前言:中文期刊网精心挑选了废水处理论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
废水处理论文范文1
1.1燃烧法
这是一种最传统也是最为直接有效的方法,最大的缺点是造成了资源浪费,同时成本较高、处理效率也比较低。
1.2催化氧化法
这种工艺是通过在高温、高压的条件下,配以催化剂的催化作用,将废水中大量的有机物氧化分解成水和二氧化碳等小分子或一些无机物。传统的单一氧化法相比于催化氧化法来说,需要更高的压力和温度,同时反应的停留时间也更长。通常在处理中采用过氧化氢作为反应的氧化剂。过氧化氢本身具有强氧化能力,可以促进形成羟基自由基,同时过氧化氢对共轭中的发色基团进行氧化,产生断链的作用,使废水中的大分子有机物转变成小分子的无机物,最终达到使废水中COD值降低的作用。这其中,水中的氢离子对过氧化氢的催化作用起协同作用,可以使过氧化氢的氧化能力得到很大程度上提升,所以,废水在处理时要保证一定的弱酸性,否则要经过事先的预处理向其中投加少量酸用来调节废水的pH值。同时,过氧化氢还具有很好的脱色作用,在处理纺织、涂料等一类废水时效果很好。采用催化氧化法对丙烯酸废水进行处理,COD去除率可以达到70%。
1.3电渗析法
丙烯酸废水中含有一少部分的丙烯酸,相比于其他的处理工艺,采用电渗析法就能够很好地实现丙烯酸的回收和利用。采用电渗析法主要有以下两种方式:
1.3.1一次提浓发:通过丙烯酸废水的稀释溶液在电渗析器中进行循环浓缩达到提浓的目的,采用生物膜的方式,对废水进行浓缩处理,具体通过对废水处理量对应的膜对数和膜面积进行计算,来获取所需要的生物膜数量,相比于其他处理方法,采用生物膜进行的电渗析法要求更多,成本也更高,膜片需要定期进行更换,优点是处理效果更好。
1.3.2分级处理法:采用这种方法可以得到一部分用于丙烯酸回收的浓相,一部分可进行生化处理的稀相,但需要耗费大量的电力资源。采用电渗析法处理丙烯酸废水实现了对废水中丙烯酸的回收和利用,同时还使废水处理结果达到了国家的排放标准,增加经济效益的同时,也实现了废水的循环利用。
1.4浓缩-结晶-干燥法
丙烯酸废水属于高浓度的有机废水,含有大量无机盐和有机物,通过浓缩结晶的方法,可以使其中含有的大量无机盐随着废水的浓缩而结晶析出。同时,对废水进行浓缩,可以得到高纯度的有机物,这些有机物在经过高早处理后可以自燃,同时在燃烧过程中会释放大量的热量,也基于这点,这些有机物可以代替一部分的化石燃料。相比于传统简单的燃烧法,这种方法成本更低,同时还实现了废水中有机物和无机盐的回收和利用,干燥过程中产生的蒸发水也可以冷凝回收利用,作为冷却回用水或者是车间的冲洗水,也可以用作供暖系统中的中水回用。这种处理方法的核心设备就是多效蒸发器,这种设备广泛应用于果汁、牛奶、制药、木糖、造纸黑液、乳酸等物质的蒸发和浓缩,这些年来也被广泛应用在废水处理中,设备的运行参数和自身主体结构直接影响了废水中COD的处理效果。该设备由多个蒸发器来串联运行,实现了多级蒸发和热能的多级利用,大大提升了热能的利用效率,具体流程分为逆流流程和错流流程。
1.5生化法
生化法是现今污水处理中最为常用的一种处理方法,相比于一般的膜法成本更低,和其他的处理方法相比处理效果更好,但同时生化法对废水本身的可生化性较高。一般的丙烯酸废水中有机物含量非常高,B/C比值远大于可生化的标准,这就要求在采用生化法对污水进行处理之前要经过事先的预处理,使COD值大大降低。常用的生化法有A/O法、UASB法等。采用生物法中的厌氧生物处理进行丙烯酸废水的处理时,会产生一部分的沼气,可以进行回收和利用。
2.结语
废水处理论文范文2
(1)隔油池。
在炼厂一般都采用利用油、水的比重差进行油水分离的隔油池。其中比重小于1的油品上浮至水面而得到回收;比重大于1的其他机械杂质沉于池底。所以,隔油池同时又是沉淀池,但主要起除油作用。
(2)浮选。
浮选就是向污水中通入空气,使污水中的乳化油粘附在空气泡上,随气泡一起浮升至水面。一般为了提高浮选效果,向污水中投加少量浮选剂。由于炼厂的生产污水中本身含有某些表面活性剂,如脂肪酸盐、环烷酸盐、磺酸盐等,故不需另外加入浮选剂,也能获得较好的浮选效果。所以,近几年来在国内外都广泛地用它来处理炼厂的含油污水。
(3)絮凝。
对于颗粒直径小于10-5m的油粒,一般称之为乳化油。这种乳化油由于其表面吸附有水分子,此水层使油粒不能相互聚合。另外,因油粒表面带有相同电荷,由于静电排斥作用也妨碍油粒间的相互聚合而在水中呈稳定的悬浮状态。这两种因素构成了乳化油在水中的稳定状态。再者,油粒间由于水分子运动产生的布朗运动,促使油粒相互碰撞聚合而变成较大的油粒,以及由于范德华力所产生的油粒间相互吸引力,促使它们相互聚合,以上所有这些因素就构成了油粒的不稳定因素。为了使具有这种特性的油粒凝聚,就应消除其稳定因素。絮凝法的基本原理主要是根据油粒稳定因素之一——静电排斥力发生电中和作用的现象来进行絮凝。仅用双电层原理来解释絮凝原理尚有许多现象不能说明,因此絮凝作用还应考虑金属氧化物的水化物对油粒的吸附、包围圈带等各种现象的综合作用。
(4)过滤。
含油污水中油粒和悬浮物质在通过滤层时被截留在滤层中间,一般污水中的悬浮物质的粒度同砂层中的空隙相比要小得多,这种微小的颗粒在砂层中被截留下来的现象,许多学者试用下列作用来解释:筛滤作用、沉淀作用、化学吸附作用、物理吸附作用、附着作用及絮凝形成作用,这些作用中,到底哪一种对过滤起着决定性的作用,不同的研究者提出了不同的看法,至今还未建立一个统一的、肯定的说法。
2含硫、氨、酚污水处理工艺
炼厂在渣油焦化、催化裂化、加氢精制等二次加工过程中都会产生一定量的过程凝缩水,其中含有较多的硫化物、氨和酚类,一般称为含硫污水。它的排量不大,但如不经任何处理直接排入炼厂排水系统,则将严重地破坏隔油池操作流程,影响污水处理构筑物的正常运行。
(1)水蒸汽汽提法。
水蒸气汽提法就是把水蒸汽吹进水中,当污水的蒸汽压超过外界压力时,污水就开始沸腾,这样就加速了液相转入气相的过程;另一方面当水蒸气以气泡形态穿过水层时,水和气泡表面之间就形成了自由表面,这时液体就不断地向气泡内蒸发扩散。当气泡上升到液面时就开始破裂而放出其中的挥发性物质,所以数量较多的水蒸气汽提扩大了水的蒸发面,强化了过程的进行。工业污水中的挥发性溶解物质如硫化氢、氨、挥发性酚等都可以用蒸汽蒸馏的方法从污水中分离出来。
(2)含酚污水的处理。
酚既能溶于水,又能溶于有机溶剂如苯、轻油等。水和有机溶剂是两种互不相溶的液体,利用酚在这两种液体中的溶解度不相同(酚在有机溶剂中的溶解度较水大),把某种有机溶剂如苯加入酚水中,经过充分混合后,酚就会逐渐溶于苯中,再利用水和苯的比重差进行分离。因此可以利用此原理从污水中把酚提取出来。但为了获得较高的脱酚效率,需要采用对酚的分配系数高又与水互不相溶、不易乳化、损耗小、价格低廉、来源容易的有机溶剂作萃取剂。
3生物氧化法
利用大自然存在着大量依靠有机物生活的微生物来氧化分解污水中的有机物质,运行费用比用化学氧化法低廉。这种利用微生物处理污水的方法叫作生物氧化法。由于它能有效地除去污水中溶解的和胶体状态的有机污染物,所以一般炼厂都采用它作为净化低浓度含酚污水的主要方法之一。
4深度处理
炼厂污水经过隔油、浮选(一级处理)和生化处理(二级处理)等构筑物净化后,水质仍然达不到国家制定的排入地面水卫生标准的要求。为了防止恶化环境,消除其对水体、水生生物和人畜的危害,对某些地处水源上游和没有大量水源可作稀释水的炼厂来说,就必须对排出污水进行深度处理(亦称三级处理或抛光处理)。深度处理方法很多,但一般都由于技术比较复杂,处理成本过高,而未被生产上广泛采用,尚有待进行深入研究和改进。目前从国内外的发展趋势看,活性炭吸附法、臭氧氧化法,对彻底净化炼厂污水,使其达到排入水体或回收利用方面颇有价值。
(1)活性炭吸附法。
活性炭吸附污水中的杂质属于物理吸附。其原理是由于活性炭是松散多孔性结构的物质,具有很大的比表面积,一般可达1000m2/g。在它的表面粒子上存在着剩余的吸引力而引起对污水中杂质的吸附。近几年来国内外利用活性炭吸附处理炼厂一级或二级出水,取得了良好的效果,综合起来,可得到以下的主要试验结果:①用活性炭吸附法净化炼厂污水生化需氧量可脱除80%,出水中酚含量<0.02mg/L;②使水产生臭味的有机污染物,较其他有机污染物更容易脱除,在净化过程中它们首先被吸附掉;③在使用活性炭吸附前,污水应经过预处理,使固体悬浮物小于60mg/L,油含量达到20mg/L以下,这样可以减轻活性炭的负担,延长操作时间,减少再生频率,降低再生费用;④每公斤活性炭可吸附0.3~0.5kg以化学耗氧量衡量的有机物,吸附饱和后的活性炭可用烘焙法再生,再生损失约为5%~10%;⑤活性炭的粒径对吸附速度影响较大,一般水处理活性炭采用8~30目较合适。
(2)臭氧氧化法。
臭氧具有很强的氧化能力,所以在西欧各国被广泛用于给水处理的杀菌、脱色和除臭处理。目前国内外已开始大规模地研究把臭氧氧化用于工业污水的最终处理,并取得了良好的效果。
5其他处理工艺
除了上述几种常见的采油废水处理工艺外,近几年来也出现了一些新技术。文献[1-2]指出,越来越多的膜分离技术开始用于油田采出水处理,膜分离技术是利用膜的选择透过性进行分离和提纯的技术。膜法处理可以根据废水中油粒子的大小,合理地确定膜截留分子量。文献[3-4]指出,生物吸附法是一种较为新颖的处理含重金属废水的方法,具有高效、廉价的潜在优势。所谓生物吸附法就是利用某些生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离来去除水溶液中金属离子的方法。
6结语
废水处理论文范文3
铅冶炼企业80%以上为传统的火法冶炼工艺,原料铅精矿中的镉经过火法熔炼后,小部分以硫酸镉的形式进入到净化烟气的废水中,绝大部分被氧化为氧化镉,与氧化锌一起挥发,在烟道和烟气收尘设备中得到含镉的氧化锌烟尘。收尘得到的氧化锌烟尘一般含镉0.1%~1%,可采用湿法冶炼进行综合回收,含镉废水主要在炼锌系统的碱洗废水和生产泄漏废水中产生;净化烟气的废水一般含镉几十毫克/升,排入污水处理系统综合处理。锌冶炼企业80%以上为传统的湿法冶炼工艺,原料锌精矿和氧化锌烟尘中的镉经过硫酸浸出后,进入到硫酸锌溶液中,然后在溶液的一段净化时加锌粉还原,99%以上的镉被置换到铜镉渣中。镉主要在铜镉渣中以副产品的形式回收,首先采用酸浸铜镉渣,得到含镉10~60g/L的溶液,然后在溶液中加锌粉或锌板置换,得到海绵镉,压团后产出60%~75%的海绵镉饼。在整个工艺流程中,由于生产中存在泄漏现象,因此在铜镉渣处理段最容易产生含镉高的废水,可高达几g/L,浸出段也会产生含镉几百mg/L的废水。此外,在焙烧锌精矿和烟化法处理浸出渣时会有少量镉进入净化烟气的废水中,此废水排入污水处理系统综合处理。铅冶炼企业产出的含镉废水较少,含量低,在污水系统进行处理。锌冶炼企业产出的含镉废水较多,且含量高,必须从源头上加强管控,产出的高镉废水及时返回生产流程,二次综合回收镉,大幅度降低污水处理成本,金属镉也得到有效回收;产出的低镉废水不宜返回生产流程,需排放到污水系统处理。
2含镉废水处理技术
含镉废水的处理方法较多,但目前还没有比较完善的处理方法,大多数处于研究探索阶段。主要处理技术有:中和沉淀法、膜分离法、铁氧体法、吸附法、电解法、生物处理法、植物修复法、高分子重金属捕捉剂处理法等。
2.1中和沉淀法
中和沉淀法具有操作简单、经济实用等特点,在含镉废水处理中广泛应用,主要沉淀剂有石灰、氢氧化镁、聚合硫酸铁、硫化物、碳酸盐,向废水中投加沉淀剂后,会生成沉淀物Cd(OH)2、CdS、CdCO3,聚合硫酸铁主要起凝聚共同沉淀的作用。中和沉淀法能将废水中的镉离子脱除至0.2~2mg/L,但难以达到排放标准,因为有些阴离子容易与镉离子络合,使镉离子难沉淀。此外,pH值也影响沉淀效果,当pH=9时,脱除砷效果最好,但镉超标;当pH>10时,镉沉淀比较完全,但砷含量逐渐增大,出现返溶现象。中和沉淀法产出大量的沉淀渣,目前还不能综合回收利用其中的镉,一般将其堆放在危废渣场,长期堆存容易溶出,造成二次污染。
2.2膜分离法
膜分离法是利用一种特殊的薄膜对液体中的某些成分进行选择性透过的方法,根据膜的种类、功能的不同,可分为超滤、渗透、反渗透、电渗析和液膜。许振良等采用3种单皮层聚醚酰亚胺中空纤维超滤膜,对重金属Pb2+和Cd2+的脱除进行了胶束强化超滤研究,研究结果表明:镉和铅的截留率达到99.0%以上。王志忠等选用PSA和醋酸纤维素作反渗透膜,来处理硫酸镉溶液,结果镉的分离率可达97.72%~99.67%。Mathilde等采取电渗析法处理含镉废水,镉的脱除率达70%。马铭等研究了三正辛胺-二甲苯支撑液膜体系中Cd2+的迁移特点,结果表明:此液膜体系对Cd2+有明显的富集作用。膜分离法处理含镉废水的优点为:分离效果好,耗能较低,一般能达标排放。但设计较难,投资和运行成本高,且产出的浓水含多种有害元素,不能排放,也难以综合回收。
2.3铁氧体法
铁氧体法是近年来根据湿法生产铁氧体的方法发展起来的,工艺条件为:在含镉废水中添加硫酸亚铁,铁添加量为镉量的2倍,调整pH值为8~12,加热至60~70℃,通压缩空气氧化30min,即可得到含镉离子的黑色铁氧体沉淀,处理后镉含量可降低至0.041mg/L,达到排放标准。此方法能一次脱除废水中的多种重金属离子,且生成颗粒大的沉淀,容易过滤,滤渣堆存不易返溶,一般不造成再次污染。但此方法需通蒸汽加热至60~70℃,能耗较大且需通压缩空气氧化,氧化时间长。
2.4吸附法
吸附法是利用多孔的固体吸附剂,使污水中的一种或多种污染物吸附在固体表面而被脱除的方法。目前可用的吸附剂有:活性炭、高炉矿渣、磺化煤、壳聚糖、沸石、海泡石、活性氧化铝、改性纤维、蛋壳、硅藻土、膨润土、硅基磷块盐、离子交换树脂等。这些吸附剂中,有物理吸附、化学吸附、交换吸附、混合吸附等,对镉的去除都有一定的效果,需配合深度净化系统处理后达标排放。但一般处理废水成本较高,应该从经济上考虑,探索研究廉价高效的吸附剂,如高炉矿渣、金属冶炼水淬渣、沸石、蛋壳等,提高实用价值。
2.5电解法
电解法是利用直流电进行氧化-还原反应,使得污染物在阳极被氧化,在阴极被还原成金属单质的方法。陈志荣介绍了新型的流化床电极技术,利用此方法除镉率可达98.0%,效果较理想。此外,采用高压脉冲电凝法电解电镀废水中的Cd2+,脱除率可达96%~99%。当处理高镉废水时不能达标排放,但可回收金属镉;当处理低镉废水时,可实现达标排放。电解法装置紧凑,占地面积小,投资省,易形成自动化,但电耗和可溶性阳极材料消耗大,副反应较多,电极易钝化。
2.6生物处理法
生物法处理重金属污水的研究始于20世纪80年代,目前国内外开始研究用淡水藻、海藻、真菌、细菌等生物来吸附处理含镉废水,在实验室取得较好效果,应用在工业上还需继续研究。生物处理法的优点:可以选择性脱除低浓度重金属离子,pH和温度条件限制小,投资省,运行费用不高,且可以综合回收有价金属。值得关注的是近年来中南大学柴立元等发明了一种生物制剂深度处理重金属废水的方法,该方法通过生物制剂配合-水解-脱钙-固液分离等过程,将废水中的铜、铅、锌、镉、砷、汞等重金属脱除,出水达到工业排放标准。该技术工艺流程短,能耗低,投资少,占地面积小,使废水回用率由50%左右提高到90%以上,在30多家大型重金属生产企业推广应用,年回用废水4000多万m3。
2.7植物修复法
植物修复法,是利用植物吸收废水中的镉离子,降低镉对环境的污染,是一种处理环境污染的新技术,具有成本低的优点。有研究表明,柳树吸收镉的能力非常强,利用此特点,可栽培柳树来修复镉污染的土壤。李华等的研究表明,剑兰是一种很有潜力的可用于Cd污染水体修复的耐性植物。申华等[23]研究了斯必兰、羽毛草和水芹3种水草对镉污染水体的修复能力,结果表明:这3种水草均能不同程度地去除废水中的镉,对镉的富集能力为:斯必兰>水芹>羽毛草。
2.8高分子重金属捕集剂处理法
近年来国际上已重点对高分子重金属捕集剂处理法进行研究和应用。高分子重金属捕集剂处理法利用捕集剂能与重金属离子反应生成不带电荷的稳定结构螯合物,生成沉淀时能将重金属离子高效脱除,适用于深度处理废水中的重金属离子。该方法的特点:产品耗量小、反应速度快、脱出效率高、离子选择性强等。但该方法研究应用时间短,市场上销售的产品种类繁多,捕集剂处理能力、应用范围也不同,没有统一的规范,影响了此产品在各行业废水处理中的推广应用。高分子重金属捕集剂的合成方法有:
1)含有螯合基的单体通过缩聚、加聚、逐步聚合、开环聚合等方法合成;
2)以天然的或合成的高分子为基体,通过化学改性方法在基体上接入具有金属螯合功能的官能团来合成。合成高分子重金属捕集剂主要为二硫代氨基甲酸及其盐类。季靓等研究了DTCs在不同环境条件的水体中对Cd2+的捕集性能:在镉浓度为lm-mol/L的溶液中,DTCS对镉的最大去除率能达到99.9%以上。改性天然高分子物质主要有淀粉、纤维素、甲壳素、壳聚糖、蛋白质、多肽类和木质素等,特点为:价格廉价,易生物降解,没有二次污染。天然高分子通常含有大量活性基团如羟基、羧基等,通过改性后的高分子捕集剂的性能明显优于合成的高分子捕集剂,目前为国内外科研人员的研究热点。黄建宏等研究了在一定pH和适当反应时间的条件下,壳聚糖能高效吸附Cu2+、Cd2+、Pb2+、Zn2+等4种重金属离子,对于含镉0.005mol/L的溶液,镉脱出率可接近100%。
3结语
在当今环保要求日趋严格的情况下,我们结合企业的实际生产状况,以及现有的各种含镉废水处理方法,对铅锌冶炼企业的含镉废水提出了以下处理方案:
1)从源头上开始治理,将含镉量高的废水返回系统利用,达到事半功倍的效果。可节约大量废水处理成本,且将废水中的有价金属进行了综合回收。
2)传统方法处理的废水难以达标排放,因此需采取特殊手段处理,如将高分子重金属捕集剂处理法或生物制剂法引用到冶炼行业,此方法比较适合复杂废水的深度处理。此外,植物修复法、金属冶炼水淬渣吸附法具有成本低、效果好等特点,值得继续深入研究。
废水处理论文范文4
经分析,其水质情况:pH为11.45,CODCr值为145mg/L,Pb2+浓度为1.7mg/L,Zn2+浓度为0.1mg/L,Cu2+浓度为2.8mg/L。试验矿样取自选矿厂的生产矿样,其主要有价元素分析结果为:铅0.20%,锌7.32%,铜0.088%,银39.4g/t,全铁32.1%,硫7.80%。矿样中铅矿物主要为方铅矿,锌矿物主要为闪锌矿,另含有大量的磁黄铁矿、黄铁矿等硫化物和磁铁矿等氧化物;脉石矿物主要为石英、长石、辉石、石榴子石、绿泥石等硅酸盐矿物和方解石、白云石等碳酸盐矿物。
2絮凝剂实验室试验
2.1絮凝沉降试验
试验采用聚丙烯酰胺(PAM,分子量大于500万,分析纯)、硫酸铝(Al2(SO4)3,分析纯)、JCSS絮凝剂(主要由珊瑚、贝壳、海藻化石、大理石、石膏、煤灰、碳水化合物等经高温加工后形成的超细粉末,工业品)进行试验。在使用前,均将其配制成质量百分比浓度为0.01%的溶液备用,考虑到经济成本和现场操作的方便,絮凝沉降时保持废水的自然pH较佳。试验取每组体积为100mL的废水加入100mL比色管中,在相同废水浓度的条件下,分别加入不同种类和体积的絮凝剂,搅拌使其混合均匀,以液面为零点,水平静置10s后,每隔30s记录废水澄清层高度。试验结果如图1所示。由图1可知,加入PAM可明显提高沉降的速度,且其用量超过7.5g/m3就具有较好的沉降效果;加入硫酸铝后,试验水样变化不是很明显,沉降效果较差;JCSS絮凝剂与其它两种相比,其澄清层的高度更高,澄清效果更好,且其用量也不大。因此,JCSS絮凝剂对铅锌选矿废水具有良好的沉降效果,沉降速度快且用量少。
2.2废水回用浮选试验
选矿厂废水处理的重要目的是在尽可能减少对生产指标的影响情况下,进行废水的循环使用,实现生产废水零排放,达到绿色生产的目的。为验证不同絮凝剂处理后的水回用对铅锌选矿指标的影响,分别在实验室用小型浮选机对新鲜水、PAM处理的回水和JCSS絮凝剂处理的回水进行相同条件下的平行对比选矿试验。浮选结果比较可知,PAM处理回水条件下,锌精矿中锌的品位较高,但总体铅和锌的回收率较低。与PAM处理回水浮选指标相比,采用JCSS处理回水浮选时,铅精矿在铅的品位略高的情况下,铅的回收率提高了约3个百分点;虽然获得锌精矿品位略低,但锌的回收率却提高了4.36个百分点。采用新鲜水进行铅锌的优先浮选回收,浮选产品的质量较好,精矿中互含较低。由矿石性质可知,该矿的主要有价值的金属元素是锌,因此提高或不影响锌回收是该厂浮选生产的主要目标。综合比较三种水的浮选指标,JCSS处理后的废水回用浮选效果较好。
3JCSS絮凝剂工业试验
在实验室试验的基础上,在现场采用JCSS絮凝剂进行选矿废水净化处理工业试验。通过该试验流程,将选矿废水汇集到水处理机(可在设备内进行适量搅拌并营造适合絮凝物沉淀的环境)中,并加入JCSS絮凝剂,经过絮凝沉降之后的水就可以送回到高位池进行废水循环使用。在现场采用了JCSS絮凝剂后,出水水质完全达到了回用水的要求。而且选矿废水中的铬、铜、铅、锌等重金属离子的浓度大幅度降低,选矿废水可以回收再循环利用。该厂采用JCSS絮凝剂进行尾矿废水的处理,运行1年多来,生产指标稳定。工业试验统计结果表明,改造前,采用PAM处理废水综合成本为1.95元/t,而采用JCSS絮凝剂处理工艺废水的综合处理成本为0.47元/t,节约成本约1.48元/t,具有良好的经济效益和社会效益。
4结论
废水处理论文范文5
1.1普通工业废水特点
普通工业废水量大、污染物成分复杂,不同行业产生的废水所含污染物成分区别较大,有的废水温度高,容易造成环境的热污染;有些具有明显的酸碱度;有些含有易燃、易爆、有毒物质。针对工业废水中所含的不同成分,选择不同的处理工艺,往往需要物理、化学、生物代谢等多种不同工艺组合处理。
1.2放射性废水特点
具有放射性的重金属元素是放射性废水处理的主要去除对象,而放射性核素只能通过自然衰变来降低其放射性,所有的水处理方法都不能改变其固有的放射性衰变特性。在进行放射性废水处理的时候,我们只有通过各种方法将放射性核素浓缩到较小体积的废物内,降低处理后可排放废水的放射性核素浓度。
2普通工业废水处理方法
为了使工业废水得到净化,一般将废水中所含的污染物分离出来,或将其转化为无害、稳定的物质。我们按照处理原则,将工业废水处理方法中物理化学法分为吸附法、离子交换法、膜分离法、汽提法、吹脱法、萃取法、蒸发法、结晶法等。离子交换法在普通工业废水处理中,主要用以回收贵重金属离子。膜分离技术在70年代后大规模应用到各个工业领域及科研中,发展非常迅速。蒸发法处理多用于酸、碱废液的回收。自然界存在种类繁多的具有氧化分解有机物能力的微生物,这些微生物具有数量巨大、分布范围广、繁殖力强等特点,被广泛应用于制革造纸、炼油化工、印染纺织、食品制药等行业的废水处理中。
3放射性废水的处理方法
放射性核素使用任何水处理方法都改变不了其固定的放射性衰变特性,其处理一般都是遵循以下两个基本原则:①将放射性废水排入水体,通过稀释和扩散达到无害水平。主要适用于极低水平的放射性废水的处理。②将放射性废水浓缩后,将其浓缩产物与人类的生活环境长期隔离,任其自然衰减。对高、中、低水平放射性废水均适用。目前国内外普遍做法是对放射性废水进行浓缩处理后贮存或固化处理。
3.1蒸发法
蒸发浓缩法具有较高的浓缩倍数和去污因子,可用于处理高、中、低放废水。尉凤珍等利用真空蒸发浓缩装置处理中低水平核放射废水,对总α和总β的去污因子能达到104量级,出水满足国内放射性废水排放标准。
3.2化学沉淀法
化学沉淀法主要通过投加合适的絮凝剂,然后与废水中的微量放射性核素发生沉淀后,将放射性核素转移并浓缩到体积量小的沉淀底泥中。在进行化学沉淀法时主要投加铝盐、铁盐、磷酸盐、苏打、石灰等,同时可投加助凝剂,如粘土、活性二氧化硅等加快凝结过程。罗明标等的试验结果显示氢氧化镁处理剂具有良好的除铀效果,特别适合酸溶浸铀后的地下低放射性含铀废水的处理。
3.3离子交换法
目前离子交换主要处理低放废水,包括有机离子和无机离子两种交换体系。此法特点是操作方便、设备简单、去除效率高且减容比高,适用于含盐量低、悬浮物含量少的水体。国内外研究都表明离子交换剂对Cs的有很高的吸附容量。
3.4膜分离技术
膜处理方法是处理放射性废水相对经济、高效、可靠的方法,此法具有出水水质好、物料无相变、低能耗、操作方便和适应性强等特点等特点,膜技术的研究比较广泛。美国、加拿大许多核电站采用反渗透和超滤工艺处理放射性废水。
3.5生物处理法
生物处理法包括植物修复法、微生物法。微生物治理低放射性废水是20世纪60年代开始研究的新工艺,国内外都有人开展研究微生物富集铀的工作。美国研究人员发现一种名为Geobactersulfurreducens的细菌能够去除地下水中溶解的铀,Geobacter能够还原金属离子,从而降低金属在水中的溶解度,使金属以固体形式沉淀下来,因此,这种细菌有可能被用于放射性金属的生物处理。生物法处理流程复杂,处理周期长,运行管理难度大,国内核电厂还未采用生物法处理放射性废水。
4放射性废水和普通工业废水处理方法比较
工业废水中污染物成分复杂多样,我们采用单一的处理方法很难达到完全净化的效果,因此需要我们寻找适合的工艺进行处理。其中废水处理工艺的组成需要遵循先易后难的原则,先除去大块垃圾和漂浮物质,然后依次去除悬浮固体、胶体物质及溶解性物质。放射性废水与普通工业废水处理的一个根本区别是:能够用物理、化学或者生物方法将普通工业废水的一些有毒物分解破坏,转化为无毒物质,例如六价铬、氰、有机磷等;而用这些方法无法破坏放射性核素,不能改变其衰变辐射的固有特性,只能靠其自然衰变来降低直至消失其放射性。物理、化学或物理化学方法一般是普通工业废水处理中的预处理或深度处理方法,主要处理方法采用生物处理法。而物理化学法是目前放射性废水处理的主要方法。有些处理方法只适用于处理普通工业废水,而较难应用于处理放射性废水。
5结论
废水处理论文范文6
中石化某乙烯生产装置所产生的废水主要来自以乙烯为龙头的乙烯、裂解汽油加氢、丁二烯抽提、芳烃抽提、高密度聚乙烯、线性低密度聚乙烯、环氧乙烷/己二醇、聚丙烯、MTBE/丁烯-1等生产装置及配套设施排出的生产废水、初期雨水和生活污水及全厂事故水池中的不达标废水。各装置废水经调节、中和、聚结除油、气浮预处理后,依次进入纯氧曝气池、MBR,出水进入出水池经监测合格后外排或回用。设计废水量为500m3/h。
2MBR工艺设计
2.1设计进、出水水质
装置内废水经预处理后,进入MBR生化处理系统处理,出水水质要求达到GB8978—1996《污水综合排放标准》一级标准,CODCr质量浓度要求达到中石化企业标准即60mg/L。
2.2工艺流程技术说明
MBR生化处理系统由配水井、水解池、曝气池、MBR膜池及其配套设施组成。
(1)配水井。水解池前设置配水井,用来收集前端处理来水及少量生活污水,并在此完成与MBR回流污泥的混合,混合后向MBR水解池均匀配水。
(2)水解池。水解池的主要作用是在兼性细菌的作用下,将废水中的部分大分子、长链有机物质水解为易于生化的小分子、短链的有机物,从而提高废水的可生化性。池内设置潜水搅拌机,使废水与MBR膜池回流污泥呈悬浮状态,利于水解过程的有效进行。水解池出水自流进入曝气池。
(3)曝气池。曝气池是水中污染物主要的降解场所,同时实现微生物的增殖。曝气池采用离心鼓风机和微孔曝气器相结合的充氧方式,为废水在此区内进行有机物生化降解、去除水中的BOD5和CODCr等提供充足的氧源。曝气池末端设置在线溶解氧测定仪,实时在线监测混合液中的溶解氧情况,控制出口溶解氧质量浓度为2.0mg/L左右。为防止废水中的毛发等纤维状的物质进入后续MBR膜池,在曝气池出水渠道上设置2mm×2mm不锈钢格网,废水流经格网后自流进入MBR膜池。
(4)MBR膜池。MBR膜池中安装有膜组件,通过膜的过滤实现泥水分离,活性污泥被截留在膜外,膜内清水经MBR产水泵提升至出水池外排或回用。
(5)污泥池。MBR膜池末端设有污泥池,设置污泥回流泵将膜池混合液回流至配水井,设计最大回流比为150%,MBR膜池污泥质量浓度控制在不低于3000mg/L。剩余污泥根据工艺运行情况排入剩余污泥井。
2.3MBR化学清洗设施
由于存在膜污染,MBR膜组件需要定期进行化学清洗,以保证过滤工作正常进行。膜组件的化学清洗分为3种:
(1)在线自动低浓度维护性清洗。在线自动低浓度维护性清洗采用质量分数为10%的次氯酸钠溶液,投加量为300~500mg/L,主要清除膜上的有机物。清洗频率为每周1次。
(2)在线高浓度恢复性清洗。在线高浓度恢复性清洗采用次氯酸钠和柠檬酸,投加量分别为3000mg/L和1.5%,主要清除膜上的无机物。清洗频率为每3个月1次。
(3)停运清洗。当膜组件受到意外污染或在线清洗不能恢复膜通量至设计水平时,可通过单格停运进行化学清洗的方法来恢复通量、延长膜的寿命。同时,另外设置2格膜化学清洗池作为最后的清洗措施。
3MBR控制系统
本工程采用DCS自动控制系统,大大降低劳动强度、减少人工,从而节约运行管理费用。为延缓膜的污堵,MBR系统采用恒液位出水方式,产水泵入口设置调节阀。出水管路上设置孔板流量计,通过设定流量与检测流量的比较,自动控制MBR产水泵的运行频率,从而保证膜系统的恒液位出水。产水泵入口设置压力变送器,压力变送器用来监测跨膜压差,当跨膜压差达到设定值(25kPa)后进行报警并自动停泵,提示操作者手动启动恢复性反洗程序,以保证膜系统不受损害。膜组件底部设有空气吹扫系统,连接吹扫风机,受DCS程序控制。正常工作时为连续吹扫,当系统进入在线化学清洗程序时,吹扫系统暂停,清洗结束时,自动开始运行。MBR产水泵间歇运行,由DCS组态,实现自动控制运行。产水泵与吹扫风机联锁,当风机停止工作时,产水泵不能被启动。膜池设置静压式液位计,在膜池液位低于膜组件保护液位时,进行报警并联锁停泵,在膜池液位达到设定高液位时报警,保证膜池液位稳定。回流污泥和剩余污泥管道上设置流量计,实时监测回流污泥量和剩余污泥排放量。
4主要废水处理构筑物和设备
(1)水解池。水解池2座,地上式钢筋混凝土结构,有效容积为1524m3,废水停留时间为6.1h。每座水解池内设有潜水搅拌机1台,搅拌机叶轮直径为615mm,转速为480r/min,电机功率为5kW。
(2)曝气池。曝气池2座,地上式钢筋混凝土结构,有效容积为1524m3,废水停留时间为6.1h。为防止出水短流,每格曝气池分为3个廊道,池内均匀布置管膜式微孔曝气器360个,长度1000mm,外部供气经此释放,氧利用率大于23%。
(3)MBR膜池。膜池4座,地上式钢筋混凝土结构,有效容积为230m3,废水停留时间为1.8h。膜池中安装有5套膜组件,整个膜池一共设置20套膜组件。膜丝为PVDF材质的浸入式中空纤维膜,工作水通量为18L/(m2•h),膜孔径为0.4μm。
5运行效果分析
废水处理装置于2012年8月完工并投入运行,经过2a多的运行,处理后出水水质达到GB8978—1996一级标准的要求。2014年5月份MBR出水CODCr、NH3-N、油的平均质量浓度分别为24.45、0.37、0.36mg/L,平均pH值为7.7。由于膜的高效分离作用,处理出水极其清澈,SS和浊度接近于零,同时,膜分离也使微生物被完全被截流在生物反应器内,使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,同时反应器对进水负荷的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
6工程投资
本废水处理工程总投资1.8亿元,占地285m×150m。
7结语