前言:中文期刊网精心挑选了传感器论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
传感器论文范文1
关键词:生物传感器;发酵工业;环境监测。
中图分类号:TP212.3文献标识码:A文章编号:1006-883X(2002)10-0001-06
一、引言
从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。
近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应
用PCR的DNA生物传感器也越来越多。
二、研究现状及主要应用领域
1、发酵工业
各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。
(1).原材料及代谢产物的测定
微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。
在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonasfluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。
当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporonbrassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。
此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。
(2).微生物细胞总数的测定
在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。
(3).代谢试验的鉴定
传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。
2、环境监测
(1).生化需氧量的测定
生化需氧量(biochemicaloxygendemand–BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。
除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。
现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonasfluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。
(2).各种污染物的测定
常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。
测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。
硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=2.5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是Chromatium.SP,与氢电极连接构成[7]。
最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(E.coli)中,用来检测砷的有毒化合物[8]。
水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5´10-9mol。该传感器工作的最适条件为:pH=7.4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonasrathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。
还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。
最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenoletoxylate--NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporumgrablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围0.5~6.0mg/l内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。
除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibriofischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligeneseutrophus(AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。
还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomycescerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(0.5~2)´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。
用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenescutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。
估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌(cyanobacteriumSpirlinasubsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。
近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonashydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。
还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。
微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000´10-6g/l[22]。
一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器—对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶—尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。
除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。
三、讨论与展望
美国的HaroldH.Weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。
总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。
--------------------------------------------------------------------------------
参考文献
[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[J].华夏医学,2000,63(2):49-52
[2]蔡豪斌.微生物活细胞检测生物传感器的研究[J].华夏医学,2000,13(3):252-256
[3]TrosokSP,DriscollBT,LuongJHTMediatedmicrobialbiosensorusinganovelyeast
strainforwastewaterBODmeasurement[J].Appliedmicreobiologyandbiotechnology,2001,56(3-4):550-554
[4]张悦,王建龙,李花子等.生物传感器快速测定BOD在海洋监测中的应用[J].海洋环境科学,2001,20(1):50-54
[5]YoshidaN,McNivenSJ,YoshidaA,etc.Acompactopticalsystemformulti-determinationofbiochemicaloxygendemandusingdisposablestrips[J].Fieldanalyticalchemistryandtechnology,2001,5(5):222-227
[6]MeyerRL,KjaerT,RevsbechNP.UseofNOx-microsensorstoestimatetheactivityofsedimentnitrificationandNOx-consumptionalonganestuarinesalinity,nitrate,andlightgradient[J].Aquaticmicrobialecology,2001,26(2):181-193
[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[J].分析试验室,2000,19(3):83-86
[8]AlexanderDC,CostanzoMA,GuzzoJ,CaiJ,etc.Blazingtowardsthenextmillennium:
Luciferasefusionstoidentifygenesresponsivetoenvironmentalstress[J].Water,AirandSoilPollution,2000,123(1-4):81-94
[9]MakarenkoAA,BezverbnayaIP,KoshelevaIA,etc.Developmentofbiosensorsfor
phenoldeterminationfrombacteriafoundinpetroleumfieldsofWestSiberia[J].Appliedbiochemistryandmicrobiology,2002,38(1):23-27
[10]SemenchukIN,TaranovaLA,KalenyukAA,etc.Effectofvariousmethodsofimmobilization
onthestabilityofamicrobialbiosensorforsurfactantsbasedonPseudomonasrathonis
T[J].Appliedbiochemistryandmicrobiology,2000,36(1):69-72
[11]YamazakiT,MengZ,MosbachK,etc.Anovelamperometricsensorfor
organophosphotriesterinsecticidesdetectionemployingcatalyticpolymer
mimickingphosphotriesterasecatalyticcenter[J].Electrochemistry,2001,69(12):
969-97
[12]NakamuraH.Phosphateiondeterminationinwaterfordrinkingusingbiosensors[J].Bunsekikagaku,2001,50(8):581-582
[13]A,LucaciuI,FleschinS,MagearuV.Microbialbiosensorfornonyl-phenoletoxylate
(NP-80E)[J].SouthAfricanJounalofChemistry-suid-afrikaansetydskrifvirchemie,
2000,53(1):14-17
[14]LethS,MaltoniS,SimkusR,etc.Engineeredbacteriabasedbiosensorsformonitoring
bioavailableheavymetal[J].Electroanalysis,2002,14(1):35-42
[15]LehmannM,RiedelK,AdlerK,etc.Amperometricmeasurementofcopperionswitha
deputysubstrateusinganovelSaccharomycescerevisiaesensor[J].Biosensorsandbioelectronics,2000,15(3-4):211-219
[16]RietherKB,DollardMA,BillardP.Assessmentofheavymetalbioavailabilityusing
EscherichiacolizntApluxandcopAplux-basedbiosensors[J].Appliedmicrobiologyandbiotechnology,2001,57(5-6):712-716
[17]KarlenC,WallinderIO,HeijerickD,etc.Runoffratesandecotoxicityofzincinduced
byatmosphericcorrosion[J].Scienceofthetotalenvironment,2001,277(1-3):169-180
[18]CampanellaL,CubaddaF,SammartinoMP,etc.Analgalbiosensorforthemonitoring
ofwatertoxicityinestuarineenviraonments[J].WateResearch,2001,35(1):69-76
[19]TombelliSara,MasciniMarco,SocaCristiana,etc.ADNApiezoelectricbiosensorassay
coupledwithapolyerasechainreactionforbacterialtoxicitydeterminationin
environmentalsamples[J].AnalyticaChimicaActa,2000,418(1):1-9
[20]LeeHae-Ok,CheunByeungSoo,YooJongSu,etc.Applicationofachannelbiosensorfortoxicity
measurementsinculturedAlexandriumtamarense[J].JournalofNaturalToxins,2000,
9(4):341-348
[21]Wang,J.MiniaturizedDNABiosensorforDetectingCryptosporidiuminWater
letion-311,2000(3),26p
[22]NakamuraC,KobayashiT,MiyakeM,etc.UsageofaDNAaptamerasaligandtargeting
microcystin[J].Molecularcrystalsandliquidcrystals,2001,371:369-374
[23]ArkhypovaVN,DzyadevychSV,SoldatkinAP,etc.Multibiosensorbasedonenzyme
inhibitionanalysisfordeterminationofdifferenttoxicsubstances[J].Talanta,2001,55(5):919-927
TheRecentResearchAndApplicationOfBiosensor
Abstract:Inthisarticle,therecentresearchprogressandapplicationofbiosensors,
especiallythemicro-biosensors,arereviewed,andtheprospectofbiosensorsdevelopmentisalso
prognosticated.Biosensorsaremadeupofbioelectrode,usingimmobileorganism
assensitivematerialformoleculerecognition,togetherwithoxygen-electrode,
membrane-eletrodeandfuel-electrode.Biosensorsarebroadlyusedinzymosisindustry,environmentmonitor,
foodmonitorandclinicmedicine.Fast,accurate,facilitateasbiosensorsis,therewill
beanexcellentprospectforbiosensorsinthemarket
Keywords:Biosensor,Zymosis-Industry,Environment-Monitor
作者简介:
传感器论文范文2
一、汽车电子操控和安全系统谈起
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、高档轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的完美结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。例如为使发动机处于最佳工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整最佳喷油量,最后还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出最佳点火时机的指令。这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩最大化,而同时燃油消耗和废气排放最低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以最大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保证在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.电子操控系统的动作必须快速、正确、可靠。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的可靠性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(SmartSensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将SmartSensor(或device)和Intelligentsensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
传感器论文范文3
关键词:混浊度;电导;温度;APMS-KIT.exe软件
混浊度(turbidity)亦称不透明度,主要用于表示水或其他液体的不透明程度。当单色光通过含有悬浮粒子的液体时,悬浮粒子引起的光散射会使单色光的强度被衰减,其衰减量即可用来代表液体的混浊度。混浊度是个比值,其单位用NTU来表示。测量混浊度对于环境保护和日常生活具有重要意义。我国早在1986年就制定了《生活饮用水卫生标准》(GB5749-85),规定城市供水企业出厂饮用水的混浊度不得超过3NTU。2001年卫生部制定的《生活饮用水卫生规范》又做出了更严格的规定,要求饮用水的混浊度必须达到1NTU才符合要求。测量混浊度的方法是采用浊度仪(turbimeter),又称浊度计。传统浊度仪的测试性能比较差而且功能单一,无法满足现代测量的需要。近年来,从国外引进的在线浊度仪因价格昂贵也难以大量推广(例如意大利哈纳公司的产品售价就高达7万元~12万元人民币)。最近,美国霍尼韦尔(Honeywell)公司推出了APMS-10G型带微处理器和单线接口的智能化混浊度传感器,该传感器能同时测量液体的混浊度、电导和温度,可用来设计多参数在线检测系统,因而可广泛应用于水质净化,清洗设备及化工、食品、医疗卫生等部门中。
1APMS-10G的性能特点
APMS-10G内含混浊度传感器、电导传感器、温度传感器、A/D转换器、微处理器(μP)和单线I/O接口,能直接测量液体的混浊度、电导及温度并转换成数字输出。它是基于软件的虚拟传感器,需要使用Honeywell公司的专用软件来完成检测任务(不包括控制)。APMS-10G的混浊度测量结果实际上是散射光强与发射光强之比,其输出范围是0~4000NTU(对应的输出数据为0.03~10),响应时间为1.3s。测量电导的范围是0.0001mS~15mS(所对应的输出数据为4~255),mS表示毫西门子。由于电导与电阻呈倒数关系,故所对应的电阻值为10MΩ~1kΩ。测量电导的响应时间为0.85s。测量混浊度及电导的误差均为±3个字。测量温度范围是+68°F~+140°F(即+20℃~+60℃),重复性误差小于±4°F,响应时间为0.03s,达到稳定的时间为4min。
APMS-10G可通过9脚RS-232接口与计算机相连,计算机作为主机,传感器工作在从机模式。通信速率为2400b/s。
APMS-10G采用8V~30V直流电源供电,电源电流为16mA(典型值)。最大外形尺寸为φ39.4mm×60.7mm。
2APMS-10G的测量原理
APMS-10G的内部框图如图1所示,3个引出端分别为电源端(UCC)、地(GND)和单线输入/输出接口(I/O)。内部主要包括四部分:第一是混浊度传感器部分,包括红外LED驱动控制电路、红外光源、发射光探测器、散射光探测器和A/D转换器Ⅰ;第二是电导传感器部分,含镀镍不锈钢探针、电导测量电路和A/D转换器Ⅱ;第三部分和第四部分分别是热敏电阻温度传感器和微处理器(μP)部分。
2.1混浊度测量原理
测量混浊度的原理图如图2所示。测量时,将传感器的正面浸入被测液体,使液体进入凹槽中。然后采用波长为925nm的红外发光二极管(LED)做光源,并由红外LED驱动控制电路使之发射红外光,最后让红外光穿过液体射到散射光探测器上。由于散射光探测器与发射光探测器互相垂直,因此它只能接收被测液体中微小颗粒所散射来的光线。再把两路光电信号分别送至Δ-Σ式A/D转换器Ⅰ转换成数字量,最后通过μP计算出散射光强与发射光强的比值,即为被测混浊度。
在含有formazin(一种呈悬浮状态并具有光学特性的化学聚合物颗粒)的标准体试样中,实测APMS-10G的比率输出特性曲线如图3所示。测量应在室温下进行,以作为传感器的标定方法。
2.2电导测量
测量混浊度只能反映出液体中悬浮固体微粒的多少,导电性则取决于溶解于液体中离子数量的多少。例如当水中放入清洁剂时,其导电性将变好,电导值变大,因此测量出电导值即可判定液体的导电性。APMS-10G首先由两个镀镍不锈钢探针发出低压交流电压信号,然后通过检测液体中的电流信号来计算电导值,计算公式为:
G=I/U
该电导信号经过Δ-Σ式A/D转换器Ⅱ转换成数字量后即可送给μP。电导传感器的输出特性曲线图4所示。
图3
2.3温度测量
APMS-10G采用一只热敏电阻来测量温度,温度脉冲信号被送到μP中,测温范围为+68°F~+140°F(对应值为+20℃~+60℃)。
2.4微处理器
APMS-10G中的微处理器主要用于将4路信号(发射信号、散射信号、电导信号和温度信号)转换成数字信号,并通过RS-232串行接口将数据传输给外部主控制器。该传感器没有模拟信号输出,必要时,用户可通过外部Δ-Σ式D/A转换器来获得传感器的模拟输出。
3APMS-KIT.exe软件及通信协议
Honywell公司专门为APMS-10G设计了一套APMS-KIT.exe软件,以作为传感器与计算机进行通信的载体,其主要任务是完成测量和进行数据处理,而控制系统软件则要由用户自行设计。其字符格式首先是起始位,然后是8个数据位(数据0~数据7),最后是停止位。传送一个字符需4.16ms。
表1传感器输入的信息格式
字符1字符2字符3
测量请求信息目标传感器代码校验和
混浊度5003AD
电导5000B0
温度5001AF
该传感器的信息格式有两种:一种是传感器输入信息,另一种是传感器输出信息。传感器输入的信息格式见表1所列。它只有3种有效的信息,字符1、字符2和字符3分别对应于信息目标、传感器代码和校验和。
4使用注意事项
APMS-10G通过9脚RS-232插座连到计算机,接线方式如图5所示。I/O端应接一只下拉电阻,以使总线上无信号时为0V。传感器的输出阻抗为440Ω~540Ω。RS-232接口是用+5V代表逻辑1,用0V代表逻辑0的逻辑信号。
使用APMS-10G型混浊度传感器时,需要注意以下几点:
(1)该传感器未加反向电压保护措施,因此,电源电压反接可能损坏传感器。
图4
(2)传感器的背面没有密封,因此,应避免水或其它杂质进入传感器和连接器内部。进入传感器的水分在传感器的光学表面浓缩会改变混浊度读数。进水严重时会造成永久性损害。另外,如果没有对传感器的电气部分进行保护,就不要清洗或浸泡传感器。
(3)在使用过程中,传感器的光面应保持潮湿。
(4)该传感器内含光学敏感元件,因而应避免与未加静电放电(ESD)保护的终端相接触。
(5)需要注意的是,液体中的气泡也会产生光学散射效应,其作用效果与悬浮微粒相同。
该混浊度传感器对于气泡、泡沫和肥皂泡相当敏感,大泡沫会引起输出毛刺,使仪表严重跳数,即使小气泡,也容易造成读数误差,因此应确保传感器与外部环境的隔离,并不被泡沫影响,以免得到错误的混浊度读数。清洗带该传感器的装置时,必须小心地放置传感器,必要时可增加泡沫分离器。另一种方法是将搅动系统关闭一段时间,使泡沫上升到传感器上面。
实际上,这种传感器对于泡沫的敏感性也具有特殊用途。一种应用是测量流量,泡沫的存在就是一种很好的指示器,它能指示液体流动,因此,可省去流量表或者压力传感器。
(6)由于大量污物和外部物体能阻塞光线路径,从而影响混浊度的测量,因此传感器不要放在有沉淀物的地方。
传感器论文范文4
灵敏度
电容传感器的灵敏度是由其物理结构、测量电容的方法和精确比较电容相对于接触门限电平变化的能力而决定的。采用传统印制电路板(PCB)方法制造的电容传感器的测量范围通常为1~20pF,因而很难准确地检测微小变化。虽然有几种测量这些电容微小值的方法,但采用16位电容/数字转换器(CDC)的高精密测量方法仍然具有明显的优势。
基于PCB设计的电容传感器
制作在标准印制电路板或挠性印制电路上的电容传感器都使用了相同的铜材料来做信号线。在这两种情况下,传感器的最大灵敏度都由传感器的物理尺寸、电介质常数以及覆膜厚度所决定。例如,带有5mm塑料覆膜的3mm厚传感器不如带有2mm塑料覆膜的6mm厚传感器灵敏。
我们的目标是开发具有正确响应并且满足人体工学要求的电容传感器。在某些应用中,传感器可能会很小,从而使用户接触面上产生微小的电容变化。
图1和图2显示了在印制电路板上设计电容传感器的两种常用方法。图中给出了在用户接触期间施加激励信号时传感器的响应特性。虽然根据用户接触方式的变化,传感器电容会有所不同,但是传感器的性能在这两种情况下相差不大。
激励电容传感器
如图1所示,连续的250kHz方波激励信号施加在传感器的SRC端,以在电容传感器内建立电场。激励信号在传感器中建立电场后,该电场会部分地延伸出塑料覆膜,ClN端连接到CDC上。
图2所示为另外一种电容传感器设计案例,其将一个恒流源加到传感器的A端,而将B端接地。当用户触摸传感器时会增加额外的手指电容,从而增加了充电周期内RC的上升时间。
测量电容传感器并且检测传感器接触面积
图3显示了一种测量电容的传统方法。恒流源不断地为电容传感器充电,以使其达到比较器的参考门限电平。当电容传感器达到参考门限值时,比较器将输出高电平脉冲,然后闭合开关,电容器放电并且复位计数器。灵敏度门限电平如图4所示。
要确定何时用户开始接触传感器,需要计数器对电容传感器充电到比较器参考电平所经历的时钟周期数
进行计数,并将这个值与预置门限检测设置值比较。例如,计数为50表明传感器有接触,而小于50则表明没有接触。在本例中,当用户接触传感器时,其准确度和精密度与参考时钟的频率和驱动各种电容传感器的电流源的重复性有关。
图5所示是一种较理想的测量电容方法,它使用了高分辨率16位ADC和250kHz的激励源。激励源不断产生250kHz的方波,从而在电容传感器中产生电场以及能够穿透覆盖材料的磁通量。无论用户何时接触传感器,精密
16位ADC都能以lfF测量分辨率来检测。其无须外部控制元件并且自动校准,所以可确保不会发生由于温度或湿度变化引起虚假接触。
传感器论文范文5
关键词:贝叶斯估计信息融合障碍探测智能驾驶
随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。
1ICC/CW和LDW系统中存在的问题
1.1ICC/CW系统中的误识别问题
ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。
1.2LDW系统中存在的场景识别问题
LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。
2多传感器信息融合技术在ITS系统中的应用
针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(CombinedLikelihoodAddingRadar)和InstitudeNeuroinformatik提出的ICDA(IntegrativeCouplingofDifferentAlgorithms)算法等方法实现。
2.1传感器的选择
识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。
表1传感器性能比较
传感器类型优点缺点
超声波
视觉
激光雷达
MMW雷达价格合理,夜间不受影响。
易于多目标测量和分类,分辨率好。
价格相合理,夜间不受影响
不受灯光、天气影响。测量范围小,对天气变化敏感。
不能直接测量距离,算法复杂,处理速度慢。
对水、灰尘、灯光敏感。
价格贵
视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。
雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。
为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。
2.2信息融合的基本原理
所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。
多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。
2.3常用信息融合算法
信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。
表2信息融合方法
经典方法现代方法
估计方法统计方法信息论方法人工智能方法
加权平均法经典推理法聚类分析模糊逻辑
极大似然估计贝叶斯估计模板法产生式规则
最小二乘法品质因素法熵理论神经网络
卡尔曼滤波D-S证据决策理论遗传算法
模糊积分理论
2.4智能驾驶系统中信息融合算法的基本结构
由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统中识别障碍常用的算法结构如图2所示。
3CLARK算法
CLARK算法是用于精确测量障碍位置和道路状况的方法,它同时使用来自距离传感器(雷达)和摄像机的信息。CLARK算法主要由以下两部分组成:①使用多传器融合技术对障碍进行鲁棒探测;②在LOIS(LikelihoodofImageShape)道路探测算法中综合考虑上述信息,以提高远距离道路和障碍的识别性能。
3.1用雷达探测障碍
目前经常使用一个雷达传感器探测前方的车辆或障碍。如前面所分析,雷达虽然在直路上的性能良好,但当道路弯曲时,探测的信号将完全可靠,有时还会有探测的盲点或产生错误报警。为了防止错误报警,常对雷达的输出进行标准卡尔曼(Kalman)滤波,但这并不能有效解决探测盲点问题。为了更可靠地解决这类问题,可以使用扫描雷达或多波束雷达,但其价格昂贵。这里选用低价的视觉传感器作为附加信息,视觉传感器经常能提供扫描雷达和多波束雷达所不能提供的信息。
3.2在目标识别中融合视觉信息
CLARK算法使用视觉图像的对比度和颜色信息探测目标,使用矩形模板方法识别目标。这个模板由具有不同左右边界和底部尺寸的矩形构成,再与视觉图像对比度域匹配,选择与雷达传感器输出最接近的障碍模板。
CLARK算法首先对雷达信号进行卡尔曼滤波,用于剔除传感器输出的强干扰,这出下列状态和观测方程处理:
D(t)=R(t)+v(t)
式中,R(t)为前方障碍的真实距离(未知),R(t)是其速度(未知,)D(t)为距离观测值,Δt为两次观测的问题时间,w(t)和v(t)为高斯噪声。给定D(t),由Kalman滤波器估计R(t)和R(t)的值,并把估计值R(t)作为距离输入值,使用R(t)和D(t)的差值确定所用矩形模板的偏差。由于使用雷达探测的位置与雷达作为补偿。
使用上述算法可以有效提高雷达探测的可靠性,但当图像包含很强的边缘信息或障碍只占据相平面一个很小的区域时,仍不能得到满意的结果。因此,除对比度外,又引入视觉图像的颜色域。
3.3相合似然法
在探测到障碍后,CLARK算法将这些信息整合到道路探测算法(LOIS)中。LOIS利用变形道路的边缘应为图像中对比度的最大值部分且其方位应垂直于道路边缘来搜索道路。如果只是简单地将两个信息整合,则障碍探测部分的像素被隐藏,其图像梯度值不会影响LOIS的似然性。这样可以防止LOIS将汽车前方障碍的边缘误认为是道路的边缘来处理。但是当道路的真实边缘非常接近障碍的边缘时,隐藏技术则失效。
为了使隐藏技术有效,可以在障碍和道路探测之间采取折中的处理方法。这种折中的处理方法就是相合似然法。它将探测障碍固定的位置和尺寸参数变为可以在小范围内变化的参数。新的似然函数由LOIS的似然和小探测障碍的似然融合而成。它使用七维参数探测方法(三维用于障碍,四维用于道路),能同时给出障碍和道路预测的最好结果。其公式如下:
式中,Tb、Tl、Tw为相平面内矩形模板的底部位置、左边界和宽度的三个变形参数,[xr(t),xc(t)]为变形模板相平面的中心。[yr(t),yc(t)]为由雷达探测并经Kalman滤波的障碍在相平观的位置。将地平面压缩变化为相平面,的实时估计,为相平面内一个路宽的值(3.2m)。tan-1的压缩比率在相平面内不小于Tmin(路宽的一半),不太于Tmax(路宽)。通过求解七维后验pdfP(k'''',b''''LEFT,b''''RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],ObservedImage)的最大值获得障碍和道路目标。
3.4CLARK算法的局限性
传感器论文范文6
采用多源数据融合和机器学习方法实现船舶特征辨识和自适应误差控制;研究基于形态分类方法和时空数据连续特征提取的拖船队检测,实现对船舶交通量的全天候自动船舶交通流量统计。
由于系统中选用了两台不同型号的激光传感器作为船舶特征信息的采集,它们采用的数据接口各异。
激光传感器数据的传输
激光传感器船舶交通量观测系统由数据采集子系统、数据处理子系统和辅助子系统三个部分组成。数据采集子系统中的激光传感器通过自身激光头的旋转,对物体进行短时间的线扫描,从而实现对被测物截面的二维扫描,可实时采集航道上的目标图像。数据采集子系统主要由两台激光传感器组成。
因此,需选用不同的传输方式获取其数据信息。通过对三种方案的实践和比较,最终得到了合适的传输方案。编辑老师为大家整理了试论船舶交通量观测激光传感器,希望对大家有所帮助。