机械臂范例6篇

前言:中文期刊网精心挑选了机械臂范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

机械臂

机械臂范文1

Step 1 工具和材料

工具:由于不少金属和塑料材料都需要我们进行加工,因此以下工具是必备的:用于切割的旋转锉刀,一个好用的电钻,以及30W的电烙铁。

材料:

螺丝螺帽若干;NES手柄连接器;塑料扎带;NES手柄(其他同类型的手柄也行);一个铅块用于配重(或者其他合适的重物);一些塑料齿轮,留着备用。

Step 2 拆解打印机

剩下所需的大部分零件都是从一台坏掉的惠普打印机上拆下来的,所谓物尽其用嘛。类似的打印机也可以拿来拆解,当然前提是这台打印机确实已经报废了。咱们先把打印机的外壳部分拆下来,后面很多部件可以直接从这上面取材加工。比如这一大一小两个步进电动机就是来自打印机的尸体。后面我们要把这两个电动机用在机械臂的关节等部位上,以提供动力。

Step 3 金属部件加工

找来一些金属板之类的东西相信对各位来说也不是难事。不过咱们还是继续发挥废物利用的精神,只需要一个变压器的铁芯基本就能搞定这些金属小件。在加工之前,咱们先得画好图纸样板,接着就按照样板用旋转锉刀以及电钻进行切割和钻孔工作吧。手上活一定得细,不光是讲究造型,合适的大小才能保证后面能顺利进行装配。造型做好以后,最好再上点涂料防腐蚀。最后我们一共得到这5个金属小件,可千万别小瞧它们的作用。除了这几个小件,还得做机械臂的支架部分。还好我们一样可以从打印机上面取得两个长铁块,然后咱们把它们焊接成一个U型,如果你怕自己焊不好,可以交给街边的修理铺什么的帮忙焊一下。焊接好以后,咱们再按照前面做金属小件的方法补上几个件,原则还是一样,尽量精细一点。最后把所有的金属件汇总―下,看看有没有什么遗漏的。同样地,咱们还是上点漆保护―下。

step 4 塑料部件加工

处理完金属部件,咱们再来处理塑料的部分。先在打印机的侧面找到这个之前安装齿轮的部位,然后以凹孔为中心裁剪出一个菱形,留着后面装配齿轮和步进电动机。

接着在一块平板上裁剪出这样几个小件,先画出模板,再依次切割加工。钻好孔安装螺丝,后面再用来固定底座。

step 5 制造底座底座的材料咱们还是以木材为主,这样方便固定。当然了,得尽量选择结实平整的木料。首先我们准备好以下几件木材:一块54X16厘米的长木板,一块11x11厘米的方木板,四个2x3厘米的小木块。接下来按照图中的样子把四个小木块放在长木板上调整好合适的距离,总之要和我们之前从打印机上拆下的钢管长度相适宜。然后再用之前做好的凸型部件结合螺丝,把钢管固定在小木块上。仅仅这样当然是不够的。我们还得用11X11厘米的方木板做一个平台,好让机械臂能在上面横向移动。平台和钢管的连接处则利用之前准备好的套环和塑料扎带来固定,调整好位置后把平台取下来,等安装好支架再放上去。做活做全套,最后还是给所有的木料上下漆吧。

Step 6 组装机械手

控制机械手的关键元件是一个伺服电动机,这玩意儿可以从网上搞到。至于其他的部件大家同样可以看看身边有没有合适的材料可以物尽其用。这里我们还是从塑料板上裁剪出了几个部件,然后再用螺丝和齿轮装配成机械手的骨架,记住两个齿轮一定要能够顺畅地咬合。然后就得让伺服电动机上场了,这玩意儿的功能是将电信号转换成转轴的角位移或角速度,是自动控制设备中常见的元件。咱们先把它用螺丝固定在机械手的上方,再找来一根8厘米左右长度的铝管来做机械手的前臂。

step 7 组装肘部

要组装好肘部,咱们得先把之前准备的几个金属部件组装成图中的形状。然后把小号的步进电动机组装在上面,只要前面的活够细的话,组装起来应该没太大问题。

Step 8 组装前后臂

组装前后臂的关键是做好连接杆。拿出之前准备的Y型部件,再利用两个凸型部件把齿轮固定在Y型部件的中间,接着再组装到肘部上。最后在Y型部件的后面固定好一根20厘米左右长度的铝管作为后臂。

Step 9 完成支架

支架部分一定要够牢固,而且得多试验下机械臂合适的高度,千万别因为配重不平衡而东倒西歪。

把之前焊好的U型部件固定在平台的一边,并安装上一根连杆,在连杆一端安装好一个较大的传动齿轮,

接着按照图中的样子组装好另一个U型部件,并把它固定在相邻的平台另一边。这个U型部件是用来安装另一个步进电动机的。

接下来拿出之前准备好的菱形部件,把齿轮安装在上面,最后再安装上另一个步进电动机,确保它能顺畅地带动这个齿轮。

然后把用于配重的铅块固定在后臂上,调整好合适的位置后,再把连杆通过几个小部件固定好。这样一来,机械臂的支架就算基本完成了。

Step 10 安装履带

最后咱们再来做一个小型的传动履带,用来带动机械臂在底座上横向移动。当然,还得在履带中间用些小技巧来卡住平台。

现在我们还得另外找一个电动机,安装在履带的一端以提供动力。记得要让履带保持一定的张力,让齿轮能顺畅地带动履带。

履带和电机都装好以后,把平台安装上去好好调试―下,看看会不会发生卡壳等问题。

Step 11 组装电路板

电路板也是从别的玩意儿上拆下来再依次安装元件的,对于经常玩电路的同学来说也没有太大的难度,只需在焊接的时候细致一点。电路板包括一个小板和一个大板,咱们先来看小板,小板是用来驱动电动机的,包括一个pic 16f628a单片机芯片,一个uln2003电路,搞定后连接在大板上。接着是大板,咱们得把NES手柄连接器装在上面,顺带再安装一个LED做指示灯。

Step 12 编程

至于给单片机编程的工作,就要靠各位自己去研究了,同样地,我们会把编程代码和设计图纸放在《Geek》论坛上,提供给有兴趣的同学。总之这里用的主要是JDM编程器和WinPic 800编程软件,分别给大板和小板编好控制程序。

Step 13 最后组装

激动人心的时候到了。所有的步骤搞定后,咱们可以来进行最后的组装。总之该接的接上,该调试的调试。最后咱们只需接上NES手柄,就可以好好地调教一下这个个头虽小却灵活十足的“怪手”了!

机械臂范文2

关键词:六自由度;机械臂;控制系统设计

中图分类号:TP241.3 文献标识码:A

1.六自由度机械臂控制系统设计要求

六自由度机械臂的运动控制硬件分别是机械手的运动控制、驱动电路的底层控制、远程通信以及远程控制、视觉传感和辅助传感系统和上层控制的人机交互。

在整个自由度机械臂控制系统中,上位机控制系统的主要功能是给操作者提供良好的人机交互界面,而且机械臂的操作能够通过配套的便携手柄而实现,所以上位机要对手柄所发射的信号进行有机的掌握和控制,对下位机系统的控制还需要上位机系统给出,同时还要将下位机及机械臂运动状态信息能够及时反馈给操作者。操作手柄和下位机作为移动设备而言,上位机控制系统除了能够提供有线的控制,还要提供相应的无线通信系统,其控制的有效距离在100米左右实现控制的指令和运动反馈的信号达成。在移动载体的设计上,除了放置机械手实现对抓取的射线图像检测仪,机械臂和车身上还装置了两台CCD摄像机和两个自由度的云台,并相应地配备录像机以对排爆过程进行全程的记录。这些信息的反馈就是通过无线图像模块实现的。

在机械臂手部的设计过程中,因为机器人的抓手在整个机械臂系统中作为最末端的执行器,在抓取和实现操作工作的时候,其可以根据需要分为钳式和吸附式。在这个层面上我们主要考虑的是机械臂在进行工具抓取的时候,需要采用钳式的爪手,在爪手上的电机,我们选择的是MICRO-STd伺服电机,在电机的尺寸设计上,要保证电力能够在最小的空间占比和最轻的质量占比,从而满足于机械臂的灵活性。在机器人的机械臂设计中,机械臂是由四到五个伺服的电机组成的,对伺服电机的控制能够保障机械臂在不同使用需求上的不同位置和方向的自由变化。机械臂的手臂电机在设计过程中为了满足其灵活性,选择的是金属齿轮的伺服电机。在六自由度机械臂的手腕处,我们采用与爪手处相同的伺服电机,为了能够更好地保证对工具的夹持和手腕部的回转设计,六自由度机械臂在其底座的设计上,我们选择合金压铸技艺,从而使得底座能够支撑起整个手臂的重量,保障其在运行过程中的稳定性。对于标准的伺服机而言,其主要有三条引线,分别为电源线VCC、接地线以及控制信号的传播线。

2.控制器的设计

在对六自由度机械臂的控制器的设计上,主要采用单片机作为主控制器,通过双电源为控制机和伺服电机进行供电,从而保障机械臂的正常使用。在串口与电脑以及其他单片机的通信上、在单片机的电源设计上、在电路板的正面部分设计了三个电源的输入口,其中中间部分的输入口作为单片机的电源输入。在伺服电机的电源设计上,其输入的电压我们要控制在4.8V~6V之间,伺服电机上下两侧的电源分别为1~6路伺服电机供电和17~32路的电机供电。在六自由度机械臂的设计中,由于需要使用六路,从而在改设计中仅一侧的电源就能够保障满足供电的需求。

3.VB控制软件的设计

在设计端口的连接和设置上,主要通过使用串口,使电脑与设置好的端口和控制器达成良好的通信。在设计界面上,我们可以对奇偶校验、停止位、数据位、比特率这几个方面进行选择设置。

对于通道控制,通过对多路伺服电机控制器的有效设置,对机器手臂实现从上到下的伺服电机顺序编号,将编号分别对应到爪手到底盘处的六个伺服电机,通过拖动任意的数值拖动条,实现爪手控制。

在速度的调节问题上,因为调节的速度能够对伺服电机的转动速度进行控制,在系统设置中,过大的数值调度会影响到机械臂的使用,系统默认的最佳值为300。

在六自由度机械手的控制O计过程中,为了能够与保障机械手完成复杂和烦琐的工作,因此在控制系统的设计过程中,要对系统进行严格的设计,本文就对VB控制软件下的六自由度机械臂进行分析。

参考文献:

机械臂范文3

关键词:柔性机械臂;动力学;逆动力学;振动;大范围运动

theanalysisandsolutionforinversedynamicproblemsofflexiblearms

abstracet:thepaperconcentratesontheanalysisandsolutionforinverseproblemsofflexiblearms.thesecantcoordinatesystemisintroducedtodescribethelocationofthetwo-linkarm.thefast(vibration)partandtheslowpartareanalyzedfortheinverseproblems.thesolutionsforthefastpartarefoundemanativethroughtheanalysis.so,thesolutionfortheflexiblearmsshouldbecarriedoutwhileonlytheslowpartisincluded.asamplemethodisgiventogetridofthefastpartandgetthesolutionsfortheinverseproblems.numericalresultsshowthatthismethodiscorrect.

keywords:flexiblearm;dynamic;inversedynamic;vibration;movementwithlargerange

双连杆柔性机械臂是柔性系统中最为典型的例子之一,在实践中,对其端点的运动实现精确的控制的最重要因素是控制算法的计算速度,复杂的控制算法难以实现。而逆动力学建模和控制是紧密相关的,通过逆动力学方法,得到一个比较精确的驱动力矩作为前馈,再施以适当的控制算法,以实现对机械臂的高速、高精度控制,则是一种具有实效的方法。

关于柔性臂控制的逆动力学方法的研究报道尚不多见,其中文献[1-5]对动力学方程解耦,即把动力学方程近似分解成一些相对简单的系统,从而得到逆动力学的表达式。matsuno[6]通过对采用切线坐标系的动力学模型进行简化,得到了一种实时的逆动力学方法。gofron等应用了驱动约束法[7],把期望运动处理成非定常约束。bayo在频域内进行了逆动力学求解[8],[9]。asada等提出了一种迭代求解的方法[10]。

在逆动力求解中常常会遇到求得的力矩不准,力矩振荡很大,求解烦琐等问题。因此,讨论逆动力学求解的特点和性质是非常重要的,并有助于采用合理的方式得到比较好的前馈力矩。

1动力学和逆动力学模型

一般情况下,柔性机械臂的两根连杆横向弹性变形(弯曲)较小,则忽略机械臂的径向变形;假定关节及臂端负载均为集中质量,则忽略其大小。同时,暂不考虑电机转子的转动惯量和电机的阻尼。

连杆变形很小,对每根连杆建立一个运动坐标系,使得连杆在其中的相对运动很小。机械臂的整体运动则可由这两个动坐标系的方位角来描述。于是,在动力学模型中将有两类变量,一类是幅值很小但变化迅速的弹性坐标,另一类是变化范围较大的方位角。本文采用端点连线坐标系,即将连杆两端点的连线作为动坐标系的x轴(见图1)。描述整体运动的是两个角度和,而连杆相对于动坐标系的运动则可视为简支梁的振动。这样,动力学模型刚度阵的弹性坐标互相不耦合,臂端的位置可由和确定,其期望运动形式(或数值解):

(1)

如采用其他形式的动坐标系,两杆的弹性坐标将耦合在一起,而且在逆动力学求解时,将不得不处理微分方程与代数方程组合的方程组。

对每个机械臂取两阶模态坐标来描述,应用拉格朗日方法得到动力学方程:

(2)

式中。为6×6质量阵;为速度的二次项;为6×6刚度阵;为重力的广义力向量;为驱动力矩的广义力向量;,其中和、和分别是两个机械臂的一阶和二阶弹性坐标。

柔性臂系统的逆动力学问题,是指在已知期望末端操作器运动轨迹的情况下,结合逆运动学与动力学方程对关节力矩进行求解。如果直接进行逆动力学求解,即把式(1)代入动力学方程式(2)中,对方程中的弹性坐标和力矩进行求解,一般情况下,其数值解将很快发散。

表达系统运动状态的坐标可以看成有两部分组成:大范围的相对缓慢的运动(慢变)部分和小范围的振动(快变)部分。本文试图将这两部分分离,分别讨论它们的逆动力学特性,并以此来分析整体系统的逆动力学问题。

2快变部分的逆动力学问题

首先,寻求两个关节力矩使端点保持不动,先不考虑大范围的运动。此时,重力只起了一个改变平衡点的作用,在方程中把与它相关的部分略去,在动力学方程(2)中令,得:

(3)

式中

在方程(3)中消去和得:

(4)

式中:

,,

,,,

,,,

,,,

,

对式(4)降阶:

(5)

式中

其中,

i是四阶单位阵。方程(5)可化为下列形式:

(6)

式中。求出的特征值分别为

式中。

因的特征值存在正实部,则方程(3)所表示的系统不稳定,其解发散,即双连杆柔性臂在这种情况下,其振动问题的精确逆动力学解是发散的。

的各特征值在复空间分布关于虚轴对称,必然会出现正实部,如选取更多阶模态函数离散时,会出现同样的情况。因此,选取更多阶模态函数离散时,其振动问题的逆动力学解是发散的。

如应用应用文献[10]中给出的迭代法进行逆动力学求解,当积分步长很小时,其解是发散的;当积分步长较大时,便可得到较好的结果。其原因是因为快变部分的逆动力学解发散,当步长较大时相当滤掉了快变部分,便可得到较好的结果。

3慢变意义上的逆动力学

在进行慢变意义上的逆动力学求解时,应试图将弹性坐标中的振动部分滤掉,弹性坐标中不应含有振动部分,再结合期望的、求得力矩。

如图1所示,机械臂的各参数:l1=0.87m,l2=0.77m,m1=1.9kg,m2=0.8kg,m1=12.75kg,m2=2.4kg,=602.5,=218。期望运动轨迹:机械臂端点绕以(0.8,0)为圆心,做半径为0.5m,以每周1s作匀速圆周运动。

由机械臂的动力学仿真结果可以看到,弹性坐标的一阶、二阶时间导数项振动幅值很大,但它们都在零值附近振动,即其慢变部分很小。因此,在式(2)中去掉弹性坐标的一阶、二阶时间导数项,相当于滤掉了弹性坐标中的振动部分,经过整理得到如下形式:

(7)

式中,、、中含、及其一阶时间导数项。

将式(1)代入式(7)中,再对方程求解,可以得到弹性坐标和力矩,弹性坐标见图2(图中不含振动的曲线)。为了考察得到的力矩,将力矩代入动力学方程式(2)中,得到的各弹性坐标见图2(图中含振动的曲线),轨迹跟踪曲线、端点坐标与期望运动相比较的误差曲线分别见图3和图4。

含振动部分的弹性坐标

弹性坐标的慢变部分

4结束语

由图2可以看到,机械臂在运动过程中,其弹性坐标由两方面组成,一方面是振动部分(快变部分),另一方面是与载荷、惯性力有关的慢变部分。而弹性坐标速度、加速度的慢变部分很小,在逆动力学求解中将其略去是合理的,由式(7)得到了比较准确的弹性坐标慢变部分并非偶然。

由以上分析可以看出,对于柔性机械臂系统,振动部分的精确逆动力学解是发散的,进行逆动力学求解时,应滤掉振动部分,在慢变的意义上进行,才能得到比较好的前馈力矩。

参考文献

[1]xiajz,manqch.realtimeestimationofelasticdeformationforend-pointtrackingcontrolofflexibletwo-linkmanipulators[j].thejournalofdynamicsystems,measurementandcontrol,1992,115(3):385-393.

[2]matsunof,sakaway.,asanot,quasi-statichybridposition/forcecontrolofaflexiblemanipulator[c].proceedingoftheieeeinternationalconferenceonroboticsandautomation,sacramento,publbyieee,1991,3:2838-2843.

[3]matsunof,sakaway.dynamichybridposition/forcecontrolofatwodegree-of-freedomflexiblemanipulator[j].journalofroboticsystems,1994,11(5):355-366.

[4]yoshikawat.dynamichybridposition/forcecontrolofrobotmanipulators-descriptionofhandconstraintsandcalculationofjointdrivingforce[j].ieeejra,1987,(3):386-392.

[5]kwonds,bookwj.aninversedynamicmethodyieldingflexiblemanipulatorstatetrajectories[c].proceedingsoftheamericancontrolconference,sandiego,publbyamericanautomaticcontrolcouncil,1990,27-37.

[6]matsunof.modelingandquasi-statichybridposition/forcecontrolofconstrainedplanartwo-linkflexiblemanipulators[j].ieeetransactionsonroboticsandautomation,1994,10(5):287-297.

[7]gofronm,shabanaaa.controlstructureinteractioninthenonlinearanalysisofflexiblemechanicalsystems[j].nonlineardynamics,1993,(4):183-206.

[8]bayoe,moulinh.anefficientcomputationoftheinversedynamicsofflexiblemanipulatorsinthetimedomain[c].proceedingsoftheieeeinternationalconferenceonroboticsandautomation,scottsdale,publbyieee,1989,710-715.

机械臂范文4

【关键词】移动平台;机械臂;结构分析;机器人

本文在确认基于移动平台的机械臂结构设计指标的前提下,阐述了基于移动平台的机械臂构型选择,在此基础上研究从机械臂关节数目确定、机械臂关节结构选型以及机械臂驱动器选型等方面阐述了基于移动平台的机械臂结构设计方案。

一、基于移动平台的机械臂结构设计

(1)设计指标的确定。移动平台机械臂必须满足足够的工作和操作空间,并且控制自身的质量和载荷,从而使其满足对于轻型结构的要求。而移动平台的特点,同时也决定了机械臂的设计必须应该保证持续工作,能耗足够小。结合以上的设计需求,并考虑到具体的使用场合,本设计为其拟定的设计指标为:移动平台机械臂的自由度选择为5;其伸展长度为3m,对于具体的负重量,要求末端能够负荷超过0.5千克的质量,机械臂本身的质量控制在一千克之内。机械臂的功率要求低于15瓦。(2)机械臂结构选型。移动机械臂属于机电一体化设计,由于设计指标确定了机械臂的自由度选择为5,因此必须具备5个关节。各个关节均通过连杆机构相连接。本研究选择了转动关节型机械臂,分为腰部关节、肩部关节、肘部关节。以及辅助关节和腕关节。其结构选型的简图如下所示:

(3)关节数目确定。关节数目的选择需要考虑到具体使用场合的需要。具体的要求包括:能够做到对目标进行水平拾取,如图2所示:

机械臂还应能够做到取出自身所携带的目标,如图3所示:

机械臂应能做到将目标递给对方,如图4所示:

由于使用场合的要求是多样化的,因此本设计为其添加一个辅助关节,置于肘部和腕部之间(如图1所示)。(4)关节结构选型。考虑到涡轮蜗杆传动原理的弱点是对载荷的限制,本文将关节结构设计为输入端与输出端轴线平行,从而达到了结构不复杂,传递路径最优的目标。本文所涉及的机械臂属于串联连杆类型,为了达到较大的减速比传动指标,传动模块使用谐波减速器,配置以齿轮系、同步带等辅助部件,实现多级齿轮的传动方式。(5)机械臂驱动器的设计。基于移动平台的机械臂驱动器对于机械臂的各种性能影响非常明显,直接关系到所涉及的成品所具备的性能指标和使用范围。机械臂驱动器在进行选型的阶段,最应该注重的便是合理评估在各类可能发生的使用场合中处于机械臂之上的每一个关节所承受的负载极值。本研究所涉及的机械臂对于负载的要求并不高。通过当前本领域的一些研究成果可知,如果机械臂对于负载没有太多要求,则可以将电动驱动器作为各个关节的驱动器。业界的研究文献表明,最常使用的电动驱动器包括如下几类:永磁直流,永磁同步流以及无刷直流。本研究选择无刷直流电机,理由是与以上的其他几种电机相比,其故障率小、维护工作量低、噪音少,可选速率范围大,散热方便。电机驱动模式以及电机选型确定之后,接下来便可以确定各个关节动作的具体传递模式:无刷电机—齿轮减速器—各个关节。对于齿轮传动装置采用三轴线双级斜齿圆柱齿轮减速器,并于齿轮减速器输出部分部署灵活的可调电位器,其作用是以反馈的模式控制关节输出角度。

二、结语

本研究从整体上阐述了基于移动平台的机械臂结构分析与设计方案,移动机械臂的设计目前仍然有很大的发展空间,一方面需要深入研究机械臂的精准控制,另一方面还应结合具体的使用场合考虑移动平台的控制,这也是本研究下一步进行的方向。

参考文献

机械臂范文5

关键词:空间机械臂;辐射热流;隔热组件;仿真技术

航天事业的发展推动着工程持续进步,传统的空间站已经无法满足时代的变迁需求,无论是在应用还是研究上都存在着或多或少的弊端。空间机械臂拥有可靠安全性,对在轨支持和服务上都能更好的适应时展需要,因此逐渐进入到太空领域,并且受到了众多科研人员的关注。经过具体的实践,空间机械臂能够更好的适用于舱外活动,并且拥有广阔的发展前景,对于未来的空间科学发展起到了巨大的推动作用。

一、空间机械臂关节的基本概述

空间机械臂主要是通过关节、末端作用器及臂杆、控制器共同构成。在这些构成部分中,最为关键的关节是转动轴、减速器及箱体等组件产生共同作用的部分。空间机械臂关节的内部存在着十分复杂的减速器结构,这种减速器的结构主要是活齿减速器,为了更好的方便输入、输出轴都呈现出多级阶梯轴的样式。为了有效的减轻重载,输入轴通常是实心结构,而输出轴则多为空心轴结构。此次研究的过程中,涉及到的空间机械臂关节在轨温度场数值,主要是由于机械臂关节内部的活齿减速器呈现出强大的承载能力,并且拥有极高的准确度,可以连续长时间的工作,这种活齿减速器还可以在小型设备上实现大传动比,所以结合限制的空间机械臂的空间运动范围,加之输出力矩较大,必须保证拥有较高的控制精度,同时还需要准确的温度精度,从而对关节的在轨温度场数值提出了更高的要求。

二、空间机械臂关节在轨温度场数值热分析计算

航天器的热分析计算可以从三个方面进行,例如轨道计算、外热流计算及温度场计算。航天器的热计算最重要的目的就是在验证相关的设计规定输入条件下,保证所有的设备具体的温度都能在实际的温控指标范围之内。输入的条件涵盖了计算的具体依据,同时还有相关的热环境约束条件,其中涉及到的布局、外形构造、轨道参数及姿态等内容。

航天器中典型的热分析计算流程框图,是经过具体的三个过程才建立起来的。首先是根据物理模型和相关的假设条件,以此构造出实际的热网络模型,另外,就是根据具体的运行轨道条件,和相关的姿态稳定情况、热控状态及航天器适用的热物理性质等多种参数,完成空间热流的计算和具体的热分析计算,以此获取到相应的热网络数学模型。最后一个阶段就是利用飞行遥感数据对相关的数学模型加以修正,确保更好的彰显在轨温度产生的变化。

航天器轨道计算的具体理论基础主要是依靠着轨道力学,这是一门非常新颖的应用理论学科,在天体力学最原始的基础上通过航天科学技术和相关的技术发展需要由此产生,因此涉及到的内容十分广泛,涵盖了多方面的学科内涵。在航天器热控制领域,无需全方位、全面系统的进行阐述有关轨道设计计算方面的知识内容。

三、空间机械臂关节在轨温度场数值仿真分析

空间机械臂由于工作环境的特殊性,需要充分考虑多种因素,准确分析在轨温度场数值。空间机械臂的工作环境就是空间轨道,所以需要加强对轨道环境的数值分析,并且采用仿真技术进行数值仿真,还应该对不同的工作状况进行适当的在轨温度场仿真,全面了解机械臂关节瞬间的状态温度变化。结合相应的情况,对低温工况和高温工况进行温度场的仿真,由此来提供关节的安全保障。

(一)关节结构组成及相应的温控指标

此次研究的过程中,涉及到几种几何模型,主要包括活齿减速器、箱体及隔热层。减速器的材料主要是45号钢,因此最大的直径达到了224毫米,长度为375毫米,相关的输入轴直径是45毫米,输出轴的直径则是80毫米,箱体的实际厚度为50毫米。结合目前的计算机技术分析,真实活齿减速器属于一种外形比较复杂,同时运动过程也十分复杂的几何体,在进行相应的数值模拟时计算比较困难。为此,需要对减速器和箱体的结构加以适当简化,避免因为过程不当对计算结果产生影响,从而导致计算机无法求解。

(二)热控材料的确定

多层隔热材料是在轨设备最需要的原始材料,因此在表征多层隔热组件的方式多种多样,当量导热系数、涂层发射率、吸收率等都是其中最关键的参数。为了更加细致的选择多层隔热组件和相应的隔热材料,需要对相关的参数影响进行适当分析,由此总结出隔热组件的当量导热系数对空间热流产生了重要影响。在对热控材料进行确定的过程中,还应该明确隔热层厚度的影响,为了保证空间机械臂关节隔热层的必要性和相应的厚度选择更加合适,应该先计算出无隔热层厚度之下的关节温度场状况,之后计算出在不同厚度之下的温度场结果。

(三)在轨瞬态分析

空间机械臂关节在轨瞬态分析是热设计中的重点内容,瞬态分析的过程和相关的轨道参数能够呈现出具体的状况。在轨运行的过程包含着低温工况及高温工况两方面。低温工况主要是机械臂整体不参与工作,所以关节只受到了空间外流的影响。高温工况则具体是指机械臂全负荷工作,从而关节除了要接受空间外热流的影响下,还会受到内部的全负荷热流影响,并且整个过程,低温工况下的太阳及轨道之间的夹角呈现出的日期是全年最小,在高温工况下的太阳和轨道夹角所呈现的日期则是全年最大。

机械臂范文6

关键词: 非结构环境; 机械臂; 关节; 自动控制; 系统设计

中图分类号: TN02?34; TP241 文献标识码: A 文章编号: 1004?373X(2017)11?0172?04

Design of mechanical arm′s each joint automatic control

system under unstructured environment

ZHANG Yuannong, ZHANG Xiaofeng

(Beijing Institute of Technology (Zhuhai), Zhuhai 519088, China)

Abstract: In order to make the mechanical arm bring more benefits to industrial enterprises, a mechanical arm′s each joint automatic control system under unstructured environment was designed to realize the intelligent, low?cost, high?quality and high?safety purpose. According to the design criterion of system performance, the two degree of freedom (2DOF) is allocated for the shoulder, elbow and wrist of the mechanical arm respectively, the D?H parameters of the mechanical arm are given, and the appropriate motor is designed for each joint to realize the mechanical arm movements. The control algorithms are written in FPGA of the system. The master control chip is used to integrate the different joints′ control algorithms in FPGA to determine the movement scheme of mechanical arm and give the control instructions. The 2.5D environment map is constructed to perceive the unstructured environment, and perfect the control instructions. The experimental results show that the system has strong optimization ability of joint trajectory.

Keywords: unstructured environment; mechanical arm; joint; automatic control; system design

20世o50年代,人口老龄化时代来临,加剧了生产企业招工难、用工成本大的问题,机器的利用率随之提高。一些企业在工业生产中使用机械臂代替人类双手,其特点是加工精度高且速度快,适用于切割、零件安置等简单、任务量小、重复度高的生产活动[1]。目前,机械臂的载重偏低,主要应用于结构化环境中,虽然也有在非结构化环境下进行生产的案例,但往往受限于机械臂各关节的灵活性不足,无法精准完成生产任务。

非结构化环境的地形复杂,包括平地、斜坡、台阶、沟壑等,要求机械臂各关节能够对变化中的地形进行快速感应,并立即选定关节运动位移和角度,智能化是机械臂的控制重点,还要考虑到低成本、小质量和高安全性能等因素,更加大了设计难度[2]。过去设计出的一些非结构环境下机械臂各关节自动控制系统,如文献[3]和文献[4]设计的基于 7R的仿人机械臂逆运动学优化系统和基于随机激励的机械臂关节控制系统,都没能同时兼顾以上几点设计要求,关节轨迹优化能力也需要进一步提高。为了响应生产企业需求,在非结构环境下机械臂各关节自动控制系统的设计过程中充分衡量各项设计要求,通过分析非结构环境特点提出环境感知方法,增强系统对关节轨迹的优化能力。

1 非结构环境下机械臂各关节自动控制系统设计

1.1 系统整体设计

通过衡量智能化、低成本、小质量和高安全性能的设计要求,设计一种具有高度信息集成性能、高速感知和高速反应的非结构环境下机械臂各关节自动控制系统,所设计系统的质量小,可轻松安置在工业加工设备上,并可进行人与系统的有效沟通,表1为系统性能设计标准。

表1 系统性能设计标准

[性能类型 标准值 质量 小于5 kg 自由度 大于6DOF 整体长度 小于0.65 m 整体最大速度 大于3.0 m/s 最大负载 3 kg 定位误差绝对值 小于2 mm ]

一般6DOF的自由度便能够完成机械臂在非结构环境下的正常加工[5],此时在机械臂各关节自动控制下的定位误差绝对值也满足表1制定的标准,图1为系统自由度划分区间示意图。机械臂肩膀处、手肘处以及手腕处都分别被划分了2DOF的自由度,肩膀负责进行上手臂(包括肩膀和手肘两个重要关节)的角度控制和直线升降控制,手肘负责进行手肘回环控制以及手臂前端的角度控制,手腕负责进行手腕的扇动控制和直线升降控制[6]。以机械臂的肩膀为圆心,以手臂长为半径作圆,得到非结构环境下机械臂各关节自动控制系统控制机械臂运动的范围。

图1 系统自由度划分区间示意图

图1中的表示各关节的运动情况,表2为机械臂在D?H矩阵中的参数统计表,D?H矩阵是一种使用4×4的齐次变换矩阵来表示机械臂相邻关节位置关系的矩阵[7],从表2中可以准确看出机械臂各关节在所设计系统控制下的运动角范围和极限运动距离。

非结构环境下机械臂各关节自动控制系统为分布式结构,控制算法的容纳元件是现场可编程门阵列(Field?Programmable Gate Array,FPGA),此外,FPGA还负责进行机械臂各关节传感器中数据的采集、处理和系统电流控制[8]。机械臂的上手臂和手腕关节因运动形态有所不同,需要安装不同的电流传感器来感应非结构环境,因此安装于上手臂和手腕关节的FPGA类型也不同,便于准确分辨关节感应信息。FPGA所用的控制线为PCI总线,PCI总线的另一端与主控芯片相连。主控芯片的作用是分析关节感应信息,通过融合不同FPGA中的控制算法,确定出机械臂的运动方案并下达控制指令。

表2 机械臂D?H参数统计表

[运动情况 运动角范围 /(°) 极限运动距离 /m [-80,140] 0 [-140,20] 0 [-50,105] 0.3 [-95,125] 0 [-90,90] 0.35 [-65,65] 0 ]

为提供给各关节足够大的输出力矩,系统使用无刷电机以及谐波减速器共同输出力矩。手腕处的负载虽小,但需要支撑机械臂的整体长度,因而使用差动机构合成力矩。为缩减设计成本,系统只在肩膀和手肘处安置力传感器。

1.2 主控芯片设计

在主控芯片中设计机械臂运动方案时,使用标准地址结构能够减少设计成本。FPGA的32位嵌入式处理器提供C语言编程,提高控制算法的兼容性与智能化。嵌入式处理器与标准地址结构在可编程片上系统中进行集成,构造底层地址文件与主控芯片的连接程序[9],连接线使用RS 644总线。主控芯片与外部功能设备的连接也使用RS 644总线,便于FPGA采集机械臂各关节的运行状态。

图2为系统控制框图,虽然主控芯片与FPGA已通过PCI总线实现了连接,但考虑到定位误差限制,系统只利用PCI总线进行控制算法的传输,对于数据精度要求高的各类传感器信息仍需通过标准地址结构进行集成后再进行主控芯片与FPGA的交互。按照功能结构来分,图2中左侧为控制板,右侧为驱动板,为减轻系统质量,控制板和功能板需要分开设计。由于机械臂各关节传感器与控制板的距离存在差异,在设计过程中应依据实际需要选择控制线以减轻系统质量、降低成本。

1.3 机械臂各关节电机设计

为保证非结构环境下机械臂各关节自动控制系统有效、安全的进行控制,考虑到机械臂的最大负载为3 kg,机械臂各关节的电机质量应尽可能缩减。肩膀处的电机选择了质量为0.885 kg的50 A电机,手肘处的电机采用50电机,质量为0.735 kg。50 A电机与50电机都是由哈尔滨工业大学提供的,两者的相同点是质量轻、力矩大、安全性好,最大输出力矩分别为26 Nm和18 Nm。50 A电机的体积偏大一些,因此安置在结构相对简单的肩膀处。

图2 系统控制框图

机械臂手腕处的活动强度最大,设计要求相对高一些,如表3所示。为了实现表3中规定的设计要求,手腕处的控制方案采取差动机构合成手腕运动。

表3 机械臂手腕关节控制指标

[类型 值 质量 小于0.45 kg 最大角速度 小于0.65 m 最大输出力矩 大于7 Nm 定位误差绝对值 小于0.8° ]

差动机构的输出力矩由无刷电机和谐波减速器汇合而成,如果用和表示手腕关节在系统控制下的回环角度和直线运动偏移角度,主控芯片在机械臂两个齿轮上的输出控制角度为和则有:

(1)

(2)

2 非结构环境感知设计

若想让所设计的机械臂各关节自动控制系统能够在非结构环境下进行高速、高精度的控制,必然要预先提取出非结构环境信息。系统将视觉传感器安置在工业企业的生产车间,对非结构环境进行采集,视觉传感器安置得越多,采集结果就越精准[10],但为了缩减成本,考虑使用3D旋转视觉传感器,在节省传感器开支的基础上避免传感器视觉死角。

将3D旋转视觉传感器采集到的非结构环境信息构造成环境地图,由于非结构环境存在的视觉过渡差异颇高,而直接构造3D仿真地图的时间过长,因此构造规格为6 mm×6 mm的正方形2.5D环境地图,既保留了3D仿真地图的显示效果,又减少了地图容量和运算量,保证了系统的实时控制效果。图3为2.5D环境地图构造流程,非Y构环境信息先以视差图的形式进行显示,再对应写入6 mm×6 mm的正方形栅格中,同时定位到机械臂各关节的管控区域中,以实现对非结构环境中障碍高度和弯曲度的实时显示。

图3 非结构环境的2.5D环境地图构造流程

图4是系统对2.5D环境地图中非结构环境的感知流程,非结构环境的特征点主要包括坡度、障碍物边长与体积、沟壑边长与表面积以及平地距离等。系统使用量化分析方法对从2.5D环境地图中提取出来的特征点进行感知,量化分析的感知技术靠支持向量机支撑。支持向量机将非结构环境特征点训练成范围在[-1,1]之内的感知系数,感知系数的作用是在非结构环境地形中选择一个能够规避障碍的机械臂角度,并提供给系统主控芯片,从而完善控制指令。

3 实验结果分析

点对点运动是机械臂在生产任务中使用最为普遍的方式,本文采用点对点的运动方式对设计的非结构环境下机械臂各关节自动控制系统的关节轨迹优化能力进行分析。设机械臂各关节所处的最初角度分别为-30°,-90°,90°,90°,60°,30°,在不安装自动控制系统的情况下进行一次生产任务,机械臂各关节的归一化运动角度如图5所示。

在机械臂上安装本文系统进行生产任务,所得结果如图6所示。为了增强实验结果的说服力,本文还对基于7R的仿人机械臂逆运动学优化系统和基于随机激励的机械臂关节控制系统进行了同条件下的实验分析,实验结果如图7,图8所示。

通过对比图5~图8可得:基于随机激励的机械臂关节控制系统的实验结果曲线与实验前的归一化运动角度无明显差别,表明系统对机械臂各关节的控制几乎无效,关节轨迹优化能力非常差;基于 7R的仿人机械臂逆运动学优化系统将原始关节轨迹优化成了各个细小分支,这对机械臂提高生产任务的效率和准确率具有推动作用,表明系统的关节轨迹优化能力比较强;本文系统的实验结果曲线比图7曲线更加平滑,而且曲线位置更贴近于图5曲线,拥有更强的关节轨迹优化能力。

4 结 论

本文设计了分布式结构的非结构环境下机械臂各关节自动控制系统,系统的主要配件包括PFGA、PCI总线、主控芯片、电流传感器、力传感器、无刷电机、谐波减速器、RS 644总线和3D旋转视觉传感器等,组成了一个更加适用于工业生产、拥有超强关节轨迹优化能力的系统。

参考文献

[1] 陈志华,刘晓勇.云计算下大数据非结构的稳定性检索方法[J].现代电子技术,2016,39(6):58?61.

[2] 潘齐欣,唐型基.基于步进电机控制的仿人机械手臂抓取移动系统设计[J].科技通报,2016,32(3):118?121.

[3] 霍希建,刘伊威,姜力,等.具有关节限位的7R仿人机械臂逆运动学优化[J].吉林大学学报(工学版),2016,46(1):213?220.

[4] 刘振国,武玉强.随机激励下单杆柔性关节机械臂的建模与控制[J].控制理论与应用,2014,31(8):1105?1110.

[5] 何龙.基于S7?300 PLC不规则空间曲线自动焊接系统设计[J].现代电子技术,2015,38(17):160?162.

[6] 赵博,李元春.基于信号重构的可重构机械臂主动分散容错控制[J].自动化学报,2014,40(9):1942?1950.

[7] 周霏,陈富林,沈金龙,等.基于MATLAB的四自由度机械臂运动学仿真研究[J].机械制造与自动化,2016,45(1):115?119.

[8] 于潇雁,陈力.漂浮基柔性两杆空间机械臂的关节运动鲁棒控制与柔性振动最优控制[J].计算力学学报,2016,33(2):144?149.