通过对现实进行虚拟,把电厂中的各类实体包括实体的特性用以三维立体等形式直观地呈现在用户面前,其表现形式还会随着时间和空间进行变化,建立用户的交互通道,使用户能够对电厂数字模型进行浏览、模拟、观察和计算,提高电厂设计和规划的效率,使电厂的设计和规划更加的方便快捷。此外,对电厂的设备运行、设备的维护和检修进行仿真模拟,能够有效地提高电力企业的工作效率。

结语

综上所述,建设数字化电厂是一项系统工程,这项工程中包含了多个方面,其构成非常复杂。建立数字化的电厂能够使电力企业具备先进的设计技术、管理技术以及控制技术,实现发电的数字化、智能化和透明化,将推动电力企业的快速发展,值得进一步的研究。

参考文献