沥青路面范例6篇

前言:中文期刊网精心挑选了沥青路面范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

沥青路面范文1

关键词:沥青混凝土;路面;离析

Abstract: This paper presents the segregation of asphalt concrete pavement, the analysis of the causes and proposes corresponding prevention and treatment measures.

Key words: asphalt concrete pavement; segregation;

中图分类号:U416

前言

沥青混凝土路面离析就是指路面某一区域内沥青混合料主要性质的不均匀,平时看到的粗骨料集中的离析仅为离析最易觉察的类型,也是较普遍的类型。沥青混合料离析可大致分为两种类型,即级配离析和温度离析。级配离析即粗集料区域内过分集中或细集料区域内过分集中,更科学地说现场级配超出了级配允许控制范围的区域都是级配离析,细集料的离析区域是施工控制和监理检查中往往容易忽视的离析,粗集料的离析是离析类型中现场较易发现的。温度离析是指沥青混合料在储存、运输及摊铺中受天气、施工机械影响,由于热量损失而出现温度差异的状况。

1、沥青混凝土路面离析的现状

沥青路面离析就是路面某一区域内沥青混合料主要性质的不均匀,比如沥青含量、集料组成、添加剂含量以及路面的空隙率等。沥青混合料离析可大致分为两种类型:级配离析和温度离析。级配离析出现时,沥青路面上一些区域粗料集中,另一些区域细料集中,使得混合料变得不均匀,级配及沥青用量与设计不一致,导致路面呈现出较差的结构和纹理特性。一些区域细料集中、孔隙率小,可能会出现泛油、车辙;另一些区域粗料集中、孔隙率太大,可能会导致路面水损坏。温度离析是指沥青混合料在储存、运输及摊铺中受天气、施工机械影响,由于热量损失而出现温度差异的状况。混合料的温度离析,会导致路面压实度不均匀,温度较低的区域,路面的空隙率较大、纹理深度也较大,这些区域的路面易出现早期损坏。温度离析造成的后果与级配离析一样严重,都会导致沥青路面的早期损坏,大大缩短沥青路面的使用寿命。研究表明,严重离析的路面使用寿命可能会减少50%以上。目前高速公路沥青路面的一些早期损坏,如松散、网裂、坑洞、局部严重辙槽、局部泛油、新铺沥青路面的构造深度不均等,都与沥青混合料的离析密切相关。

2、沥青混凝土路面离析原因分析

2.1末端离析

末端离析是现场最常见的离析现象,主要是由于摊铺机收斗引起的,在路面上形成规则的、间隔一致的翼状离析。离析处摊铺机中央区域细料多,比较密实;摊铺机两侧粗料集中,细集料、沥青含量少,空隙率较大,表面纹理很深。特别是采用一台摊铺机施工的中、下面层,供料车的末端离析现象比较普遍。如果上面层粒径小(AKl3、AKl6 等)、且采用两台摊铺机施工,则供料车末端离析现象不明显。

2.2 接缝离析

接缝离析在中、上面层两台摊铺机梯形摊铺施工中较为常见,由于采用两台摊铺机施工,路中央的纵向热接缝往往是最薄弱的环节。接缝处摊铺的混合料过多或过少,都会产生离析现象,甚至会形成“桥”的效应,影响接缝两侧的压实。如果两台摊铺机的摊铺厚度不一致,则接缝处厚度小的一侧不容易压实。由于纵向接缝处位于行车道,轮载作用的次数多,因此应高度重视。

2.3 随机性离析

因设备故障、摊铺机停机、拌和楼生产的混合料波动过大、碾压不及时等都可能造成随机性离析。低气温施工随意停机或保温措施不够也往往会形成这种离析形态。

2.4 温度离析

温度离析主要在供料车卸完料、摊铺机收斗时出现,上一车的剩料与下一车表面的冷料混合在一起摊铺,由于冷料粘度大,集聚在摊铺机螺旋送料器中央,摊铺后便在摊铺机中央形成明显的温度离析带。温度离析的另一种形式为两幅摊铺机衔接不好或碾压不及时,先摊铺的混合料没有及时碾压而在接缝两侧形成温度差异。温度离析在料车上就已经产生,供料车刚开始卸料时,有些混合料表面的温度已较低。

3、沥青混凝土路面离析的预防和处理措施

3.1 保证混合料的均匀性

3.1.1原材料。混合料离析同原材料稳定性密切相关,如果所用材料变异性大,导致混合料级配经常变化,就达不到配合比设计要求,因此对占混合料质量90%以上的矿料质量应引起高度重视。首先要控制原材料的料源,要保证料源:出自固定的堂口;经过反击式破碎加工的;同目标配合比取样料源一致。料源的确定主要是考察其加工方式和产量,确定料源之后再取样作配合比试验。原材料进场后的堆放应满足:必须在硬化的、具有良好排水系统的地坪上;各品种材料应用墙体隔开,以免混杂;细集料应采取覆盖措施,潮湿的细料将影响拌和机产量和混合料质量。原材料的取用,尤其是粗集料的取用应保证粗细均匀,生产过程中不允许装载机贴地装料、上料。

3.1.2混合料拌和过程,应注意拌和温度和拌和时间,这两个技术参数是保证沥青混合料质量的关键,在生产配合比验证中需要反复试验并最终确定,生产过程中不应随意变动。时刻留意各热料仓进料、下料情况是否均匀。除特殊情况,一般不允许采用手动放料的方式,手动放料极易导致混合料不均匀,使现场摊铺出现块状离析。在生产过程中,由于摊铺现场的机械故障、移机等原因而压料,拌和机生产不可能保持固定产量,因此在生产配合比调试验证阶段,必须做出各种集料的速度与拌和产量之间的对应关系曲线,便于在必要的时候降低和提高产量都有据可查。严格控制沥青混合料的矿料级配。一般情况下,在混合料拌和生产过程中,必须要使级配在规定的级配范围内,并接近要求级配范围的中值。这一过程也应在生产配合比设计阶段,反复验证并在得到最终确定后,在生产过程中不得随意变动。在级配曲线中对混合料均匀性影响较大的是中部颗粒数量和粉尘含量。因此,规范要求在目标配合比设计阶段,就对4.75、2.36和0.075mm的通过率做出特别要求,即必须接近级配范围的中值。4.75mm和2.36mm这二档集料过少,将影响面层表面的均匀性,过多则难以压实。而通过0.075mm的主要是矿粉,矿粉过多则使沥青混合料中有效沥青含量减少,表现为混合料外观发暗、无光泽,压实后表面不均,细料过多,而且影响沥青混合料的其他技术指标。

3.2 避免沥青混合料在装料和运输过程中产生离析

拌和温度过高,连续式拌和均易产生离析。当拌和料被放入运输车时,将有一部分骨料流向车厢的侧面,造成粗细集料集中现象。同时热量损失在运输车厢周边立刻出现,在改性沥青路面中,由于要求温度高,这样的现象就越明显。在热拌混合料运输中,尤其是运距越长,越会造成车厢底、侧及顶面温度降低;卸料时料在顶面温度低的料落在摊铺机受料斗的两侧,当料车卸完料以及受料斗中料堆接近消失时,两侧冷料向内落下,被输送带送到后面的分料室,并被整平,整平板不可能使较冷的混合料与高温混合料一样固结。在摊铺层上就会出现离析小面积,由于每一车料都可能产生这种由于温度差异而造成的离析破坏,周期性的破坏现象也就更加明显,摊铺后路面材料和温度的离析将直接造成压实后路面材料空隙率的不均匀。使用转运机。当工程的摊铺量少于1000t、宽度小于3.3m的加宽段时,可免于使用转运机。除此之外,热拌沥青混合料需要经由转运机二次搅拌之后再进入摊铺机。工程师通过立刻测量摊铺机摊铺的面层的温度,来评估转运机的工作效果。至少每45S,要对自卸卡车上的沥青混合料进行温度测试,包括装车和卸车时混合料的温度量测。由于沥青转运设备具有二次搅拌作用,是混合料集料分布和温度分布更加均匀,有效地避免了材料和温度的离析,提高了沥青路面的整体工程质量,防止了沥青路面的早期破损,延长了沥青路面的使用性能。

3.3 对摊铺作业的要求

在摊铺机状态良好的前提下,影响摊铺质量的主要操作参数包括两个方面:行驶速度和夯锤频率。行驶速度的快慢和均匀性好坏直接影响到摊铺的质量,速度过快会造成布料不均匀即级配离析;太慢则会使液压系统不稳定导致速度不恒定,从而引起摊铺初始密度不稳定,烫平板浮力发生变化,导致压实后路面产生小波浪。夯锤频率则要随行驶速度变化相应变化,保证摊铺后的初始密实度基本一致。在满足以上两点的前提下还应保证梯形摊铺时两台摊铺机工作参数的一致性,料高2/3左右,施工时应有备用摊铺机。

3.4 碾压工艺和工序的合理设置

沥青混合料完成摊铺工序后应及时碾压,为了保证碾压效果,应科学合理地配置碾压机具、优化组合碾压工序,保证现场碾压有条不紊地实施,重点要保证现场碾压顺序,即初压、复压和终压区不同的机具和工艺要求均符合试铺段确定的技术方案,同时合理的碾压工序设置亦有利于消除铺面离析。碾压温度的控制是沥青面层各项技术指标符合配合比设计要求的关键:对于沥青混合料而言,温度控制是前提,从目标配合比设计阶段开始,沥青混合料所有的技术指标都是建立在温度控制的基础上的,即在一定的温度条件下得出的技术结论。因此,为了保证沥青面层质量,温度控制显得尤为重要。从拌和机对原材料和混合料的温度控制、到每车料出厂温度、到现场的温度、摊铺前温度和摊铺后铺面温度、碾压时初压、复压、终压不同阶段的温度控制都是必不可少的,而且应该引起高度重视。针对不同的温度,采用不同压实机具,有助于提高沥青面层的压实度和减少表面离析现象。为防止表面温度失温过快和保证混合料温度的均匀性,胶轮压路机洒水装置应要求必须雾化或用拖把擦轮。碾压机具:胶轮压路机在温度适当的时候采用,利用胶轮压路机对热沥青混合料的揉搓作用消除摊铺过程中的部分离析。碾压工序:对于沥青面层碾压工序而言,胶轮压路机在适当温度条件下对沥青混合料的揉搓作用,除消除面层部分离析外,更主要的是对沥青混合料的重分布和均匀性起到一定效果,而振动压路机的振动压实则从根本上保证了沥青面层的压实度。

3.5 施工过程中离析处理

针对面层离析部位,通过钻孔取芯测得相关的技术数据(如压实度、空隙率等)进行分析,有关技术指标与标准相差不多的地方,可以再喷涂粘层油后进行上一面层的施工。有关技术指标与标准相差较大时,可进行局部处理,具体做法是烘热至120℃左右,补洒略细的混合料,碾压成型。对于大面积的严重离析,则应坚决铲掉重铺,以保证沥青面层质量。

参考文献:

沥青路面范文2

【关键词】沥青路面;早期损坏;路面病害

由于我国国民经济快速发展,公路交通量日益增加,车辆超载愈演愈烈,公路路面质量面临着严峻的考验。许多新建公路(尤其是高等级公路),沥青路面(普通沥青路面、改性沥青路面)普遍产生了一定程度的早期损坏现象,主要为裂缝、沉陷、松散、剥落、坑槽、车辙、波浪、拥抱、水损害、桥头伸缩缝破坏等病害,甚至运行不到一年时间就发生了早期损坏,直接影响了交通运输,迫使我们及早进行路面维修,给国家带来了不可估量的经济损失,对我们交通系统造成了极坏的社会影响。

公路(特别是高等级公路)重交通沥青路面质量已成为一项非常复杂的技术问题,对路面出现的早期损坏,不能简单归结为车辆超载或施工质量,需要我们各级公路建设项目管理、参建以及养护人员认真反省和深深的思考。

1 损坏原因

沥青路面发生早期损坏,严重影响通行能力、行车速度、行车安全和行车舒适度,造成服务性能降低,造成的原因是多种因素综合作用的结果,原因可分为外因和内因两种。

1.1 外因

(1)交通量大、超载和超载运输:一直以来,我国经济高速发展带来了车流量急剧增大,而偏低的运费,迫使车辆进行超载、重载运输,造成沥青路面的早期损坏,从而缩短了沥青路面的使用年限,不得不过早地进行维修,增加维修费用。

(2)道路交通化:道路的交通化发展、高等级公路的渠化交通等,使得沥青路面出现车辙损坏的概率大幅度增加。目前,高等级公路沥青路面车辙病害已成为继水损坏后的主要病害。

(3)气候因素:夏季沥青路面地表温度高达35℃~60℃,并且高温天气连续持续数日,冬季沥青路面地表温度低达-18℃~-30℃,对沥青材料的抗老化性能、高低温稳定性能、粘结力要求很高。

近年来,我国各地持续高温天气,并且这一状况呈现逐年恶化的趋势。2013年夏天,在河南省郑州市还出现了高温晒化沥青路面粘住公交车轮胎的严重情况。

1.2 内因

(1)沥青路面结构设计缺陷:近年来,我国交通处于快速发展时期,公路建设的速度明显滞后于交通车辆的快速增长,且已建公路结构当初的设计对未来交通车辆发展普遍估计不足,甚至一些规范和标准的修改赶不上快速发展的公路建设,使得沥青路面结构设计至少在现在看来有缺陷。

(2)材料:矿料和沥青的质量对保证沥青路面的使用性能和使用品质尤为重要。

①矿料:我国公路建设中矿料一般是就地取材,部分地区部分路段由于受地理位置和经济因素的限制,矿料的质量不能使路面面层、基层的质量得到有效保证。主要表现为矿料的表面特性、磨光值、压碎值、级配不能满足设计要求,既导致沥青混合料的内聚力、内摩阻力、粘结力下降,致使沥青路面易发生早期损坏。

②沥青:沥青是沥青混合料的粘结剂,所选用的沥青是否具有良好的高低温稳定性、粘结力和抗老化能力。沥青材料的性能不佳是沥青路面早期损坏的重要原因之一。现在,我国公路沥青路面特别是高等级沥青路面的沥青多采用改性沥青,毋庸置疑,在交通量增大,车辆超载、重载运输的今天,改善路面使用性能,减少维修养护费用,延长道路使用寿命等方面,改性沥青的使用起到了非常积极的作用,随着SBS改性沥青利润的减少,实体工程使用的改性沥青添加的SBS剂量是否足够也受到质疑。频繁发生的沥青路面早期损坏,引起了行业内各方面人员的高度重视,到底沥青路面早期损坏的原因为何?与沥青材料有什么关系?如何正确使用改性沥青来建好并保持好路面?这些问题都值得我们探讨和深思。

(3)施工质量:施工工艺、施工组织、施工技术、具体的施工环节等问题的叠加造成施工质量问题。

①对透层油和粘层油的作用认识不够,在施工过程中漏洒、少洒、甚至不洒粘层和透层油,造成路面各结构层之间粘结能力不强。

②路面施工中没有按照试铺路段确定的级配、松铺系数、摊铺速度、热料温度、碾压温度、碾压工艺等指标来进行施工,造成沥青路面的诸多问题。

③路面基层施工过程中未采取有效措施保障基层的强度,从而未能避免半刚性基层收缩裂缝的发生。

④施工中桥头伸缩缝材料选择不当或施工不当,桥头伸缩缝易于损坏。

(4)公路养护管理:在沥青路面的使用过程中,时常会出现松散、裂缝、坑槽等损坏,未有效、及时的进行处治修复,从而造成病害扩散和加重,并且引发路面渗水,加速沥青路面面层的损坏。

2 防治沥青路面早期病害的建议

(1)提高认识:各工程项目管理者要充分认识公路沥青路面早期病害的危害,树立高度的责任感,增强质量意识,强化细节管理,采取切实技术措施,完善综合设计,严格施工控制,高度重视养护管理,完善建养管理体系。

(2)提高质量意识:为了确保沥青路面建养质量,所有参建人员必须改变传统观念,提高质量意识,优化施工组织和工艺,积极采用新技术、新工艺、性材料、新设备,强化施工细节管理,完善质量保证体系。

(3)优化路面结构设计方案,比选施工工艺,严格落实施工技术措施和指标控制,认真落实试验检测、验收评定方法。

(4)严把原材料入口关,不合格的沥青、矿料坚决不让进场使用。

(5)严格控制沥青混合料的级配,沥青混合料的级配越细,路面产生车辙的可能性越大。骨架密实级配具有良好的抗车辙性能,而悬浮密实和骨架空隙结构的级配抗车辙性能相对较差。

(6)重视预防性养护:为了更好的发挥公路路面使用性能,延长路面使用寿命,根据路况检测的结果和养护标准的要求,选在适当的时机,在适宜的路段,采用实用的技术措施和施工方法进行预防性养护,把路面病害处置在萌芽状态。

(7)高度重视治超工作:超载超重车辆已成为公路路面早期损坏主要因素,要加强对超载超重车辆的管理力度,不让超载超重车辆上路。

沥青路面范文3

关键词:公路透层沥青病情分析防治对策

0引言

因沥青路面相对于砼路面具有表面平整、无接缝、行车舒适、耐磨、施工期短、养护维修简便、适宜分期修建等优点,故获得广泛应用。施工中,不仅需要完善的施工技术规范,而且要有丰富的施工经验、健全的质保体系,要严格控制材料质量及用量。

1沥青路面损坏的主要类型与特征

1.1由于基层强度不足或不均匀产生的沥青路面损坏。这种损坏的主要特征是沥青路面产生网裂或沥青路面发生裂缝后产生的先冒白浆(唧浆),后成坑槽,成片破坏现象。水进入基层起了加快损坏的“催化”作用。

1.2由于沥青与石料失去粘结力产生的沥青路面损坏。其主要损坏是沥青与石料完全失去粘结力,沥青砼从黑色转化为黄色,砼中已看不到沥青的存在,只有胶泥和石料,弯沉明显增大,车辙加速发展,继而出现连片坑槽,大面积损坏。

1.3由于超限重车作用产生的加速损坏。沥青路面破坏都有以下共同特点:行车道破坏比超车道严重;流量多的路段比流量少的路段损坏严重。这说明超限重车交通仍是公路受到破坏的主要原因之一。

1.4由于沥青砼热稳定性不足产生的损坏。这种损坏主要表现为沥青路面的车辙、泛油、推挤、拥包等。以上损坏类型往往是多种损坏同时产生,相互作用,加速损坏的发展。

2病因分析

2.1空隙率的影响研究表明当沥青砼实际空隙率小于7%时,沥青砼中孔隙基本不连通,沥青砼基本不渗水。因此,要减少水损害,沥青砼实际空隙率应控制在7%以下。然而,由于马歇尔设计空隙率一般控制在4%左右,而规范允许最小压实度为96%,所以事实上按规范要求控制的沥青路面空隙率仍有相当一部分将大于7%,沥青路面处于渗水状态,尤其是当路面压实摊铺厚度与石料最大粒径不匹配时,或铺筑桥面沥青砼时,或沥青混合料摊铺产生离析时,实际空隙率将远远大于7%。另外,试验表明,层间结合处,特别是桥面沥青砼与桥面水泥砼铺装层结合处的空隙率要比摊铺中间的空隙率大得多,如此大的空隙率形成了层间含水层,但又没有真正形成一个是以透水的结构层。道路路面施工和营运过程中渗入空隙中的水往往含有泥砂杂物,泥砂杂物不断沉积在空隙中,导致空隙堵塞,层间不仅不能成为排水层,反而成为吸水层。有些人认为,渗入路面空隙中的水,可以通过设置纵向盲沟,通过横向渗透排出路基之外,但事实上,这是一个误区,首先是路面渗入水的空隙被泥土堵塞的情况下,垂直渗透的速度将比横向渗透速度大得多,渗水路面的水一般处于“吸附”状态,而不是流动状态,尤其是空隙被泥土堵塞时,路面水更是易进难出,在降雨量较大的地区,沥青路面长期处于“饱水”状态。实践证明,施工现场被铲除废弃的压实度不足、空隙率超过7%的路段的泥土,即使在阳光下暴晒多日铲除后,其下卧层仍是潮湿的。全幅铲除的断面,难以有层间排水的可能。水对沥青砼的侵害作用可以从沥青砼的残留稳定度试验得到验证。国外的研究表明,水的长期作用除使沥青砼的稳定度下降之外,还将使包裹在石料表面的沥青产生一定的乳化作用,导致沥青老化加剧。乳化沥青是“水包油”,而这一乳化作用的“油包水”,将使沥青与石料的粘结力下降,沥青砼失去强度。离析问题的最大害处是局部空隙率很大,强度低,由于离析周围的沥青砼可能不渗水,使离析处成为“积水窝”,往往降雨后在离析处仍有“水渍”的现象,说明该处长期受水侵蚀,这也是离析处沥青路面破坏的主要原因。

2.2沥青用量的影响有的承包商往往为了节省工程费用,采用规范沥青用量±0.3%的低限值-0.3%,现代化的拌和设备要进行这样的控制是比较容易的,殊不知当沥青混合料的级配不稳定时,特别是当混合料中小于0.075mm的颗粒含量偏大时,采用这一低限沥青含量将使沥青砼“贫油”。经验表明,小于0.075mm颗粒含量每增加1%,沥青用量至少要增加0.1%。“贫油”的沥青砼除严重影响沥青砼强度和疲劳性能外,最主要的问题是将导致压实困难,水易于渗入结构,从而将大大降低沥青砼的抗水损害能力。

2.3石料质量的影响研究表明,沥青与石料的粘结性不仅与石料的酸碱性有关,而且与石料表面的微观结构(粗糙度)有关。一般而言,碱性石料比酸性石料与沥青的粘附性强,但也有例外,如石灰岩夹杂的方解石与沥青的粘附性只能达到2级,而部分酸性石料,由于有比较粗糙的微观表面,与沥青的粘附性也达到4-5级,显然选择与沥青粘附性强的石料,有利于提高沥青砼的抗水损害能力。方解石含量规范许用值为不大于5%,显得较宽,拟从紧控制,有利于提高沥青砼总体质量。沥青砼在摊铺和碾压过程中石料的压碎程度除与碾压功能和碾压工艺有关外,一般还与石料的压碎值有关。规范规定,沥青路面石料压碎值不大于28,经验表明当石料压碎值接近28时,在进行沥青混合料摊铺碾压时往往易于压碎。对沥青路面早期损坏的调查资料表明,相当一部分沥青路面的早期损坏与石料的压碎有关,这可以从钻孔取芯芯样表面石料的破碎情况以及碾压前和碾压后沥青混合料级配的变化反映出来。沥青砼中石料压碎后,某种意义上讲比“花白料”更糟,水易于沿着破裂面进入石料内部,并从石料内部进入沥青与石料的界面,使沥青与石料产生分离,加速了沥青路面的破坏。近年来还多次发现,某些石料在常温和高温作用下以及在干燥和潮湿状态下的压碎值不一样。曾经出现过沥青路面尚未通车,沥青与石料在水的作用下与沥青完全分离而失去强度的情况。

石料的含泥量对沥青路面的质量至关重要,规范规定沥青路面用石料的含泥量应该小于1%。在这里,含泥量往往指小于0.075mm颗粒的含量,而且主要是针对1#-3#料,而对于4#料规范规定0.075mm颗粒的含量应小于15%,问题是要弄清楚这小于0.075mm含量到底是石粉还是泥土。

对于1#-3#料,这1%的允许含泥量如果主要是石粉,可能对沥青混合料的性能影响不大,但如果是泥的话,将裹覆于石料的表面,大大降低沥青与石料的粘结性能,使本来与沥青粘附性达到4-5级的石料实际粘附性可能小于2级,从而使沥青砼抗水损害能力下降。特别是对于1#料,以1%的含泥量控制,如果这1%是泥浆的话,这样的石料看起来已很脏了。对了4#料,如果石料场不采用吸尘装置,即使是15%的允许量,要不超过已是很不容易了,加之集料在拌和场又极易受“二次污染”,很难说不超标,沥青路面施工承包商往往会有这样的想法,即4#料中小于0.075mm颗粒含量多一些没关系,可以通过拌和楼的吸尘装置把粉尘吸出来,甚至把回收粉料当矿粉使用,而事实上,吸尘装置并不能把粉尘吸干净,一般约有1%-2%,甚至更多的粉尘吸不干净,裹覆于石料表面的泥浆更是无法吸出,当保留在混合料中的粉尘中的含泥量较大时,将对沥青混合料的使用性能产生十分不利的影响,所以对于4#料,应该严格进行砂当量试验。

2.4冻融的影响在空隙率较大、石料被压碎、沥青用量不恰当、石料与沥青粘附性较差等条件下,当水进入沥青路面时,冻融将对沥青砼的使用性能产生致命的伤害。在冬季,由于沥青砼的强度和刚度较大,这一伤害可能不易察觉,但到了夏季,已形成的潜在伤害在高温和重载交通的作用下,由于沥青砼的移动变形,极易导致沥青砼溃解。冻融对沥青砼强度及抗水损害性能的影响可通过冻融劈裂强度试验和AASHTOT283试验结果反映出来。2.5重车和高温的影响在高温和重车作用下,正常的沥青砼路面将产生进一步的压密,并由于热稳定性不足而产生蠕变,导致车辙、拥包等病害的发生,但这种病害从产生直到路面失去服务能力将有一个较长的过程。如果这时的沥青砼内部已产生一定的缺陷或病害,如石料与沥青的粘结力下降,则压密和蠕变的过程又是沥青砼中颗粒重新分布的过程,由于水的作用已使沥青砼的强度及沥青与石料的粘结力下降,这种颗粒的重亲新分布将更进一步加剧结构的破坏,使沥青路面更易渗水,而渗水将进一步导致沥青与石料的分离,使结构层中水处于饱和状态,再加上汽车行驶时,荷载的重复作用及动水压力的不断抽吸作用,将更进一步加速沥青路面的破坏。超载车辆对有缺陷的沥青路面的破坏作用要比对正常状态的沥青路面的破坏作用大得多,这是因为结构承载能力已下降的沥青路面根本不堪重负,必将加剧沥青路面的破坏,因此超载车辆必须加以控制。据有关调查结果,部分高速公路货车超载率达70%,最大超载达额定载重的2.7倍,而美国允许超载量为额定载重的1.25倍,可见超载之严重。超载也是导致沥青路面早期损坏的主要原因之一。

3防治沥青路面损坏的主要对策

3.1改善沥青混合料的级配传统的AC-I型沥青混合料存在细料多、中间料少的现象,对这样的沥青混合料的普遍反映是摊铺时易产生离析。沥青砼虽然是密实型的,但不是嵌锁型的,砼中粗骨料呈悬浮状态,沥青砼热稳定性较差。因此,为减少离析,提高热稳定性,可以采用改进的AC-I型结构,主要是适当减少细集料的含量,增加中间料的含量,基本上级配曲线以规范中级配中值线为基准线,4.75mm粒径以下走中值线下线,4.75mm粒径以上走中值线上线,从室内试验结果和现场外观情况看,效果比较理想。

3.2调整沥青路面结构层厚度为使最大公称粒径与结构层厚度匹配,保证压实度,减少空隙率,防止沥青路面渗水,上面层可普遍采用3cm厚改进的AK-13型结构和SAM-13结构,下面层统一采用4cm厚改进AC-20I型结构。从摊铺情况看,沥青砼压实和密水效果较过去的AK-16上面层和AC-25I下面层得到了明显改善。

3.3合理提高压实度,适当减少空隙率将压实度控制标准从96%提高到98%。按这一标准控制的沥青路面,通车后再压密的现象比较不明显,且沥青路面实测空隙率较小,不易产生早期水损害。同时为减少实测空隙率,规定马歇尔设计空隙率测定时,采用实测密度与理论密度双控,保证理论密度不低于93%,这样使沥青砼的空隙率得到严格控制,保证3层沥青路面基本不渗水。为保证压实度达98%,要求施工单位必须配备2台25t以上轮胎压路机。经检测,沥青路面压实度的代表值超过98%,空隙率除个别点外都能控制在7%以内,保证了沥青路面基本不渗水,雨后已基本消除了水渍。

3.4严格控制沥青用量在沥青路面施工中,根据目标配合比设计的原则,认真进行目标配合比设计,经过生产配合比段化调整,确定最优的沥青用量。为保证混合料有足够的沥青用量,以提高沥青砼的抗水能力,将规范规定的允许误差±0.3%缩小为±0.2%~-0.1%。

3.5严格控制石料的压碎在渗水状态下,石料的压碎对沥青路面使用寿命的影响很大。为保证沥青混合料在摊铺和碾压过程中基本不产生压碎现象,主要采取以下措施:一是在选择石料时尽可能选择针片状含量小、压碎值小的石料,针片状含量必须严格控制在15%以下,尽可能不超过10%,石料压碎值应控制在24以下;二是改善碾压工艺,当发现石料有压碎现象时,原则上尽可能采用轮胎压路机搓柔碾压,而不采用钢轮压路机振动碾压;三是加强对石料压碎情况的检查,在终压完成后,沥青砼尚未冷确情况下,局部揭开检查,如有压碎现象,研究分析产生压碎的原因,并采取措施。对2004年施工的沥青路面钻孔取芯,芯样外现表明,石料压碎现象得到了有效控制。

3.6加强施工过程中的质量检测①严格检查沥青混合料的生产、运输、碾压过程的规范化。②对沥青和石料质量进行源头和现场检测。③在施工过程中严格控制压实度、空隙率、沥青用量、级配、压实厚度、渗水量等技术指标。

3.7提高道路养护的意识围绕建设与养护、维修与预防的关系,随着路网的不断完善,只有长期保持良好的路面使用性能,道路建设的巨额投资才能充分发挥其投资效益,而长期保持路面良好的技术状况必须有一个强有力的养护维修支持系统来保障。从这一意义上来说,养护维修实际上是道路建设的一种延续。在路面养护和维修的关系上,长期以来人们总是习惯于等到路面开始出现损坏后,才对它进行维修,而对于路面还处于良好状态下进行预防性养护的意义则往往熟悉不足。预防性养护实质上是一种周期性的强制保养措施,并不考虑路面是否已经有了某种损坏。新晨:

4结束语

沥青路面的损坏病因分析及防治对策,已经成了一个共同研究的课题。有效防治损坏,不仅提高了工程质量,同时降低了工程成本,为国家节省了费用,使沥青路面得到越来越广泛的应用,从而加快了我国公路事业的发展。

沥青路面范文4

【关键词】排水;沥青;路面;技术

Abstract: With the rapid development of economic and social, the masses of the people travel quality requirements escalating, transportation construction has become even more prominent the concept of "environmentally friendly". Looking at the cutting edge of technology at home and abroad, with a large gap characteristics of the drainage asphalt pavement because it has anti-slide high-performance, low noise, water mist suppression to prevent hydroplaning, reduce glare and other outstanding advantages, it can be said to the existing asphalt pavement top road performance (the ultimate performance) as the best road in the form of road surface characteristics of quality leap.Key words: drainage; asphalt; road; technology

中图分类号:U416.217文献标识码: A 文章编号:

(一)排水沥青路面概况:

排水沥青( drainage asphalt )路面,又称透水沥青( porous asphalt )路面,指压实后空隙率在20%左右,能够在混合料内部形成排水通道的新型沥青混凝土面层,其实质为单一粒径碎石按照嵌挤机理形成骨架-空隙结构的开级配沥青混合料。此外,针对以改善表面抗滑功能为主的开级配表面薄层应用又称开级配磨耗层( OGFC,open-graded friction course ) 、多孔隙沥青磨耗层( PAWC, porous asphalt wearing course )等。这些材料的构成特征基本相同,但由于使用功能、描述角度和突出重点有所区别被赋予不同名称;有时在技术特点上也有所不同。

排水沥青路面采用大空隙沥青混合料作表层,将降雨透入到排水功能层,并通过层内将雨水横向排出,从而消除了带来诸多行车不利作用的路表水膜,显著提高雨天行车的安全性、舒适性;同时,由于排水沥青路面的多孔特征可以大幅降低交通噪音,也被称为低噪音沥青路面(low-noise asphalt pavement)。

(二)排水沥青路面国内外研究应用现状

排水沥青路面起源于德国,西欧在上世纪六、七十年代开始研究、推广应用排水沥青路面,各国的应用规模、所用沥青材料、级配等也有所不同,但通常使用改性沥青,排水功能层厚度在4~5cm,近年来的新技术是双层排水沥青路面。

美国以开级配抗滑磨耗层(OGFC)的应用为代表,它起源于上世纪50年代的碎石封层,后学习引进欧洲的排水沥青路面技术,使用改性沥青,掺加纤维添加剂;使用更粗的级配;厚度增加;空隙率增大到20%左右。从1998 年7 月起,乔治亚州要求在所有的州际公路铺装项目中使用OGFC。

日本上世纪80年代学习引进欧洲的技术,基本上与欧洲的技术相同,但由于高温等气候条件比欧洲不利,日本研发了针对性的高粘度改性沥青。日本道路协会于1996年11月了《排水性铺装技术指针(案)》。同年日本道路公团做出所有的高速公路必须采用排水性路面铺装的决定。日本的应用经验认为:排水沥青路面的排水功能在3~5年内开始衰减,5~8年基本丧失,但可以继续使用。

部分国家排水性沥青路面结合料

国家 初期使用 近年使用

比利时 针入度 100 沥青 掺加再生胶、纤维素或 10%环氧树脂

捷克 70~100 沥青

德国 B65、聚合物改性沥青

英国 针入度 200、100 沥青环氧树脂沥青 掺加纤维素、EVA、橡胶、SBS

日本 80/100 沥青、橡胶沥青 专门配制高粘度改性沥青

美国 40/60、80/100 沥青或掺加氯丁橡胶 80/100 沥青中加入硅化橡胶

荷兰 180/200、80/100、45/60 沥青 改性沥青

瑞典 针入度 80 沥青

瑞士 60/70 沥青

各国对矿料级配也进行了大量的研究,混合料为骨架空隙结构,粗集料占到了 80%

左右,细集料很少,通常为间断级配,部分国家矿料级配见表 1-2-1-2 所示。

部分国家排水性沥青混合料矿料级配

通过下列筛孔(mm)的质量百分率(%)

国家

19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

美国 100 85~100 55~75 15~25 5~10 2~4

日本 100 95~100 11~30 8~25 5~17 4~14 3~10 2~7

韩国 100 95~100 10~31 10~21 2~7

从以上实例可以看出,世界各国对排水路面的研究已进入实用技术研究阶段,但设

计方法、材料性能的研究各有所长,都没有达到一定的深度。如:日本对多孔排水性沥

青混合料的性能只研究其排水量、抗剥离性、抗滑性等,而多孔排水性沥青混合料的耐

久性、抗疲劳性、低温特性等都没涉及,需要进一步研究解决。 (三)交通部公路院排水沥青路面研发历程

我国上世纪八九十年代在上海、河北、黑龙江、广东等地修了一些小规模的试验路,但由于当时对我国重载交通的发展和严重程度考虑不足、缺少性能优良的改性沥青等问题,均未取得成功。

2001年~2004年,交通部公路科学研究院承担了交通部西部项目《山区公路沥青面层排水技术的研究》课题。该项目系统研究了排水沥青路面的材料性能与设计、结构设计、施工技术、路面安全特性等问题,为排水沥青路面在我国的应用奠定了基础。项目成果经交通部科教司鉴定,达到国际先进水平,并获中国公路学会科技进步二等奖。

2005~2007年,交通部公路科学研究院承担了江苏省交通科学研究计划项目《排水沥青路面应用技术研究》。该项目在西部项目成果基础上,以提高排水性沥青路面使用性能为核心,重点研究了高温和重载交通条件下排水性沥青路面的使用性能,结合盐通高速16.8km排水沥青路面铺筑的技术应用,在原材料品质与标准、组成设计、排水设计、施工技术与质量控制等方面进行了深入研究。同时,为降低排水沥青路面在我国推广应用的成本,交通部公路科学研究院开发了针对我国重载交通特征的高粘度改性沥青及高粘度添加剂。

2005年盐通高速通车后,交通部公路科学研究院和东南大学共同承担了盐通高速排水沥青路面长期性能观测项目。根据四年来共8次的全面跟踪检测情况,目前路况良好。

2008年,江苏省在宁杭高速公路二期修筑了全长20.9km的排水沥青路面,该项目为双幅六车道,单幅宽度14.5m,全部铺装面积约30.3万平米,为目前国内最大的排水沥青路面铺装工程。交通部公路科学研究院对该项目进行了施工全过程技术服务,将前期科研成果进行了系统、成熟的项目级应用。

(四)高粘度沥青国产化开发的背景和意义

近年,通过加强相关专业学科的交叉研究,特别是高分子材料与石油化工领域新技术与改性沥青路用性能技术需求的融合,交通部公路科学研究院在改性沥青技术方面取得了诸多新进展,基于成果研制的系列改性产品是这些成果的直接体现。在我国改性沥青应用已经规模化的新时期,这些高新技术和产品为我国道路改性沥青的蓬勃发展和技术突破提供了新的动力和源泉。

其中,为促进排水沥青路面在我国的推广应用,交通部公路科学研究院开发了适用于排水沥青混合料的高粘度添加剂(HVA),同时研发了基于稳定储存体系的成品高粘度改性沥青,并申请了国家发明专利,为高粘度沥青品牌的国产化奠定了坚实基础。产品技术性能达到同类产品的国际先进水平,但比同类进口产品成本大幅降低30%。研发的高粘度添加剂为固体颗粒(2~5mm),采用“干法工艺”投放于通常的拌和楼,在拌和中迅速熔融分散后起到对排水沥青混合料良好的改性效果。

公路院高粘度沥青主要技术指标

(五)公路院排水沥青路面技术优势

交通部公路科学研究院一直从事沥青路面结构和材料的设计、施工、性能测试评价的科研工作和标准制定工作,尤其对沥青及改性沥青路用性能评价、沥青混合料设计方法、沥青路面施工工艺与质量控制等的研究一直处于国内领先地位,并编制、修订了我国一系列技术标准和规范,出版专著多部,为行业管理提供了主要技术依据,对引导行业技术进步和路面质量提升起到了关键作用。

综观国内外技术现状,排水沥青路面已经成为未来十年我国道路工程革新、提升道路安全功能和服务品质的主要技术趋势之一。为促进行业对排水沥青路面的科学应用,引导行业健康有序发展,交通部公路科学研究院通过近十年对排水沥青路面的持续和系统研究,在排水沥青路面排水设计、试验评价系统开发、施工与质量控制技术等核心领域形成了系统性的自主技术成果。特别是针对我国重载交通特征的排水沥青路面应用研究以及性价比突出的高粘度改性沥青国产化研究开发,为排水沥青路面在我国的推广应用扫除了关键技术和经济成本的壁垒。

【参考文献】:《公路桥涵施工技术规范》

沥青路面范文5

关键词:长寿命;抗剪性;功能层;磨耗层

建国至今,中国高速公路通车里程6.03万km,位居世界第二位。2008年,美国经济危机冲击着全球经济体系,中国为抵御经济环境的不利影响,提出加大基础设施建设,促进经济平稳较快增长的计划。因此,中国高速公路还将持续且迅猛的发展。

但是在中国公路事业迅猛发展的同时,一些新建公路的早期路面损坏现象也十分严重。主要原因为传统的路面结构在一定程度上还不够完善,甚至存在着一定的问题。

1 概念、技术及特点

1.1 概念

长寿命路面在美国被称作长效性或永久性路面。美国沥青路面协会(APA)关于永久性路面的定义为:路面使用年限至少为35年,并且在使用年限内确保路面不发生结构性破坏,只需进行周期性养护,平均罩面时间不小于12年。但各国长寿命沥青路面结构设计年限规定并不一致,具体情况见表1。

1.2 技术

长寿命路面是通过周期性地更换沥青面层来获得沥青路面结构更长的服务性能,其技术核心:路面材料的选择和路面结构层的设计,长寿命路面不仅适用于大交通量道路,经适当的调整后也可用于中、低等级交通量道路。

1.3 特点

长寿命路面沥青主要特点:厚度较传统沥青砼路面厚度大,服务周期长(表面功能层寿命应达到8年以上;主要承重层寿命应达到40年以上)。维修方便且费用低。

2 原理、功能分析和选材

2.1 原理分析

长寿命沥青路面是基于力学的长寿命路面结构设计的一种设计方法,其实质在于运用力学的方法来分析路面结构对自然气候和行车荷载等因素的响应。

中国目前采用的设计方法为抗剪性概念的长寿命沥青混凝土路面设计方法,其设计原理见图1。 长寿命路面结构设计要达到3个目标:①不出现结构性破坏,包括结构性裂缝和结构性车辙;②路面破坏仅发生在路面表层且能迅速修复;③定期的路面表层养护、检修和更换,使路面结构达到长寿命(超过50年)。

2.2 功能分析

抗剪性概念的长寿命沥青混凝土路面设计方法是一种基于路面结构分层及各层功能特点的长寿命路面结构设计方法。在路面设计时,将上面层设计为功能层,将中、下面层及基层设计为路面结构的承重层(结构示意见图2)。长寿命路面的破坏主要是磨耗层自上而下的功能性破坏。因此,为确保路面结构的完整。各结构层需各行其职,发挥其各自功能。

磨耗层:抵御车辙、老化、温度开裂和磨耗;磨耗层受到自然条件(雨水、气温、日照)和行车荷载的作用频繁,其具体要求依赖于交通条件、环境因素、当地的经验和经济条件。中间层:抵御车辙。传递、分散荷载。基层:该结构层为路面承重层,抵抗层底弯拉应变。

2.3 选材

2.3.1 磨耗层

磨耗层材料应选择SMA(沥青马蹄脂碎石混合料)、密级配混合料或OGFC(开级配沥青磨耗层)等材料。在一些对抗车辙性能、耐久性、抗渗性、抗磨损性要求高的地区,可以选择SMA。这在交通量大且载重车多的城市区域尤为适用。在交通量小且载重车比例较少的情况下,使用密级配混合料更为适合。与SMA一样,密级配混合料也必须满足抗车辙、抗渗、抗磨耗及气候状况的要求。OGFC具有优良的抗滑性能、排水性能以及减少噪声等优点。可用于对排水有特殊要求的情况。

2.3.2 中间层

中间层最有可能出现剪切破坏,因此要求有较好的抗车辙性能。材料设计时可采用改性沥青、塑料隔栅,混合料采用骨架嵌锁结构。可采用碎石和砂砾以确保形成集料骨架,选择之一就是采用最大公称直径较大的集料。对最大公称直径达到37.5mm的混合料,可以使用Superpave(Superior Performing Asphalt Pave-ment.高性能沥青路面)混合料设计方法。只要集料间保持接触,使用小粒径的集料也可以达到同样效果。

2.3.3 基层

基层设计为结构的承重层,要求具有一定的抗车辙能力。路面结构中,基层层底出现的弯拉应力最大,在弯拉应力的反复作用下出现层底疲劳开裂的可能性也最大,因此,要求基层具有很好的耐久性,优良的抗疲劳性能。

沥青路面范文6

关键词:沥青路面压实度温度 压实工艺

沥青混凝土路面施工的成败与否,压实是最重要的工序。许多公路沥青混凝土路面发生早期损坏,大多数与压实质量控制有关。

一、影响沥青路面面层压实度的因素

(一)材料性能对压实度的影响

1.集料级配优劣直接影响路面压实度

粗集料和细集料配比以及矿粉等组成原料的比例对沥青混合料的压实度有直接影响。经实验发现:在其他指标相同的情况下,从粗到细均匀级配的混合料较易压实,粗集料比例大的的沥青混合更易获得所需的孔隙率。只有从粗到细均匀级配的混合料较易压实,而且取得的孔隙率是符合要求的。

2.沥青粘度决定颗粒移动效果从而影响压实度

沥青粘度对沥青混合料强度有直接的影响,并影响着混合料的压实度。沥青粘度高时,骨料会被高粘度的沥青锁住导致移动性不好,压实时由于骨料移动不畅,造成密实度不够;沥青粘度低时,骨料不会被沥青锁住移动性较好,压实时由于骨料移动通畅,密实度相对较高。在给定的温度下,低粘度的沥青比高粘度的沥青达到的密实度要高,通过升高压实温度,高粘度沥青能达到与低粘度沥青一样高的压实度。

(二)混合料的温度

沥青的粘度受温度的影响而升高或降低,在初压时温度过高或过低都应避免,当碾压温度过高时,沥青粘度低,混合料易错位活动,推移现象较严重,还易出现裂纹。当碾压温度过低时,沥青粘度低又难以压实,如过度碾压就会出现开裂现象。

(三)压实工艺

压实程序分初压、复压、终压,初压的目的是整平和稳定混合料,同时为复压创造条件,是压实的基础。复压的目的是使混合料密实、稳定、成型,混合料的密实程度取决于这道工序。终压的目的是消除轮迹,最后形成平整压实面。

(四)压路机的型号

我国常用的沥青路面压路机主要有:静力光轮压路机、轮胎压路机和振动式压路机,不同的压路机有各自的特点,选择合适的压路机,可使沥青路面面层的压实度得到保证。由于振动压路机振动产生的冲击力使得单位线压力大大提高并且当振动压路机对表面连续地快速冲击时,相同频率的压力波穿入材料层内,还会使材料的颗粒发生移动,重新进行排列而使之密实,所以振动压路机目前得到广泛的应用。

二、提高沥青路面压实度的措施

(一)温度控制

碾压温度的高低,直接影响沥青混合料的压实质量。所谓碾压最佳温度,是指材料允许的范围内,沥青混合料能够支承压路机而不产生水平推移,压实阻力较小的温度。一般的沥青混合料,最佳碾压温度在120~150℃,最高不超过160℃。

提高开始碾压的温度。纯沥青混合料的摊铺温度应在140℃~165℃之间。每天开始碾压时的温度不低于120℃~150℃。不要等待摊铺机后面铺出30m~50m后再开始碾压。碾压时,压路机要紧跟在摊铺机后面,也就是初压一直压到摊铺机末端。总之要趁混合料处于高温时,将其压实。因为此时最容易达到高密度。为了保证混合料的摊铺温度,需要严格控制混合料出厂温度。从混合料出厂开始直到运料车卸料为止,在此时间内,应严格采取保温措施,如用蓬布、棉被等覆盖运料车上的混合料。不管运距远近和气温多高,都应采取这种措施。

(二)压实机械选型与组合

结合工程实际,选择压路机机种类、大小和数量,应考虑摊铺机的生产率、混合料特性、摊铺厚度、施工现场的具体条件等因素。

摊铺机的生产率决定了需要压实的能力,从而影响了压路机大小和数量的选用,而混合料的特性则为选择压路机的大小,最佳频率与振幅提供了依据。选择压路机频率和振幅,应与摊铺层厚度相适应,摊铺层厚度小于6cm,最好使用振幅为0.35~0.6mm的中小型振动压路机(2~6T)。压路机的选择必须考虑施工现场的具体情况,若有陡坡、转弯的路段考虑压路机机动操作的机动灵活性。

压路机的需要量要在摊铺初期通过仔细观察、测量和试验才能得出,一般要求压路机尽可能尾随摊铺机。在混合料温度厚度、下承层温度变化的条件下,研究混合料冷却速率表明:利用温度参数可以相当准确地估算有效压实时间,这种有效压实的估计可帮助我们确定需要多少台压路机。

(三)严格压实作业的程序及操作要求

初压、复压、终压三道工序,都必须严格作业程序和操作要求。

1.初压要注意压实的平整性。初压时采用振动压路机(关闭振动装置)压两遍。速度控制在1.5-2.0km/h,温度控制在110℃-130℃。初压后,随时检查平整度、路拱,必要时予以修整。

2.混合料的密实程度取决于复压。复压首先采用胶轮压路机压两遍。由于胶轮压路机进行压实时,沥青路面与轮胎同时变形,接触面积大,有揉合的作用,因此压实效果较好。同时胶轮压路机不破坏砾石的棱角,使砾石互成齿状,路面有更好的密实度。然后采用振动压路机压两遍,以提高路面密实度。最后用胶轮压路机压两遍。碾压速度控制在4-5km/h,复压温度应始终控制在90℃-110℃。

3.终压的碾压速度控制在2.5-3.5km/h,温度控制在70℃-90℃。终压采用振动压路机(关闭振动装置)。

(四)采取有效的压实工艺

1.铺装层厚度

铺装层厚度越大、越易保温,这是因为与薄层比较,压实有效时间相对变长,单从这一点说,对压实有利。

2.摊铺作业中的预压实

现代机械铺摊作业中,熨平振捣装置已对沥青混凝土铺装层进行振实和夯实,一般压实度以达83%-90%。预压实不仅大大减少了压路机压实的工作量,相对延长了有效压实时间,而且由于铺装层具有初压实度,避免了碾压过程中产生的推移、车辙、裂纹、波浪等弊病。

3.碾压速度

碾压速度的合理选择对压实是十分重要的。从道理上讲,低的碾压速度比高的碾压速度所形成的压实度要高。但因受碾压温度、压实层厚度、设备因素、混合料成分及基层条件等方面的影响,实际压实度并非与理论上完全一致,所以合理的碾压速度应在现场实验中确定。

4.碾压遍数

在最大密实度范围内,压实度随碾压遍数的增加而增加。为达到压实度指标,需要通过实验压实,确定必须的碾压遍数,需要注意的是:过多的碾压遍数不一定收到最佳的压实效果。相反,可能造成碾压过分、使表面粗糙度破坏,表层强度和整体强度下降,甚至产生压实层的纵向裂纹和横向裂纹等缺陷。

三、沥青路面面层压实度的检测和评定

我国沥青路面施工技术规范规定,沥青混凝土路面面层压实度的检测方法,是从成型的面层中钻取芯样,按《公路工程沥青及沥青混合料试验规程》规定方法测定芯样密度。沥青混合料的标准密度以沥青拌和厂取样试验的马歇尔试件密度为准。路面中取出芯样密度测定方法应与马歇尔试件标准密度测定方法相同。这样用沥青混合料马歇尔试件标准密度计算的压实度称为马歇尔密度的压实度,我国规范对压实度要求规定为96%。

《公路路基路面现场测试规程》给出压实度定义式为:K=ρs/ρo×100(%)式中:K为沥青面层某一测定部位的压实度(%),ρs为沥青混合料芯样试件的实际密度(g/cm3),ρo为沥青混合料的标准密度(g/cm3)。在《公路工程质量检验评定标准》中规定,沥青混合料的标准密度为拌和厂当天取样的马歇尔试验标准制件密度ρs或试验路段路面芯样密度ρo,客观上实际密度和标准密度在一定条件下都是定值,因此,压实度也为定值。但由于标准密度取值方法、实际密度试验方法等不同,对检测结果的影响是显而易见的。