光纤通信范例6篇

前言:中文期刊网精心挑选了光纤通信范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

光纤通信

光纤通信范文1

关键词:光纤通信 核心网 接入网 光孤子通 信全光网络

中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2015)05-0000-00

光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

1 我国光纤光缆发展的现状

1.1 普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A 光纤的性能还有可能进一步优化,表现在 1550rim 区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合 ITUTG.654 规定的截止波长位移单模光纤和符合 G.653 规定的色散位移单模光纤实现了这样的改进。

1.2 核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括 G.652 光纤和 G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654 光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

1.3 接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用 G.652普通单模光纤和 G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

1.4 室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IE C)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

2 光纤通信技术的发展趋势

(1)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前 1.6 Tbit/的 WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用 (OTDM) 技术,与 WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达 640 Gbit/s。

仅靠 OTDM和 WDM来提高光通信系统的容量毕竟有限,可以把多个 OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用 ( PDM) 技术可以明显减弱相邻信道的相互作用。由于归零 ( RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且 RZ编码方式对光纤的非线性和偏振模色散 ( PMD) 的适应能力较强,因此现在的超大容量 WDM/OTDM通信系统基本上都采用 RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在 OTDM和 WDM通信系统的关键技术中。

(2)光孤子通信(图1)。光孤子技术未来的前景是: 在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20 Gbit/s 提高到 100 Gbit/s 以上; 在增大传输距离方面采用重定时、整形、再生技术和减少 ASE,光学滤波使传输距离提高到 100 000 km以上;在高性能 EDFA 方面是获得低噪声高输出 EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(3)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络具有良好的透明性、开放性、兼容性、可靠性和可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度和较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术之中,它必须要与因特网、ATM网、移动通信网等相融合。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以 WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

3 结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

参考文献

[1] 辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04).

光纤通信范文2

关键词:光纤网络 传输容量 超高速 超长距离 DWDM 自动交换光网络

中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2013)02-0044-01

近些年来,随着技术的发展,核心网已经实现了光纤化、数字化。这就要求我们对光纤通信技术有比较深刻的认识。光纤通信技术是实现网络信息化的核心技术,它负责把网络中的信号安全、高速的进行传送。目前,我国累计铺设光缆近400万公里,累计光纤用量近8000万公里。随着对传输速度和质量的要求不断提高,未来建立一个速度更快、容量更大的光纤通信网络已经是刻不容缓。

1 光纤通信技术优势

光纤通信是利用光作为信息载体、以光纤作为传输介质,由于光波频率远高于电波的频率,同时作为传输介质的光纤的损耗又远低于其它传输介质,所以光纤通信技术拥有频带宽,通信容量大、损耗低,中继距离长、抗电磁干扰能力强、保密性能好等特点。

1.1 频带宽、损耗低

以目前的技术而言,我们发现传输的最好载体依然是光,所以我们只有充分利用光谱才能带给我们充裕的带宽,只有利用光作为传输介质才能给我们带来更低的损耗更远的中继距离。以单模光纤为例,当它位于1550nm窗口时,衰减仅为0.19~0.25dB/km,色散系数为15~20ps/(nm.km)。由于光纤传输损耗低,所以其中继距离达到几十公里至上百公里。近些年来,人们为了获得更大的带宽,一般常用以下几种方式来增加光纤传输容量,空分复用(SDM)、电的时分复用(TDM)、波分复用(WDM)、光的频分复用(OFDM)、光的时分复用(OTDM)和光孤子技术(So liton)。基于实用性,只对TDM和WDM两种扩容方式作简要介绍。时分复用技术(TDM)TDM技术是一种对信号进行时分复用的技术,是一种传统的扩容方式。随着复用速率的提高,例如达到10Gbit/s时已接近硅和砷化技术的极限,TDM技术已经没有太多的潜力可挖。波分复用技术(WDM)采用波分复用器(合波器)在发送端将不同规定波长的信号光载波合并起来并送入一根光纤进行传输。在接收端再由一个波分复用器(分波器)将这些不同波长承载不同信号的光载波分开来。光纤高速传输技术现正沿着扩大单一波长传输容量、超长距离传输和密集波分复用(DWDM)系统三个方向在发展。

1.2 抗干扰强、便于铺设

制作光纤的主要原材料是由石英,石英光纤的主要成分是二氧化硅(SiO2),所以制成的光纤不易被腐蚀,绝缘性好而且对电磁干扰有很高的抵抗力。同时,由于二氧化硅是地球最丰富的资源之一,所以制作出的光线与传统通信介质比较还具有价格上的优势。光纤直径纤细,加上保护套后的直径仅为0.1mm左右,所以光纤对比其它介质来说,重量仅为其它介质的几十分之一,甚至为几百分之一。所以铺设光纤,能有效的节约成本,同时能充分利用有限的管道空间。

2 光纤网络的接入技术

光接入技术可分为两大类:有源光网络(AON)和无源光网络(PON)。AON又可分为基于SDH的AON和基于PDH的AON。PON又可分为基于ATM的PON以及基于以太网的PON。

2.1 有源光网络(AON)

典型的有源光网络一般由光发射机、中继机和光接收机组成,如图1所示。

电信号首先进入光发射机,由光发射机将电信号转换为光信号再发射出去。中继机的作用是补偿光的衰减以及对波形失真的脉冲进行整形,从而保证整个光网络的光信号进行高质量和远距离的传输。光接收机的作用是将接收到的光信号进行转换,转变成电信号后再将此电信号发送出去。

有源光网络的优点十分突出,首先它传输的容量大,一般能达到155mb/s、622mb/s、2.5Gb/s和10Gb/s的接入速率。其次传输的距离远,不加中继器,传输距离达到70多公里。同时有源光网络的应用十分的广泛,技术已经十分成熟。在有源光网络中,SDH技术使用最为广泛。在SDH网中,网元与连接网元的光纤组成了网络的拓扑结构。网络的拓扑结构在很大程度上决定了网络的安全性、可靠性和经济性。常用的网络拓扑结构有链形、星形、树形、环形和网孔形。链形网是将网中的所有节点一一串联,而首尾两端开放。这种拓扑的特点是较经济,在早期的铁路网中被广泛的应用。近些年随着铁路的大发展,铁路网的传输系统也得到了很大的提升,一般讲链形网替换成了更安全的其它网络拓扑。

2.2 无源光网络(PON)

无源光网络(PON)顾名思义,是在网络中去掉了有源设备,这样就减少了设备之间的干扰,同时由于减少了设备,这样使得网络中设备的故障率也呈下降趋势,降低建设和运维的成本。典型的PON网络由局端侧的光线路终端OLT和用户侧的光网络单元ONU组成,二者通过ODN网络(光纤和无源分光器组成) 相连。

3 结语

光纤通信技术在信息时代的背景下,已经成为了最重要的传输手段,过去的十年它的传输速度增长了不止100倍,在未来光纤通信技术仍然会保持高速的发展,在不久的将来光纤通信很有可能全面替代其他信息传送方式,成为通信领域传输技术的主流,带领人类走向全光时代。

参考文献

光纤通信范文3

关键词 光纤通信 技术 发展

近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

1 光纤通信技术的发展现状

1.1普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

1.2核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

1.3接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

1.4室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并且还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。结合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

1.5电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

2 光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

2.1超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

2.2光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10-20 Gbit/s提高到100Gbif/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

2.3全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

小结

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用,虽然经历了全球光通信的“冬天”,但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。

参考文献:

1 王磊,裴丽,光纤通信的发展现状和未来,中国科技信息,2006,(4):59-60

光纤通信范文4

光纤通信系统主要包括接收、发射以及基本光纤传输系统,详见图1。二、矿山通信(一)矿山通信的现状自二十世纪80年代中期以来,世界各大厂商就推出了多种标准。到目前为止,在50多种国际标准中有十几种常用的。例如工业以太网、基金会现场总线(FF)等。现场总线的传输介质有很多种,主要有视频监控支持信号线、人员定位支持双绞线、环境监测支持双绞线、光缆、通信联络支持无线通信等。这些业务都有向以太网兼容发展的趋势。例如基于工业以太网的各种监测系统,基于WIFI通信的信息传输系统,其中WIFI的使用范围和发展尤为迅速且日益壮大。

二、矿山通信的制约因素

矿山通信企业的特点主要是设备更新速度慢、建设时间长等。由于每个时期的通信设备都一起运行,所以会有信息孤岛现象的问题存在。且其内部系统有不少不同来源的信息。例如矿山系统和外部环境间有信息流动和交换的现象,其中包括矿产品销售、人力供应、电力供应等。这类信息相互制约、相互影响。矿山井下施工建设中,由于井下结构复杂、空间狭小、接收不到信号等因素,急需先进的矿山通信技术,以便在施工过程中能准确、及时的传输信息,为优化方案提供参考的依据。

三、光纤通信与矿山通信系统建设的实际应用

(一)矿区网络连接系统中的应用

光纤的高宽带、低成本等特点能满足矿山信息传输日益增长的需求[2]。国家已经制定了光缆使用的相关标准,很多矿山企业也投入生产使用。目前一些普通光缆线、架空地线复合光缆以及阻燃光缆等都被矿山企业利用,以连接各矿山建筑设施和采矿点。这类光缆的使用大大提高了施工的便捷性和线路的稳定性,同时还能有效节约施工建设的成本。因为增加光纤芯数并对光纤价格的影响不大,所以在需要光纤芯数的基础上再适当预留一点,以免日后需要时能及时提供,以满足业务多样性的需求。由于光纤通信技术具有一致性传输系统介质的特点,所以,现代矿山通信系统的建设中,可以将光纤以太网作为介质,其传输距离远,损耗低,承载力强,其接入方法即介质转换,光纤两端都是光猫,从光猫出来有的需要接入光端转换设备,把光纤带的光信号转换成网线携带的数字信号,有些光猫集成的转换功能,可以直接转换输出数字信号。利用光纤线路构建一个矿山骨干通信网,再加入无线设备和该通信网配合使用,为矿区提供无线设备或有线光缆的双重信息传输和接收口。图2矿业光纤以太网结构模型例如,某矿业根据矿区的实际情况,经过建设和相关系统的整合,建立了光纤以太网,该组网可以全面覆盖整个矿区的建筑。其中工业环网的整个线路连接选用变电所、两个大车间以及办公楼,矿区的地表到井下被全部覆盖;其分支线路覆盖了所有生活区域。光缆可以传输人员定位、电力调度、视频监测、环境监测、有线电视等业务数据,实现一条光缆线的多种业务同时使用,既节约施工费用又节约工程建设的成本。关于该矿山企业的光纤以太网的构建结构见图2。将光纤通信技术运用到矿山企业工程中,建设完整的光纤骨干网,为各种业务传输信息数据,以解决数据传输过程中的链路问题。

(二)矿区电力中的应用

当前,矿山电力系统中很多自动化设备只应用于漏电保护、防爆开关和配电网等相关功能,它们之间没有互相连接的网络系统,都是单独运行的状态。矿井复杂的内部结构对供电系统的工程量提出更高要求,配电供电服务系统以及变电所建设的主要目的是保障开挖采掘运输的过程是畅通的。但在实际井下挖掘作业时,由于井下复杂的地质条件,供电系统经常会出现故障,一旦失去电力服务,井下的挖掘工作就没有办法进行,这将严重影响施工进度,从而降低矿井开采的生产量。利用特种光纤技术能有效改善井下的供电现状,在矿山供电系统中应用复合电线可以为井下施工的机械设备提供源源不断的稳定电力,保证这些设备的正常操作和运行,利用光纤技术建立完整的网络系统,合理使用和分配电力资源,确保矿山施工区域供电的稳定性。同时,还可以在一定程度上节省建设供电系统的成本,在电力系统运行的过程中,也能有效缩减成本,从而有效提高矿山企业工程建设的整体经济效益。在完成网络系统的建设基础上,再采用以太网络技术,构建更加完善的网络监测系统。除此之外,光纤技术还可以结合多媒体显像技术,对井内的实际运行状况进行实时监控,在很大程度上提高了矿井开采的工作效率。工作人员通过监测系统可以充分掌握矿井内部的实际施工情况。如果井下有设备故障等问题,监测系统可以及时准确地反映故障的实际情况和具置,并第一时间切断故障发生的局部电源,同时发出警报,提示工作人员,以便在第一时间实施具体可行的解决措施,并在最快时间内恢复井内供电,将故障带来的影响和损失降到最低。

四、结束语

光纤通信范文5

关键词:光波;分复用;技术

中图分类号:TN711.1 文献标识码:A 文章编号:1007-9599 (2010) 03-0006-01

Optical Fiber Communication Technology Analysis

Qiu Gang

(Harbin Weike Technology Co., Ltd, Harbin 150000,China)

Abstract:This paper describes an overview of dense optical wavelength division multiplexing system , the system's testing requirements, the structure of tunable optical filters, and portable spectrum analyzer measuring instruments and related prospects.

Keywords:Optical Wavelengthl;Division Multiplexing;Technology

一、密集光波分复用系统

DWDM系统主要由光合波器、光分波器和掺铒光纤放大器(EDFA)组成。其中EDFA的作用是由比信号波长低的高能量光泵源将能量辐射进一段掺铒光纤中,当载有净负荷的光波通过此段光纤一起传播时,完成光能量的转移,使在1530-1565m波长范围内各个光波承载的净负荷信号全都得到放大,弥补了光纤线路的能量损失。

EDFA在DWDM系统中实际应用时又分为功放或后置放大器(BA),预放或前置放大器(PA)和线路放大器(LA)3种,但有的公司为了简化,尽量减少设备品种,统一为OA,以便于维护。

目前商用的DWDM系统的每个波长的数据速率是2.5Gbps,或10Gbps,波长数为4、8、16、32等;40、80甚至132个波长的DWDM系统也已有产品。常用的有两类配置。一类是在光合波器前与在光分波器后设置波长转换器OTU。这一类配置是开放式的,采用这种可以使用现有的1310nm和1550nm波长区的任一厂家的光发送与光接收机模块;波长转换器将这些非标准的光波长信号变换到1550nm窗口中规定的标准光波长信号,以便在DWDM系统中传输。

二、DWDM系统的测试要求

以SDH终端设备为基础的多波长密集光波分复用系统和单波长SDH系统的测试要求差别很大。首先,单波长光通信系统的精确波长测试是不重要的,只需用普通的光功率计测量了光功率值就可判断光系统是否正常了。设置光功率计到一个特定的波长值,例如是1310nm还是1550nm,仅用作不同波长区光系统光源发光功率测试的较准与修正,因为对宽光谱的功率计而言,光源波长差几十nm时测出的光功率值的差别也不大。可是,对DWDM系统就完全不同了,系统有很多波长,很多光路,要分别测出系统中每个光路的波长值与光功率大小,才能共发判断出是哪个波长,哪个光路系统出了问题。由于各个光路的波长间隔通常是1.6nm、0.8nm,甚至0.4nm,故必须有波长选择性的光功率计,即波长计或光谱分析仪才能测出系统的各个光路的波长值和光功率的大小,因此,用一般的光功率计测出系统的总光功率值是不解决问题。其次,为了平滑地增加波长、扩大DWDM系统容量,或为了灵活地调度、调整电路和网络的容量,需要减少某个DWDM系统的波长数,即要求DWDM系统在增加或减少波长数时,总的输出光功率基本稳定。

由于DWDM系统有n个波长,n个光路,等效于n个虚SDH光通信系统,故在系统的重要测量点必须有光分路器,以避免在做波长和功率测量时中断系统,造成大量业务丢失。

为便于比较对照,将OSP-102/OMS-100组合测试仪和一个典型的实验室用光谱分析仪OSA的技术规范列在一起。

三、可调谐光滤波器

为使具有光谱分析仪功能的仪表适合现场测试,需要有轻便灵巧的可调谐光滤波器选择光波长。它是一个可调法布里-泊罗滤波腔体,它的基本结构是由两块部分镀银的板构成反射平面,两块板相对分开的距离是可普的。其滤波原理是:对某个波长的光,当调节两块板之间的距离,使在两块板之间反射引起的部分射线在相位上完全重叠时,滤波器对该波长的光是直通的,而对其他波长的光会引入很大的衰减。

四、便携式光谱分析仪

适用于DWSM系统现场安装调测与日常维护的便携式光谱分析仪,除去前已介绍的HP 70952B,Agilent 86121A外,现举OSP-102插件和OMS-100主机配合专用于DWDM系统测试的便携式光谱分析仪为例,说明采用可调谐光滤波器一方面使成本显著降低,一方面使重量减轻。体积缩小,有利于便携。为便于使用,还增加了下述分立的应用方式。

(一)光谱分析仪方式

用可调谐光滤波器沿着要选测的波长范围调整移动,将以图形方式显示测量结果,可用游标定位估计波长、功率数值,以及各波长和功率差值的测试数据。还可用存储器存储两个光谱的测试数据进行比较。

(二)光纤系统方式

用表列出直到16个光路或波信道的被测试的波长、功率和S/N。这种应用方式对光纤通信系统的日常维护测试特别有用。因为在DWDM系统的运行过程中,通常不希望光载频信号的功率超过规定的容限。

(三)光功率计方式

可调谐光滤波器固定调整到所选的波长,以数字显示该波长的光功率,就可以用来检测该光路或信道光载频功率随时间的变化,即稳定程度。这一方式在检测中断故障时尤其有用。

(四)监视器输出方式

将被滤出的光信号的一部分送到监视器输出,就能在不影响其他光路或波信道业务的条件下对DWDM系统的某指定波信道进行比特误码率测试,也可具体检测出哪一个波信道传输有问题。

光纤通信范文6

1串联可靠性框图模型

串联模型表示组成设备的所有单板中的任意单板发生故障都会导致整个设备故障。也就是说,设备中每个单板都正常运行,才能保证设备正常工作。假设设备中有n个单板,每个单板是相互独立的,为了使整个设备正常工作,这n个单板必须正常运行。

2波分复用设备可靠性模型建立

欲建立波分复用设备可靠性模型,需要详细分析该设备的功能,在此基础上配置设备中的单板,再根据设备配置情况选择串联模型,建立可靠性框图模型。波分复用设备主要有光终端复用设备、光线路放大设备和光分插复用设备等。

2.1光终端复用设备的可靠性模型光终端复用设备(OTM)由合波盘(OMU)、分波盘(ODU)、光放大板(OAU)和光监控信道接入板(OSC)等组成。在发送端,光信号通过合波复用,经光放大、光监控信道后,进行光纤传输;在接收端,将光信号从光监控信道分离后,经光放大再分波解复用[4-5]。依据光终端复用设备功能结构,对其进行单板配置,配置情况如图1。图中OTU为光波长转换板,FIU为线路接口板,SCC为主控板,SC1为单向光监控板。结合光终端复用设备配置图,依据各个单板是串联关系,建立其可靠性框图模型,如图2。

2.2光线路放大设备的可靠性模型光线路放大设备(OLA)由OAU、OSC等组成。该设备的功能是增强衰减的光信号功率,延长光信号在光纤中的传输距离[5]。依据光线路放大设备功能结构,对其进行单板配置,配置情况如图3。图中SC2为双向光监控板。结合光线路放大设备的典型配置图,依据各个单板是串联关系,建立其可靠性框图模型,如图4。

2.3光分插复用设备的可靠性模型光分插复用设备(OADM)由OAU、OSC、光线路板(FIU)和光分插复用板(MR2)等组成,比光线路放大设备多配置一个光分插复用板。光分插复用板用来固定波长上下,可根据实际需求来配置波长数量[4]。依据光分插复用设备功能结构,对其进行单板配置,配置情况如图5所示。结合光分插复用设备配置图,建立其可靠性框图模型,如图6所示。

3波分复用设备的可靠性指标预测设备可靠性指标

的预测不仅对设备预防性维修保障、对安全管理使用起着重要作用,而且为设备数量的需求预测提供参考价值。本部分将依据相关标准,结合本文第2部分建立的可靠性框图模型及相关数学模型,计算分析得出波分复用设备的可靠性指标。

3.1可靠性指标分析采用《电子设备可靠性预计手册》对其进行可靠性指标的预测。按照电子设备的元器件寿命服从指数分布规律,可知故障率为常数。为了进一步分析光纤传输设备,需考虑单板受环境温度、人为等因素影响,得出更加具体的通用故障率数学模型。

3.2可靠性指标预测按照上述传输设备可靠性模型,运用可靠性指标预测方法,依次计算光传输典型设备的故障率与平均故障间隔时间。串联模型的设备故障率为各单板故障率之和,而平均故障间隔时间为设备故障率的倒数[1]。以光终端复用设备为例,根据每个单板的历史故障数据,代入式(4)计算,可得相应的平均故障间隔时间。合波板的故障率为1.369×10-6/h,平均故障间隔时间为73.04年;波长转换板故障率为2.657×10-6/h,平均故障间隔时间为37.63年,共有8个波长;主控板的故障率为1.021×10-6/h,平均故障间隔时间为97.94年;分波板的故障率为1.369×10-6/h,平均故障间隔时间为73.04年;光放大板的故障率为2.655×10-6/h,平均故障间隔时间为37.66年;光监控信道接入板的故障率为1.543×10-6/h,平均故障间隔时间为64.80年;光监控板的故障率为0.965×10-6/h,平均故障间隔时间为101.92年;机架的故障率为0.166×10-6/h,平均故障间隔时间为602.4年;风扇的故障率为8.601×10-6/h,平均故障间隔时间为11.62年。由于设备中各单板是串联的,将计算出的各个单板故障率和平均故障间隔时间,代入式(3),可得光终端复用设备故障率为55.385×10-6/h,平均故障间隔时间为1.80年。依次将光线路放大设备和光分插复用设备中单板按串联计算,设备的可靠性指标为各个单板的可靠性指标之和,得到相关预测值,结果如表1所示。由于光终端复用设备、光线路放大设备和光分插复用设备都是由各单板串联构成的,其可靠性模型是串联型,将设备的可靠性指标代入式(1),可得到设备的可靠度。按照相关指标[7]要求,传输系统可靠度应达到99%以上。通过本文对波分复用可靠性分析得出,光终端复用设备的平均故障间隔时间为1.80年,可靠度达到99.7%;光线路放大设备的平均故障间隔时间为4.87年,可靠度达到99.92%;光分插复用设备的平均故障间隔时间为2.03年,可靠度达到99.81%。可见,设备的平均故障间隔时间越长,其可靠度越高。表1分别列出波分复用设备可靠性指标的预测值与实际值,可以看出预测值与实际值是非常接近的,从而验证了本文所建立的可靠性模型用于设备可靠性指标的预测是可行的。

4小结