乙烯加聚反应范例6篇

前言:中文期刊网精心挑选了乙烯加聚反应范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

乙烯加聚反应范文1

一、选择题

1.能证明乙炔分子中含有碳碳三键的是(

)

A.乙炔能使溴水褪色

B.乙炔能使酸性KMnO4溶液褪色

C.乙炔可以和HCl气体加成

D.1mol乙炔可以和2mol氢气发生加成反应

2.25℃、101.3

kPa时,乙烷、乙炔和丙烯组成的混合烃32

mL与过量氧气混合并完全燃烧,除去水蒸气,恢复到原来的温度和压强,气体总体积缩小了72

mL,原混合烃中乙炔的体积分数为()

A.12.5%

B.25%

C.50%

D.75%

3.下列有关乙炔的叙述中,既不同于乙烯又不同于乙烷的是(

)

A.能燃烧生成二氧化碳和水

B.能发生聚合反应

C.分子内所有原子共平面

D.能与氯化氢反应生成氯乙烯

4.已知:等都属于离子型化合物;碳化钙和水发生反应制备的方程式如下:。请通过制的反应进行思考,从中得到必要的启示,判断下列反应产物正确的是(

)

A.水解生成乙烷

B.水解生成丙烷

C.水解生成丙炔

D.水解生成乙烯

5.下列物质中存在顺反异构体的是(

)

A.2-氯丙烯

B.丙烯

C.1-丁烯

D.2-丁烯

6.下列关于的说法正确的是(

)

A.所有碳原子有可能在同一平面上

B.最多有9个碳原子在同一平面上

C.有7个碳原子在同一直线上

D.至少有6个碳原子在同一直线上

7.两种气态烃组成的混合气体完全燃烧后所得到的物质的量随混合烃总物质的量的变化如图所示,则下列对混合烃的判断正确的是(

)

①一定有乙烯

②一定有甲烷

③一定有丙烷

④一定没有乙烷

⑤可能有甲烷

⑥可能有乙炔

A.②⑤⑥

B.②⑥

C.②④

D.②③

8.含有一个碳碳三键的炔烃,氢化后的产物的结构简式如图,此炔烃可能的结构简式有(

)

A.1种

B.2种

C.3种

D.4种

9.关于下列四种烃的说法正确的是(

)

A.①催化加氢可生成3-甲基己烷

B.③与④催化加氢后产物的质谱图完全一样

C.③中所有碳原子有可能共面

D.②中在同一直线上的碳原子有5个

10.已知。下列说法不正确的是(

)

A.上述四种物质互为同系物

B.上述反应的四种分子中,所有碳原子均可能共面

C.与结构相似,含有碳碳双键和苯环的同分异构体还有4种

D.与溴的四氯化碳溶液反应时,只能生成

11.下列关于烯烃、炔烃的叙述中,正确的是(

)

A.某物质的名称为2-乙基-1-丁烯,它的结构简式为

B.分子结构中的6个碳原子可能都在同一条直线上

C.相同物质的量的乙炔与苯分别在足量的氧气中完全燃烧,消耗氧气的量相同

D.月桂烯的结构简式为,该物质与等物质的量的溴发生加成反应的产物(不考虑立体异构)理论上最多有4种

二、填空题

12.C是一种合成树脂,用于制备塑料和合成纤维,D是一种植物生长调节剂,用它可以催熟果实。根据以下化学反应框图填空:

(1)写出A的电子式:_________________。

(2)写出碳化钙与水反应制取A的化学方程式:____________________;BC的化学方程式为__________________,其反应类型为_______________。

(3)D还可以用石蜡油制取,石蜡油(17个碳原子以上的液态烷烃混合物)的分解实验装置如图所示(部分仪器已省略)。在试管Ⅰ中加入石蜡油和氧化铝(催化石蜡油分解);试管Ⅱ放在冷水中,试管Ⅲ中加入溴水。

实验现象:

试管Ⅰ中加热一段时间后,可以看到试管内液体沸腾;试管Ⅱ中有少量液体凝结,闻到汽油的气味,往液体中滴加几滴酸性高锰酸钾溶液,溶液颜色褪去。

根据实验现象回答下列问题:

①装置A的作用是___________________。

②试管Ⅰ中发生的主要反应有:;。丁烷可进一步裂解,除得到甲烷和乙烷外,还可以得到另外两种有机化合物,它们的结构简式为__________和_________________,这两种有机化合物混合后在一定条件下反应,生成产物的结构可能为________________(填序号)。

A.

B.

C.

D.

③写出试管Ⅲ中反应的一个化学方程式:_________________。

13.A~E是几种烃的分子球棍模型(如下图所示),据此回答下列问题:

(1)含碳量最高的烃是(填对应字母)_____________;

(2)互为同系物的烃是(填对应字母)________________;

(3)等质量的以上物质完全燃烧时消耗的量最多的是(填对应字母)_____________;

(4)等物质的量的以上物质完全燃烧时消耗的量最多的是(填对应字母)_____________;

(5)在120℃、下时,有两种气态烃和足量的氧气混合点燃,相同条件下测得反应前后气体体积没有发生变化,这两种气体是(填对应字母)______________;

(6)相对分子质量为72的烷烃,其分子式为___________,其存在_______种同分异构体,若该有机物的一氯代物只有一种,则其结构简式为__________,该物质用系统命名法命名为______________。

14.如图中的实验装置可用于制取乙炔.

请填空:

(1).图中,A管的作用是__________,制取乙炔的化学方程式是__________.

(2).乙炔通入KMnO4酸性溶液中观察到的现象是__________,乙炔发生了__________反应.

(3).乙炔通入溴的CCl4溶液中观察到的现象是__________,乙炔发生了__________反应.

(4).为了安全,点燃乙炔前应__________,乙炔燃烧时的实验现象是__________.

参考答案

1.答案:D

解析:碳碳三键不稳定.其中有2个碳碳键易断裂.故加成时乙炔和氢气的物质的量之比为1:2;而前三项只能证明乙炔分子含有不饱和键.但不能证明不饱和的程度。

2.答案:B

解析:根据反应:;;。设混合烃中为mL,为mL,为mL,则有32①;②,由①②可得=8,故原混合烃中乙炔的体积分数为。

3.答案:D

解析:乙炔、乙烯、乙烷都能燃烧生成二氧化碳和水;乙炔、乙烯都能发生加聚反应;乙炔、乙烯分子内所有原子都共平面;只有乙炔可与HCl加成生成氯乙烯。

4.答案:C

解析:等都属于离子型化合物,与水反应生成,类比与水的反应,根据原子守恒得,所以另一种产物为,A项错误;与水反应生成,根据原子守恒得,所以另一种产物为,B项错误;与水反应生成,根据原子守恒得,所以另一种产物为,C项正确;与水反应生成LiOH,根据原子守恒得,所以另一种产物为,

D项错误。

5.答案:D

解析:2-氯丙烯结构简式为CH2=CClCH3,有一个双键碳原子上连有两个H原子,无顺反异构体,A项错误;丙烯结构简式为CH2=CHCH3,有一个双键碳原子上连有两个H原子,无顺反异构体,B项错误;1-丁烯结构简式为CH3CH2CH=CH2,有一个双键碳原子上连有两个H原子,无顺反异构体,C项错误;2-丁烯结构简式为CH3CH=CHCH3,每个双键碳原子上都连有一个H原子和一个-CH3,存在顺反异构体,D项正确。

6.答案:A

解析:碳碳三键为直线形结构,苯环、碳碳双键为平面形结构,单键可以任意旋转,则所有碳原子有可能在同一平面上,故A正确;由选项A可知,最多有11个碳原子在同一平面上,故B错误;三键碳原子、苯环上与乙炔基相连的碳原子及其对位碳原子、和苯环直接相连的双键碳原子位于同一直线上,即至少有5个碳原子在同一直线上,C、D错误。

7.答案:C

解析:由题图可知,1

mol混合烃完全燃烧生成1.6

mol

和2

mol

,则混合烃分子中平均含有的氢原子数为4,平均碳原子数为1.6,故两种气态烃的平均分子组成为。根据平均碳原子数可知,混合物中一定有甲烷;根据平均氢原子数可知,另一种气态烃分子中氢原子数也为4,且碳原子数大于1.6,因此可能含有乙烯、丙炔,一定没有乙烷、丙烷,正确的有②④,故选C。

8.答案:B

解析:炔烃与氢气加成后,碳碳三键两端的碳原子上至少连有两个氢原子,满足此条件的碳碳三键的位置有2种(图中2个乙基等效),如图,故B正确。

9.答案:C

解析:催化加氢生成,名称为3-甲基庚烷,故A错误;催化加氢后的物为,名称为3-甲基己烷,催化加氢后的产物为,名称为2-甲基己烷,二者的加成产物的碳架结构不同,质谱图不完全一样,故B错误;

中双键碳原子与甲基、乙基、乙烯基相连,

碳碳双键为平面结构,单键可以旋转,所以③中所有碳原子有可能共面,故C正确;乙炔分子中4个原子共线,因此中有3个碳原子共线,故D错误。

10.答案:AC

解析:、中含有苯环,与、的结构不相似,不互为同系物故A错误;碳碳双键和苯环均为平面结构,单键可以旋转,题述反应的四种分子中,所有碳原子均可能共面,故B正确;与结构相似,含有碳碳双键和苯环的同分异构体还有、、、、5种,故C错误;与溴的四氯化碳溶液发生加成反应生成,故D正确。

11.答案:AD

解析:2-乙基-1-丁烯的结构简式为,故A正确;双键两端的碳原子和与之直接相连的碳原子处于同平面,键角约是120°,不是直线结构,故B错误;1

mol乙炔完全燃烧消耗2.5

mol氧气,而1

mol苯完全燃烧消耗7.5

mol氧气,故等物质的量的乙炔和苯完全燃烧的耗氧量不同,故C错误;该分子中存在3个碳碳双键,且与溴按物质的量之比为1:1反应时可以发生1,2-加成和1,4-加成,共有4种产物,故D正确。

12.答案:(1)

(2);

;加聚反应

(3)①防止试管Ⅲ中的液体倒吸到试管Ⅱ中

②;;

AC

③(或)

解析:根据题给转化关系和信息推断,碳化钙与水反应生成气体A,则气体A为乙炔,乙炔与氯化氢发生加成反应生成B,B为氯化烯,氯化烯发生加聚反应生成的C是一种合成树脂,则C为聚氯乙烯;D是一种植物生长调节剂,用它可以催熟果实,则D为乙烯;苯和液溴在催化剂条件下发生取代反应生成E,则E为溴苯。

(1)A为,电子式为。

(2)碳化钙与水反应生成乙炔和氢氧化钙,化学方程式为;氯乙烯在催化剂条件下发生加聚反应生成聚氯乙烯,化学方程式为

,其反应类型为加聚反应。

(3)①试管Ⅱ中有气体冷凝为液体,石蜡油分解产物中的烯烃与试管Ⅲ中溴水发生加成反应,造成装置内气体压强减小,会发生倒吸,故装置A的作用是防止试管Ⅲ中的液体倒吸到试管

Ⅱ中。

②根据题给信息和原子守恒,可知丁烷可进一步分解,除得到乙烷和甲烷外,还可以得到乙烯和丙烯,结构简式为、。根据加聚反应的特点判断乙烯和丙烯在一定条件下发生加聚反应生成的高聚物的结构简式为、,选AC。

③试管Ⅲ中,分解产物中的乙烯、丙烯等短链不饱和烃与溴水发生加成反应,反应的化学方程式为、。

13.答案:(1)D

(2)ACE

(3)A

(4)D

(5)AB

(6)

;

3

;

;

2,2-二甲基丙烷

14.答案:(1).调节水面的高度以控制反应的发生和停止;CaC2+2H2OC2H2+Ca(OH)2

(2).KMnO4溶液褪色;氧化

(3).溴的CCl4溶液褪色;加成

(4).检验乙炔的纯度;

乙烯加聚反应范文2

关键词:合成 化学反应 氧化还原 催化 化工

一、合成过程介绍

合成过程是指两种或两种以上比较简单的物质,以化学反应原理为基础,通过发生质的变化而产生所需新物质的过程。合成过程必须注意原材料发生反应的比例关系及发生化学反应所需的条件,从而减少资源浪费、节约成本。

合成过程所发生的化学反应主要包括氧化、还原、催化、聚合、氯化、硝化、重氮化、酸化、碱化等,在一些石油化工生产过程中,会产生一些热气、危害气体、易燃易爆等危险物质,因此在不同的合成生产过程应该采取不同的防护措施,以确保合成过程顺利、安全的进行,提高化学试验、生产的高效性和安全性。

二、合成过程中常见的化学反应及要求

不同的合成过程,其生产工艺也不一样,因此在进行合成反应中,还要注意成本的节约和过程的安全、合理。

1.氧化还原

氧化还原反应是物质间电子数目的等量传递,氧化与还原是两种同时发生且不可分开的化学反应,氧化的同时进行着还原反应,而还原的同时也伴随着氧化的发生。氧化过程需要加热,而还原过程需要放热,因此在氧化还原过程,需要注意环境的温度补给与降温。

工厂生产常见的问题,对于危害气体SO2的回收利用,通常采用石灰浆Ca(OH)2进行吸收,反应方程式:SO2+Ca(OH)2=CaSO3+H2O。在反应设备中,SO22氧化反应过程释放出大量的热量,为未发生反应的SO2提供所需的温度,减少外界供给,降低生产成本,同时又可以平衡设备中的温度,减少因还原反应释放温度而损坏反应设备。

2.催化反应

催化反应是指在催化剂的作用下发生的化学反应,例如氮气和氢气合成氨、二氧化硫和氧气合成三氧化硫、乙烯和氧气合成环氧乙烷等都属于催化反应。石油化工产常见的化学合成过程――汽油馏分的催化重整,是在催化剂及一定的温度、压力条件下使汽油中烃分子重新排列重组的过程,不仅可以产生优质的汽油,还可以生产出具有芳香性的碳氢化合物芳烃。

催化剂是催化反应过程不可或缺的一种物质,其在化学反应前后不变,且具有选择性。有的催化剂本身无害、无危险性,但在反应过程可能因温度的变化产生危险,例如因二氧化锰加快催化反应过程而引起的温度迅速上升、冲料等危险情况,甚至产生火灾等危险,因此在使用催化剂的化学生产、试验中要全面考虑反应过程中出现的问题,确保用量适中,反应设备散热良好,以降低危险和损害。

从安全角度考虑,催化反应过程还要注意生成物的属性,如产生氯化氢、硫化氢等危险物质时,生产人员应注意戴好防护措施、禁止明火,防止中毒或由高温高压引起爆炸等危险造成的人员安全事故;同时注意反应容器的选择,以防止因容器腐蚀、损坏造成的事故。

3.聚合反应

聚合反应是指低分子单体合成聚合物的反应,按聚合物和单体元素组成结构不同可将聚合反应分为加聚反应和缩聚反应。加聚反应是指单体加成而聚合的反应,元素组成不变,与加聚反应不同的是,缩聚反应同时还产生水、醇、氨等低分子副产物,例如氯乙烯聚合成聚氯乙烯属于加聚反应,已二胺和已二酸反应生成尼隆―66属于缩聚反应。

聚合反应中的单体大多数属于易燃易爆的物质,而聚合反应发生的条件则是高压,反应过程易发生燃烧、爆炸等危险,由于反映本身会释放热量,所以对于反应条件的控制要求相当严格,引发剂的配比要求科学合理、反应容器设备要求优材优质、反应过程必须保证温度低于危险系数等。

4.氯化反应

氯化反应是指以氯原子取代有机化合物中氢原子的过程,其主要原料是含有氯原子的氯化剂。在石油化工提取及生产中,氯化反应尤为重要,其产物主要有甲烷、乙烷、戊烷、天然气、苯、甲苯及荼等。

在氯化反应过程中,氯化剂除了与原料进行反应外,与生成的衍生物也发生作用,例如CeO2+2NH4Cl=CeOCl+1/2Cl2+2NH3+H2O,反应生成的CeOCl与NH4Cl继续发生化学反应CeOCl+2NH4Cl= CeCl+2NH3+H2O。由此可见,在氯化反应过程中不仅会产生一氯取代物,甚至可能产生二氯取代物甚至三氯取代物,所以氯化反应产物也是各种不同浓度的氯化物的混合物。

氯化过程往往会伴有氯气的产生,如工业生产常见反应2NaCl+2H2O == 2NaOH+H2+Cl2。氯气是一种易燃易爆的有毒气体,因此对于产生氯气的氯化反应过程要做好尾气收集或尾气处理,以防化学反应造成的爆炸或中毒。另外一个注意事项是,对于氯化反应有氯化氢气产生的反应设备,要求严密不漏气且要具有防腐蚀性;氯化氢气体产生后可采用冷却法、水洗涤吸收法、蒸馏分离法等将气体回收,同时在排气管上安装自动信号分析仪,借以检测是否有残留危害气体被排除,减少环境污染,降低化学反应产生的危害。

5.烷基化反应

烷基化反应是指有机化合物中的碳、氧和氮等原子被烷基(R-)所取代的化学反应,主要的烷基团有甲基(-CH3)、乙基(-C2H5)、丙基(-C3H7)、丁基(-C4H9)等。C-烷基化反应是在催化剂的作用下向芳环碳上引入烷基生成烷基苯的过程,N-烷基化是向氨或铵中得氮原子上引入烷基生成各种类型的铵盐的过程,O-烷基化反应是向醇、酚中得氧原子上引入烷基生成醚类化合物。

烷基化反应过程存在的主要危险有:首先,烷基化的原料、烷基化剂及烷基化反应产物均属于易燃易爆的物质,例如苯的闪点为-11℃,爆炸极限为1.5%~9.5%;丙烯的爆炸极限是1.3%~4.2%;其次,烷基化过程所使用的催化剂活性较强,遇水易放出危险有害气体,极易发生爆炸;然后,烷基化反应条件要求严格控制,对于原料、催化剂、烷基化剂的添加顺序要科学掌控,不允许颠倒顺序、加快添加速度或者是搅拌,否则会引起反应加速,从而导致的冲料、着火,甚至爆炸。

参考文献

[1](美)卡雷、(美)松德贝里 高等有机化学:反应与合成(第五版) 科学出版社 2009-01.

[2](美)史密斯.马奇 高等有机化学:反应、机理与结构(原著第5版修订)化学工业出版社 2010-01.

[3]张子峰、张凡军 甲醇合成反应的化学平衡 化学工业出版社 2008.

乙烯加聚反应范文3

较大,因此,学好有机化学是高考成功必不可少的条件。但是,由于有机化合物的种类繁多,结构复杂

,各类有机物的性质差异大,学生普遍感觉理解与记忆困难,容易产生枯燥乏味的情绪,逐渐失去对有

机化合物的学习兴趣。本文从自己多年教学经验出发谈谈如何学好高中有机化学。

【关键词】有机化学碳碳双键官能团

有机化学是高中化学的一个重要组成部分,由于其种类繁多、结构复杂、与生产生活联系甚为密切,使

之成为高考的热点。不少同学抱怨有机化学难学,甚至成为化学学习的分化点。基于这种现象,笔者针

对学生学习有机化学的常见困难进行了汇总、分析,并结合自己的教学总结出了一些有机化学的学习方

法,希望对广大同学有所帮助。

一、转变思维定势,入好有机化学之门

俗话说:"好的开始,就是成功的一半。"有机物和无机物是化学领域中相对独立的两大块,不仅理论上

存在较大差异,学习的思维方法也各不相同。有机初学者往往惯于拿以往的学习无机的思维方法来学习

有机物,结果越学越难学,逐渐失去对有机化合物的学习兴趣。因此,对于初学者,必须转变这种思维

定势,明确有机物和无机物的差异,学会正确的有机学习方法,入好有机化学之门。比如:对于无机物

的性质,我们通常是机械地记住就行了,但对于有机物的性质,一定要抓住它的结构特点,理解官能团

的变化才能掌握好它的性质;再如:大多数无机物的组成简单,种类少,记它们的化学式并不难,但是有

机物种类繁多,结构复杂,加上表示的式子多,死记是行不通的,一定要联系有机物名称、官能团以及

碳四键的结构特点来书写有机物结构式或结构简式,并注意结构式、结构简式、分子式、电子式的区别

。例如写乙醇的结构式时,名称中的"乙"表示有2个碳原子,"醇"表示含羟基-OH,先写出2个碳的骨架,

再接上-OH,最后根据碳四键原则补足H。按照这样的方法,其它的有机物(醇类、醛类、羧酸类)等的书

写也迎刃而解了。

二、注重课堂上教师的形象化演示,深刻理解有机反应原理

有机化合物的种类再繁多,都离不开碳四键的基本原则,结构再复杂,也都离不开常见的几种官能团组

成。因此,抓好有机物结构特点和变化规律,理解各种有机反应原理是提高有机物解题能力的关键。由

于有机物结构抽象,教师往往运用实物、模型或多媒体等手段将抽象的内容形象化,学生一定要注重课

堂上教师演示的各种有机物的分子模型(球棍模型和比例模型),记清楚各种有机物的结构特点和官能团

,并通过观察老师的演示深刻理解有机反应原理。我们除了注重多媒体、模型等这些教师常用的演示之

外,还可用"人"来模拟想象有机反应过程,因为人的四肢正如碳的四个键。例如:甲烷的一元取代就好

比人的一只手上的东西换了另一种东西,二元取代就好比双手上东西都换了,三元、四元取代以此类推;

乙烯的加成反应过程也可以用"人"来模拟,如果伸展的四肢代表四个单键的话,那么双手相握就好比容

易断裂的双键,当握着的双手打开后就变成了伸展的四肢,就如双键断开变成了单键。理解了这点后,

加聚反应也就容易理解了:好象无数个人由自己双手相握变成手拉手的过程。我们还可以根据以上的模

拟过程联想其它的有机反应原理:比如消去反应、酯化反应等。

三、善于总结规律,学会学习方法

学习有机物的一般规律:先从代表物的结构性质用途制法,然后类推到一类物质。学生在学习有

机物时要抓住这条规律进行学习,特别是结构与性质的关系--结构决定性质,性质反映结构。这条规律

贯穿所有有机物部分内容,指导有机化合物的学习方法和解题思路。必修课第三章开始进入有机物的学

习,由甲烷牢固的正四面体结构决定它的性质稳定,一般情况下不能跟强酸强碱以及强氧化剂反应,特

定条件下能发生燃烧、取代以及分解反应,然后由性质决定它的用途,最后由甲烷的性质类推到跟它结

构相似的一类烷烃的性质。接着乙烯的学习也是从结构特点出发,乙烯含有一个容易断裂的碳碳双键,

它的化学性质就表现在这个双键上,结构决定性质,其中加成反应、加聚反应、消去反应都涉及双键的

断裂和形成,因此乙烯能发生以上这些反应,最后类推到含有碳碳双键的烯烃,也具有与乙烯相似的化

学性质。在以后的有机物学习中,基本上都按照这条规律进行:结构性质用途制法一类物质。

四、以官能团之间的联系为主线,构建知识框架

将各类物质或官能团的性质分别突破以后,我们会觉得知识有些散乱,此时我们不防以一些重要物质或

官能团为主线,建立它们之间的联系,从而构建有机知识框架,为有机合成和推断提供明确的思路。有

机化学的基础知识是中学化学教学内容的重要组成部分。学生掌握简要而系统的有机化学基础知识,可

以加深和拓宽对化学知识的全面理解。学好有机化学知识可以从以下几个方面加以尝试。1、联系结构,

记清性质2、对比种类,记准性质 3、举一反三,用活性质。

总的来说,有机化学在高考中占有相当的比重。有机化学式和化学方程式的书写、反应原理、官能团之

间的转化关系是高考的重点也是学习的难点。要学好有机化学,突破有机化学难点,学生要从常规课堂

切入:转变学习的思维方法,入好有机化学之门;注重课堂上教师的形象化演示,深刻理解有机反应原

理;善于总结规律,学会学习方法;以官能团之间的联系为主线,构建知识框架。

参考文献

乙烯加聚反应范文4

中学阶段,化学可分为有机与无机两大块,结束无机化学的学习,同学刚接触到有机化学,兴趣很浓。这时候,是再一次激发学生学习兴趣的最佳时期。也是进行学习方法与学习能力培养的最佳时期。在教完甲烷、乙烯、乙炔之后,我就总结出有机化学学习的一般规律与方法:结构性质(物理性质、化学性质)用途制法(工业制法、实验室制法)一类物质。

比如“乙烯”这一节的教学,我就打破书本上的顺序,先讲乙烯的分子结构。介绍乙烯分子的结构时,先由分子组成讲到化学键类型、分子的极性、空间构型;据碳原子结合的氢原子数少于烷烃分子中碳所结合的氢原子数引出不饱和烃的概念,得出乙烯是分子中含有碳碳双键的不饱和烃。再由其结构看其物理、化学性质,展示一瓶事先收集好的乙烯气体,让学生从颜色、状态、气味、溶解性、密度、毒性等几个方面来思考;根据乙烯结构中化学键的特征——双键容易断裂讲乙烯的特征化学反应——加成反应、加聚反应,根据绝大部分有机物易燃烧的性质讲乙烯的氧化反应(补充讲乙烯能跟强氧化剂发生氧化反应)。再由乙烯的物理、化学性质来讲其用途并结合实际生活中的事例。如作有机溶剂(物理性质)、制造塑料和纤维(化学性质)等。最后对这一类含有碳碳双键的烃。介绍其物理、化学性质的相似性和递变性。

以后几节的教学,我都反复强调这样的学习方法:结构性质用途制法一类物质。到了讲烃的衍生物,我请同学自己站起来阐述这样的研究方法,我顺着这样的思路一点一点地讲下去,很清晰。学生自己掌握,复习时也就感觉到有规律可循、有方法可用。有机化学其实很好学,重要的是要培养学生学习方法,时时提醒学生。以后就是进入高一级学校,有机化学的学习与研究也采用的是同样的方法,这在一定程度上也激发了他们学习与探索的兴趣。

二、教学过程与能力培养

1自学能力的培养

适应于有机化学的特点,在教学学习方法和知识的同时,我还加强了学生自学能力的培养。在学生基本上都掌握了有机化学的一般学习方法的基础上,我让学生自己阅读教材。自己总结。比如“乙醛”这一节,通过约20min的阅读,我就请同学自己列提纲,然后复述,重点围绕“乙醛的组成和结构是什么?有哪些物理性质(展示样品)、化学性质?由这样的物理、化学性质决定了它有哪些重要用途?工业上如何制取?这类物质(如甲醛)有哪些物理、化学性质?”进行教学,通过这样的训练,我觉得学生不但强化了方法,更培养了能力,特别是自学能力。

2观察能力的培养

化学是一门以实验为基础的学科,在有机实验的过程中,我时时提醒同学要细致、全面,而且要有思维。比如实验室制取乙烯时,加药品的过程,温度计的摆放,实验中烧瓶、集气瓶内的变化,为什么要加石棉网、碎瓷片等等都应特别重视,不但要知其然,还要知其所以然。

3动手能力的培养

在强调观察、思维能力培养的同时,我还特别注重动手能力的培养。比如演示完乙醛的银镜反应和乙醛与氢氧化铜的反应后。我就请两个同学来演示用甲醛代替乙醛的同样反应,要求其他同学注意观察并指出其错误。在演示完乙醇与钠的反应实验后,要求同学做钠与水反应的实验。有的同学竟用大块的钠并用手去拨。通过这些课堂实验,课堂上及时纠正错误,学生感受颇深,他们自己做实验时就很动脑筋,也很规范。提高了他们的动手能力。记忆能力的培养

人类没有记忆就没有智力活动可言,“不记则思不起”,没有记忆,思维、想象、创造就失去了基础化学是半记忆性学科,同样的教,同样的学,有的同学就是学得好,究其原因,其中一个主要的原因就是记得牢。因此在有机化学教学与复习中。我就重视记忆方法、记忆能力的培养。如:银镜反应生成物的配平。我就教学生“一二三”记忆法,即一水二银三氨;醇、醛、酸、酯的教学与记忆,我就提醒同学根据分子中官能团的异同对比记忆其化学性质:我还提醒同学根据实验现象进行记忆,如乙醛与氢氧化铜的实验有红色沉淀物(Cu2O)生成以帮助记忆这个反应。

总之,在有机化学教学中反复强调“结构性质用途制法一类物质”的学习方法,并对自学能力的培养、观察能力的培养、动手能力的培养、记忆能力的培养来提高教学质量。从而提高学生的科学素质。

乙烯加聚反应范文5

关键词:有机化学 能力方法

在教学中如何发展学生的智力、培养学生的能力是当前国际上共同关心的教育理论问题之一。教学过程中到底教会学生什么?是“鱼”还是“渔”?是教学生还是教学生学?在有机化学部分的教学中,越来越明显地感觉到方法与能力培养的重要性。

一、教学过程与学习方法的培养

中学阶段,化学可分为有机与无机两大块,结束无机化学的学习,同学刚接触到有机化学,兴趣很浓。这时候,是再一次激发学生学习兴趣的最佳时期,也是进行学习方法与学习能力培养的最佳时期。在教完甲烷、乙烯、乙炔之后,我就总结出有机化学学习的一般规律与方法:结构性质(物理性质、化学性质)用途制法(工业制法、实验室制法)一类物质。

比如“乙烯”这一节的教学,我就打破书本上的顺序,先讲乙烯的分子结构。介绍乙烯分子的结构时,先由分子组成讲到化学键类型、分子的极性、空间构型;据碳原子结合的氢原子数少于烷烃分子中碳所结合的氢原子数引出不饱和烃的概念,得出乙烯是分子中含有碳碳双键的不饱和烃。再由其结构看其物理、化学性质,展示一瓶事先收集好的乙烯气体,让学生从颜色、状态、气味、溶解性、密度、毒性等几个方面来思考;根据乙烯结构中化学键的特征――双键容易断裂讲乙烯的特征化学反应――加成反应、加聚反应,根据绝大部分有机物易燃烧的性质讲乙烯的氧化反应(补充讲乙烯能跟强氧化剂发生氧化反应)。再由乙烯的物理、化学性质来讲其用途并结合实际生活中的事例,如作有机溶剂(物理性质)、制造塑料和纤维(化学性质)等。最后对这一类含有碳碳双键的烃,介绍其物理、化学性质的相似性和递变性。

以后几节的教学,我都反复强调这样的学习方法:结构性质用途制法一类物质。到了讲烃的衍生物,我请同学自己站起来阐述这样的研究方法,我顺着这样的思路一点一点地讲下去,很清晰。学生自己掌握,复习时也就感觉到有规律可循、有方法可用。有机化学其实很好学,重要的是要培养学生学习方法,时时提醒学生,以后就是进入高一级学校,有机化学的学习与研究也采用的是同样的方法,这在一定程度上也激发了他们学习与探索的兴趣。

二、教学过程与能力培养

1.自学能力的培养

适应于有机化学的特点,在教学学习方法和知识的同时,我还加强了学生自学能力的培养。在学生基本上都掌握了有机化学的一般学习方法的基础上,我让学生自己阅读教材,自己总结。比如“乙醛”这一节,通过约20min的阅读,我就请同学自己列提纲,然后复述,重点围绕“乙醛的组成和结构是什么?有哪些物理性质(展示样品)、化学性质?由这样的物理、化学性质决定了它有哪些重要用途?工业上如何制取?这类物质(如甲醛)有哪些物理、化学性质?”进行教学,通过这样的训练,我觉得学生不但强化了方法,更培养了能力,特别是自学能力。

2.观察能力的培养

化学是一门以实验为基础的学科,在有机实验的过程中,我时时提醒同学要细致、全面,而且要有思维。比如实验室制取乙烯时,加药品的过程,温度计的摆放,实验中烧瓶、集气瓶内的变化,为什么要加石棉网、碎瓷片等等都应特别重视,不但要知其然,还要知其所以然。

3.动手能力的培养

在强调观察、思维能力培养的同时,我还特别注重动手能力的培养。比如演示完乙醛的银镜反应和乙醛与氢氧化铜的反应后,我就请两个同学来演示用甲醛代替乙醛的同样反应,要求其他同学注意观察并指出其错误。在演示完乙醇与钠的反应实验后,要求同学做钠与水反应的实验,有的同学竟用大块的钠并用手去拨。通过这些课堂实验,课堂上及时纠正错误,学生感受颇深,他们自己做实验时就很动脑筋,也很规范,提高了他们的动手能力。

乙烯加聚反应范文6

【关键词】聚氯乙烯 悬浮法 单体

1、国内外 pvc发展状况及发展趋势

聚氯乙烯( PVC)是五大热塑性合成树脂之一,塑料制品是最早实现工业化的品种之一。可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,而且具有较好的机械性能、耐化学腐蚀性和难燃性等特点,以其低廉的价格和非常突出的性能而广泛地用于生产板材、门窗、管道和阀门等硬制品,也用于生产人造革、薄膜、电线电缆等软制品。近年来,尽管在发达国家受到来自环保等多方面的压力,但世界对的总需求量仍出现稳定的增长态势。

我国聚氯乙烯(PVC)工业起步于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨/年。此后全国各地的PVC装置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨/年。

2、单体合成工艺路线

2. 1乙炔路线

原料为来自电石水解产生的乙炔和氯化氢气体,在催化剂氧化汞的作用下反应生成氯乙烯。

具体工艺为:从乙炔发生器来的乙炔气经水洗一塔温度降至35℃以下,在保证乙炔气柜至一定高度时,进入升压机组加压至80kpa・G左右,加压后的乙炔气先进入水洗二塔深度降温至10℃以下,再进入硫酸清净塔中除去粗乙炔气中的S、P等杂质。 最后进入中和塔中和过多的酸性气体,处理后的乙炔气经塔顶除雾器除去饱和水分,制得纯度达98.5%以上,不含S、P的合格精制乙炔气送氯乙烯合成工序。

乙炔法路线VCM 工业化方法,设备工艺简单,但耗电量大,对环境污染严重。目前,该方法在国外基本上已经被淘汰,由于我国具有丰富廉价的煤炭资源,因此用煤炭和石灰石生成碳化钙电石、然后电石加水生成乙炔的生产路线具有明显的成本优势,我国的VCM 生产目前仍以乙炔法工艺路线为主[2]。乙炔与氯化氢反应生成 可采用气相或液VCM相工艺,其中气相工艺使用较多。

2.2乙烯路线

乙烯氧氯化法由美国公司Goodrich 首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产的产能VCM约占总产能的VCM 95%以上。

乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC和EDC裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC 精制单元和VCM单元精制等工艺单元组成。乙烯和氯气在直接氯化单元反应生成EDC。乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。生成的粗EDC在EDC精制单元精制、提纯。然后在精EDC 裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。直接氯化有低温氯化法和高温氯化法; 氧氯化按反应器型式的不同有流化床法和固定床法, 按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。具有代表性的 司的Inovyl工艺是将乙烯氧氯化法提纯的循环 EDC和VCM直接氯化的 EDC在裂解炉中进行裂解生产VCM 。HCl经急冷和能量回收后,将产品分离出 HCl(循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。来自VCM装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(BOD)。采用该生产工艺,乙烯和氯的转化率超过98%,目前世界上已经有50多套装置采用该工艺技术,总生产能力已经超过470万吨/年。

2.3聚合工艺实践方法

目前世界上PVC的主要生产方法有4种:悬浮法、本体法、乳液法和微悬浮法。其中以悬浮法生产的PVC占PVC总产量的近90%,在PVC生产中占重要地位,近年来,该技术已取得突破性进展。

3悬浮聚合生产工艺

悬浮聚合法生产聚氯乙烯树脂的一般工艺过程是在清理后的聚合釜中加入水和悬浮剂、抗氧剂,然后加入氯乙烯单体,在去离子水中搅拌,将单体分散成小液滴,这些小液滴由保护胶加以稳定,并加入可溶于单体的引发剂或引发剂乳液,保持反应过程中的反应速度平稳,然后升温聚合,一般聚合温度在45~70℃之间。使用低温聚合时(如42~45℃),可生产高分子质量的聚氯乙烯树脂;使用高温聚合时(一般在62~71℃)可生产出低分子质量(或超低分子质量)的聚氯乙烯树脂。近年来,为了提高聚合速度和生产效率,国外还研究成功两步悬浮聚合工艺,一般是第一步聚合度控制在600左右,在第二步聚合前加入部分新单体继续聚合。采用两步法聚合的优点是显著缩短了聚合周期,生产出的树脂具有良好的凝胶性能、模塑性能和机械强度。

4 聚合机理

氯乙烯悬浮聚合反应,属于自由基链锁加聚反应,它的反应一般由链引发,链增长,链终止,链转移及基元反应组成。

①链引发。过氧化物引发剂受热后过氧链断裂生成两个自由基:初级自由基与VCM形成单体自由基。

②链增长。单体自由基具有很高的活性,所以打开单体的双键形成自由基,新的自由基活性并不衰减,继续与其它单体反应生成更多的链自由基。

③链终止。聚合反应不断进行,当达到一定的聚合度,分子链己足够长,单体的浓度逐渐降低,使大分子的活动受到限制,就会大分子失去活性即失去电子而终 止与其它氯乙烯活性分子反应。终止有偶合终止和歧化终止。

l)偶合终止。两个活性大分子自由基相遇时,两个自由基头部独立电子对配对形成共价键所形成的饱和大分子叫偶合终止。