前言:中文期刊网精心挑选了工艺设计论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
工艺设计论文范文1
此工艺采用醇提法进行,生产过程中使用的酒精需要回收并循环使用,其具体工艺流程为:首先将原药材进行预处理后,投入到提取罐中,加入一定量酒精回流提取,然后收集提取液;提取液再经过浓缩器进行浓缩,将浓缩液进行喷雾干燥后即制成中间体。物料衡算是设备选型的依据,决定生产空间大小,在物料衡算基础上进行合理生产安排,是防止多品种生产时产生交叉污染的基本手段之一。进行物料衡算之前,首先应了解车间的年生产任务、生产班制、每班工作时间以及年生产时间等,根据计算可以得出此工艺原材料消耗量以及每个阶段中间品的产量,最后选择适合生产能力的设备(提取罐、浓缩设备、干燥设备等)进行匹配。
2平面布局工艺设计
以某中药提取车间为例,根据提取车间的自身特点,将车间平面设计成矩形,这样便于工艺设备的合理布置,便于安排通道及出入口,且能提供较多自然采光和自然通风的墙面。
2.1垂直布局设计,节省占地面积,合理利用空间
从整体布局上考虑,以提取罐为中心,采用垂直布局模式,将整个车间分为3层(局部有4层),第1层主要由酒精回收间、出渣间以及公用工程房间组成,第2层主要为前处理间、提取操作间及生产辅助间,第3层为喷雾干燥区(D级洁净区),主要进行浸膏处理操作。提取车间所使用的酒精回收装置尺寸较大,高度较高,因此将酒精回收单元分3层布置,第1层布置酒精回收釜,第2层布置酒精储罐,第3层夹层布置冷凝器、冷却器等。在提取与出渣的设计上也采用垂直布局的方式,将提取操作区与出渣区分层布置,一方面保证出渣口的高度,便于药渣的清除和转运,另一方面减少出渣操作对整个生产区的污染。
2.2人、物流分开设置,避免交叉污染
物流主入口设在东侧,靠近前处理区,原药材通过货梯运至第2层切断、净制、挑拣间进行前处理,然后至提取操作间进行提取,提取液经浓缩、喷雾干燥后制成中间体。如此将人、物流分开设置,有利于避免造成污染和混淆。
3工艺管道布置
提取车间的工艺管道包括提取罐料液自循环管道、提取液输送管道、浓缩液输送管道、酒精输送管道等。提取车间的工艺管道布置在符合GMP要求的前提下进行设计。管道设计可以采用明敷方式,以减少投资,并有利于安装、操作和检修。设计时,尽量做到管线短捷,管道必须有交叉和拐弯时,应避免产生死角和盲管等。图3为某提取车间的工艺管道布置图,提取设备、泵以及储罐分别沿南北两侧墙布置,中间留出运输通道和操作空间,其工艺管道大多沿墙、地面或楼面进行敷设,多条管路集中布置,并平行敷设,做到整齐、美观、易操作。管道上标注有管道等级、管道号、标高、物料名称等。不同管道的相互位置,管道与墙壁、管道与管道之间的距离均参照化工管道相关设计规范进行确定。
4具体问题及解决方案
4.1投料操作不方便及解决方案
提取操作间的常规做法是将提取罐的罐耳挂在楼板上,投料口高出地面的高度给投料操作带来了困难,需要搭建钢平台作为投料层,每次进行提取操作前,操作人员先上至钢平台,再将物料投入提取罐,这种做法的缺点是操作不方便,且操作周期长。为了解决上述问题,在设计时可考虑在提取操作间局部做降板,如图4所示,使提取罐的投料口处基本与地面平齐,这样操作人员可直接将物料投入其中。改进后的操作层兼顾了2种功能,即投料和操作可以同时进行,这样使操作更加快捷,效率得到提高。
4.2出渣间污染及解决方案
中药提取后的药渣排放是中药提取车间的一大难题。2010版GMP中指出:中药提取后的药渣如需暂存、处理时,应当有专用区域。为了更好地避免出渣间出现污染问题,设计时应注意以下几点:
(1)出渣间与其他功能间最大限度隔离,直接对外开门,将其对生产区的污染风险降至最低。
(2)出渣间不再设计贮渣功能,药渣卸下后立即运走,每次出渣后立即进行全面彻底清洗。借助药渣压缩设备,将药渣卸到料斗内,由压缩机挤压至原体积的1/2,挤压所产生的污水由排污管道排入污水管,这样不仅避免了药渣和药渣滴水造成的二次污染,同时由于药渣体积压缩而大幅降低了运输费用。
(3)出渣间的墙面、地面宜采用瓷器类物质贴面,既便于清洗,又能避免提供霉菌附着基。
(4)在满足出渣口能打开及方便出渣车进出的前提下,出渣高度尽可能降低,避免飞溅的渣水造成二次污染。
5结语
工艺设计论文范文2
铜镉渣提取精镉通常采用的方法:浸出-粗镉-精炼-精镉。根据浸出剂的不同,浸出分为酸浸法[4]、氨浸法[5]、微生物浸矿法[6]等技术方法。氨浸法采用氨水及碳酸铵为浸出剂,浸出过程中锌、铜、镉等与氨形成稳定的氨配离子进入溶液,而钙、镁氧化物等杂质基本不溶解。少量的铁和锰也可以低价氨配离子形态进入溶液。也有直接采用氯化氨来作为浸出剂,可以提高浸出速度和锌、铜的浸出率。氨浸法和微生物浸矿法难以与现有铜镉渣处理系统衔接[7,8]。酸浸法又分为常压酸浸和加压酸浸。酸浸法是将废渣中锌及其它一些金属离子与硫酸反应,进入浸出液中,控制浸出过程的条件,从而将大部分锌及低价态的铁、锰杂质残留在浸出液中,而大量的金属杂质如高价态的铁、锰及钙、镁等杂质留在浸出废渣中排掉。然后对浸出液进行净化除杂可得到较纯净的含镉溶液。酸浸法的缺点是工艺流程长而复杂[9],高温高酸浸出劳动条件较差,不易操作。必须用大量的硫酸来浸取,以及要中和废渣中所夹带的碱性杂质。因此常导致硫酸的消耗较高,成本增大,而且易腐蚀设备。镁、铁、锰等杂质也会大量进入溶液中,对后续的除杂净化工作带来麻烦。而且,常压酸浸出法各种沉铁工艺难于控制,产出的铁渣铁品位低,且铁渣量大,低铁渣难于处理,其中的有价金属难于回收。酸浸出法因浸出率高、浸出速度快、原理简单,可综合回收多种有价金属,仍为目前最主要的工业生产方法[8]。由于本流程是为某大型铅锌冶炼厂配套,采用常压酸浸法制取粗镉。为了充分回收原料中的有价金属,并预留考虑将来原料来源的复杂性,前端的湿法流程可适当拉长,分离提取镉、铜、钴、铟、银等,尽可能产出附加值高的产品,以提高经济效。铜镉渣主要成分见表1。精镉的工业化生产方法有电积法和蒸馏法[10]。电积法技术成熟,安全可靠,但存在电解效率低,电耗大,周期长,电解沉积物不稳定等缺陷,由于流程长,占地面积大,设备投资高,成本高,目前新建厂基本不采用电积法制镉。由于粗镉中常见的杂质锑、铜、砷、铅、铊、锌、锡和铁,这些元素的蒸汽压都比镉低、难于挥发,塔式蒸馏利用镉与其它杂质的沸点差异,通过镉气化挥发提纯镉。通过控制精馏塔塔体组合中不同功能段的温度使高沸点金属在由蒸发盘、回流盘组成的塔体组合中不断蒸发回流冷凝,最后由塔体下延部排出,而绝大部分低沸点金属(镉)在塔体组合内蒸发形成蒸气由塔体顶盘排出[11],而后进入冷凝器冷凝成以低沸点金属为主成分的合金液体(精镉液),铸锭为精镉。粗镉塔式蒸馏技术已发展完善,工艺简单,设备占地面积小,热效率高,可实现连续生产。控制一定工艺参数,可直接产出精镉,铅、锌及其它高沸点杂质金属含量符合要求。本设计精镉生产采用电热特殊钢塔式蒸馏工艺。
2工艺流程
设计采用的铜镉渣制取精镉工艺流程包括硫酸浸出,锌粉一次置换,造液,锌粉二次置换,压团,粗炼,精炼等工序,其工艺流程如图1所示。2.1浸出、一次置换、造液、二次置换净化车间送来的铜镉渣先通过加水浆化,根据原料锌含量的变化,也可加入稀酸,洗去部分的锌。浆化后的矿浆经泵泵入铜镉渣浸出槽,加入废电解液进行浸出。浸出液固比6∶1,浸出温度70~90℃,浸出时间4~6h,始酸25~30g/L,终点pH值5.2。铜镉渣浸出液经压滤机压滤,滤渣进浸出滤渣浆化槽水洗浆化后压滤,滤渣即铜渣送铜冶炼;滤渣压滤滤液储存后返锌净化。浸出滤液存储在浸出液贮槽,待溶液温度在60℃以下时,再泵送到一次置换槽进行一次置换。一次置换加入1.2倍锌粉,锌粉粒度为0.149~0.125mm,酸度0.3~0.5g/L,置换时间60~90min。置换采用机械搅拌,置换后液含镉0.1~0.2g/L。置换后液经压滤后存储于置换后液贮槽;滤渣堆存7~15d后,在潮湿的空气中自然氧化,再送至造液槽中加入硫酸造液。造液温度85~90℃,造液始酸400~500g/L,造液终了pH值5.2~5.4。操作周期5~6h,造液后液含镉200~500g/L。造液后液压滤去除造液渣,再与新鲜镉棉、锌粉在二次置换槽进行二次置换,二次置换始酸pH=4,加锌粉,搅拌15~20min后,调溶液到中性pH值,再次加入锌粉,搅拌20~30min。镉二次置换后液经二次置换压滤机后得到纯镉绵。二次置换压滤机滤液也存储于置换后液贮槽,待存储一定的量后送除镍钴槽除镍钴,所得贫镉液送锌浸出。2.2火法精炼海绵镉用压团机压团,团饼直径Φ150。压团后的镉团,用氢氧化钠作复盖剂,经粗镉电炉熔化,加入还原剂和氢氧化钠,镉团中含的锌与苛性钠生成碱渣,产出粗镉。粗镉可铸成粗镉锭或者直接从粗镉电炉连续流进精馏塔。精馏炉,由粗镉熔化炉、蒸发炉体、精馏塔体、出料管、冷凝器、精镉铸锭池等组成。镉在精馏塔内加热蒸发和冷凝回流交替进行,纯镉蒸汽以镉气态形式上升至炉顶经冷却成液态,冷却到一定温度流入精镉锅,定期铸成镉锭。高沸点金属经回流富集逐步下流,进入渣锅,定期排出。精馏炉采用自动进料、自动出料,电阻式加热,PID调节仪自动控温。熔化炉入塔原料含镉60%~65%左右。燃烧室温度1120℃,下延部熔析温度450℃。冷凝器精镉含镉95%~98%,含铅0.0001%~0.0006%,含锌2%~3%。精镉蒸馏过程中,蒸馏温度需严格控制,不得高于440℃,避免因蒸馏温度过高将其它杂质蒸馏,造成蒸馏镉所含杂质高,后序浇铸的精镉除杂困难。还需控制好冷凝器和密封圈冷却回水温度,回水温度不宜过高,密封圈温度应高于冷凝器温度,便于最后蒸馏完毕清锅,回水温度以35~70℃为宜。蒸馏时间过长,过终点,其它杂质被蒸馏,影响蒸馏镉的品位,造成精镉除杂困难。蒸馏温度在短时间内急剧上升为蒸馏过程的终点2.3问题与讨论2.3.1浸出过程的控制由于酸浸处理过程,单质铜与稀硫酸不易发生反应(铜的电极电位在氢的电极电位之上),金属锌、镉较易与稀硫酸反应生成硫酸盐。为将铜留在渣中,并尽可能地浸出镉、锌,可通过控制浸出pH值,分离铜等杂质。根据试验情况,本设计通过仪表控制浸出过程的酸加入量,控制浸出终点pH值5.2,浸出渣含锌7%,铜25%。实现对铜镉渣进行选择性浸出。2.3.2浸出渣浆化洗涤为尽可能控制镉的分散,回收水溶锌,提高锌回收率及铜渣中铜品位。设计增加了对浸出渣浆化洗涤工序。根据试验报道,酸性条件下可大量溶解锌,是否采用加酸浆化洗锌可待进一步的试验,确定洗涤pH值。2.3.3海绵镉选择性富集由于一次置换前液含锌高但含镉低,锌镉比为(4~5)∶1,故一次置换所得到的海绵镉不仅含锌高,镉品位较低,且还有部分其它杂质,不能满足后续工序的需要。根据报道,当置换前液锌含量在30~40g/L时,一次置换海绵镉产品含镉可达85%以上。可在生产中采用分段置换的工艺。首先置换一次置换前液中85%的镉,液固分离后再置换剩余的镉。第一段置换的镉可直接送熔炼,第二段置换的镉再送造液或返回浸出。
3主要技术经济指标及设备选型
3.1主要技术经济指标本项目建设投资总额约为700万元(包括土建部分及流动资金),设计精镉(Cd99.99%)生产能力800t/a,处理铜镉渣10000t/a。建成达产后年平均可实现利润总额550万元/a,经济效益明显。3.2主要处理设备设计所选用的主要处理设备见表3。
4污染控制
镉具有很强的污染性和毒性,提镉生产不仅需注意镉对外界和周围环境造成的污染,也须重视镉在锌冶炼厂区域内的污染,以及镉生产车间内操作环境。4.1废气在铜镉渣湿法提取的生产过程中,各反应槽内的溶液保持有一定的温度,反应过程中散发出酸雾、水蒸汽和粉尘等有害物质。特别是锌粉置换过程会产生砷蒸汽,对操作工人健康是很大的威胁。火法工序中在对海绵镉进行熔化铸锭时,为了防止镉的氧化和挥发,在熔融镉的表面上虽然有碱液覆盖,但难免逸出镉蒸汽,造成车间内的低空污染。该设计在浸出槽、置换槽上设置排气筒;在熔铸炉出镉口设置集烟罩;使用大风量排烟风机,将湿法废气排气管与火法烟气收集管相连,废气统一由熔铸炉喷淋式水膜脱硫除尘器处理。由于熔铸炉烟尘带碱粒,与湿法系统共用除尘系统,可降低碱耗。系统处理风量为75000m3/h,进入废气处理系统的烟尘浓度为800mg/m3,酸雾浓度600mg/m3。水膜脱硫除尘器处理效率为98%,处理后废气中粉尘浓度约为1.2mg/m3,可实现达标排放。4.2废水含镉污水外排将导致严重的污染事故。该设计在全车间设置250mm高的围堰,将车间内的污水与外界隔离。车间的污水经自流收集、混合后返回浸出,洗水、贫镉液、车间污水均在系统内循环,不外排。多次循环后的高浓度污水及事故排水采用石灰中和处理工艺处理。通过石灰乳和铁、铝盐法中和沉淀处理后,去锌、砷、镉等重金属,使污水排放满足《污水综合排放标准》(GB8978-2002)一级标准。4.3废渣镉回收湿法流程产生的铜渣、镍钴渣等作为副产品,送综合回收。湿式收尘的底泥返回浸出工序。火法流程产生的碱渣、底渣含有大量的碱、锌,可根据成分返回锌系统配料或送废水处理站做中和剂。全流程无需要堆存的废渣。
5结语
工艺设计论文范文3
1.1轴承套圈生产车间相互关联考虑因素
轴承加工是比较专业化的大批量生产,产品流程的运输占有很大比重。在整个配套车间的布局安排上以及车间内部各工序之间的产品走向都要合理布局,巧安排,才能减少成品搬运次数和缩短产品的搬运路程。达到降低成本,减少人力物力的浪费,缩短运转周期,增加效益。从专业轴承套圈生产环节上,车间布局依次为轴承套圈锻造车间(如外包可以不设)、轴承套圈车工车间、热处理车间、轴承套圈磨加工车间。除了依次之间距离最短外,还应注意一个车间的提交和下一个车间的投料对接距离(最短)细节。举例,如两个车间并排放置,车工投料安排在车间的左下,车工提交则要安排在车间的右上,热处理的投料则要安排在左上,去衔接车工的提交。
1.2轴承配套件生产车间布局考虑因素
配套件生产车间工艺与轴承套圈工艺完全不同,可以说是独立的生产单位,因此布局的相联性不大。但作为轴承工业设计来说,它关注的重点不是相互关系。对其考虑重点应为进料道路和场地的宽敞。保持器车间压力机多,冲压件用的板材重而宽。滚动体用的冷拉钢重而长。如果车间位置的进料道路曲折而窄的话,不利于大长车的驶入。
2工艺设计中设备动力线铺设方式考虑因素
2.1设备动力线地埋方式
设备动力线铺设一般为地埋方式,用钢管预埋于地下,然后将动力线穿到设备处,统称地管线。这种方式,有它的优点,车间设备安装齐备后,外观整齐化一。缺点是年久失修,地管线容易报废。特别是钢管预埋地下防锈处理不当或者管线露头处防水不好,很容易使电线漏电放炮而报废。另外预埋的地管线,如果所安设备的接线管位置或者功率发生变大的话,那么会给安装带来不便或者作废。
2.2设备动力线架空方式
动力线采用支架架空到设备的方式称为架空方式,这种方式灵活,方便,适用中小型设备安装且工序产品搬运不能使用行车的场所;临时动力线的铺设。缺点是车间外观看起来非常凌乱,不正规。
2.3铜覆铝封闭式母线架空方式
铜覆铝封闭式母线架空方式是新型专业化生产常采用的铺设方式。铜覆铝封闭式母线由专业厂生产,配合插接箱,用整齐化一的支架,即可实现设备动力线的链接。
3磨削液供给方式考虑因素
轴承专业磨削是保证质量的重要手段,在整个加工过程中,磨削占有百分之六十以上的比重。磨削液质量监控是不可缺失的重要环节。磨削液供给分为分散供给和集中系统供给两种。
3.1分散(单台)供给
每台设备配备一个水箱,用水泵将水箱内的磨削液提供给机床磨削。它的优点是灵活,简便。适用小规模生产。它的缺点是,磨削液的使用周期不易控制。磨削液的温度随着磨削量大或者设备开动时间长而发生变化,从而影响产品加工精度的控制。
3.2集中系统供给
用循环系统对单台设备供给磨削液。适用大规模生产。它的优点磨削液的质量容易保证。而且磨削液的水温不易发生变化,加工精度易于掌握。它的缺点是:1)设备开动率的要求比较高;2)系统一旦发生故障,将严重影响生产的正常进行。因此大循环的备用系统在设计中必须加以考虑。
4设备空间布局考虑因素
在工艺设计中除了遵循工艺流程的原则外,更应最大限度地增加厂房内的空间利用率,进行合理的布局设计,使设备安装既不能拥挤,又不能浪费宝贵而有限的空间。因此从空间的角度应注意考虑以下几种因素。
4.1设备安装空间考虑因素
首先要考虑各种设备操作环境以及必备的空间条件,其次考虑设备安装就位通道是否具备。以上两个方面缺一不可,光考虑节省空间,忽略了设备安装。工艺不能实现设备安装就是失败的设计。而光考虑设备安装顺利,将空间全部布满设备,没有预留区,特别是在制品区、检验区等,完全不可取。总之在遵循工艺流程的原则前提下,去满足设备安装条件,然后才是尽可能的缩小设备的安装区,扩大生产环节其它区域需求。
4.2设备利用空间考虑因素
在设备布局考虑操作空间外,对于需要行车起吊搬运成品的靠墙设备而言,吊车起吊范围是否能够到达,是布局设计特别要注意的细节。在此基础上,工艺设计才是合理的布局。另外行车设计除了遵循行车设计规范外,细节上也应该尽量扩大行车运行范围。例如,有的厂房由于工序要求必须进行隔断,而每个隔断间都要有不同吨位吊车。在设计行车挡块时,不能简单地只在房间区域内设计单台挡块,更应全面考虑,去利用隔壁房间吊车的挡块。即将相邻的都有吊车的隔断墙两边各有一个挡块去掉一个,并把它安放在墙里,两边吊车都能利用这个挡块,既节省材料,又扩大了两边吊车运行范围,从而提高空间的利用率。
5结语
工艺设计论文范文4
1.2零件的工艺分析
推动架共有二组加工表面,其相互有一定关联要求。分析如下:
1.2.1以φ32为中心的一组加工表面
这一组加工表面包括:45、60、φ16孔
1.2.2是φ16孔为中心的一组加工表面
这一组加工表面包括:40、25、6x1槽、6x9槽孔、M8孔
经过分析,为了保证加工精度和降低加工成本,将φ32孔和φ16作为定位基准,以他为工艺基准能很好保证其他各个尺寸要求,完全可以达到图纸要求。
由上面分析可知,加工时应先加工第一组表面,再以第一组加工后表面为精基准加工另外一组加工面。
第二章工艺规程设计
2.1确定毛坯的制造形式
零件材料为HT200,考虑零件受冲击不大,零件结构又比较简单,故选择铸件毛坯。
2.2基面的选择
基面选择是工艺规程设计中的重要工作之一。基面选择得正确与合理可以使加工质量得到保证,生产率得以提高。否则,加工工艺过程中回问题百出,更有甚者,还会造成零件的大批报废,使生产无法正常进行。
2.2.1粗基准的选择。对于零件而言,尽可能选择不加工表面为粗基准。而对有若干个不加工表面的工件,则应以与加工表面要求相对位置精度较高的不加工表面作粗基准。
2.2.2精基准的选择。主要应该考虑基准重合的问题。为了使基准统一,先选择φ32孔和φ16孔作为基准.
2.3制定工艺路线
制定工艺路线得出发点,应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证,在生产纲领已确定的情况下,可以考虑采用通用机床配以专用工卡具,并尽量使工序集中来提高生产率。除此之外,还应当考虑经济效果,以便使生产成本尽量下降。
2.3.1工艺路线方案一
工序一备毛坯
工序二热处理
工序三铣面A、B、C(见工艺卡片)
工序四铣面E、F(见工艺卡片)
工序五扩孔φ32,孔口倒角
工序六车端面,钻孔φ10,车孔φ16,孔口倒角
工序七钻扩铰φ16孔
工序八钻孔φ6,锪孔
工序九钻M8底孔φ6.6,攻M8孔
工序十铣槽6x1、6x9
工序十一检查
工序十二入库
2.3.2工艺路线方案二
工序一备毛坯
工序二热处理
工序三铣面A、B、C(见工艺卡片)
工序四铣面E、F(见工艺卡片)
工序五扩孔φ32,孔口倒角
工序六车端面,钻孔φ10,车孔φ16,孔口倒角
工序七铣槽6x1、6x9
工序八钻扩铰φ16孔
工序九钻孔φ6,锪孔
工序十钻M8底孔φ6.6,攻M8孔
工序十一检查
工序十二入库
2.3.3工艺路线分析比较
工艺路线一与工艺路线二的差别在于对φ16销孔和铣槽6x1、6x9的加工安排的不同,工艺路线一将φ16销孔基准,加工槽6x1、6x9,准统一,能很好的保证槽6x1、6x9的精度要求,所以此次设计依据工艺路线一来开展设计。
2.4机械加工余量、工序尺寸及毛皮尺寸的确定
推动架,零件材料为HT200,生产类型大批量,铸造毛坯。
据以上原始资料及加工路线,分别确定各家工表面的机械加工余量、工序尺寸及毛坯尺寸如下:
2.4.1内孔和外圆的加工余量及公差
查《机械制造工艺设计简明手册》(以下称《工艺手册》)表2.2~2.5,取φ32内孔单边加工余量为2.
2.4.2铣削加工余量为:
粗铣1.5mm
精铣0.5mm
2.4.3其他尺寸直接铸造得到
由于本设计规定的零件为大批量生产,应该采用调整加工。因此在计算最大、最小加工余量时应按调整法加工方式予以确认。
2.5确立切削用量及基本工时
2.5.1工序三铣面A、B、C(见工艺卡片)
2.5.1.1.加工条件
工件材料:HT200,铸造。
机床:XA6132卧式铣床
刀具:高速钢圆柱铣刀,深度ap<=3,,故据《切削用量简明手册》(后简称《切削手册》)取刀具直径do=60mm。
2.5.1.2.切削用量
铣削深度因为切削量不大,故可以选择ap1=1.8mm,ap2=0.2mm,二次走刀即可完成所需尺寸。
每齿进给量机床功率为7.5kw。查《切削手册》f=0.14~0.24mm/z。由于是对称铣,选较小量f=0.14mm/z。
查后刀面最大磨损及寿命
查《切削手册》表3.7,后刀面最大磨损为1.0~1.5mm。
查《切削手册》表3.8,寿命T=180min
计算切削速度按《切削手册》,查得Vc=98mm/s,n=439r/min,Vf=490mm/s
据XA62铣床参数,选择nc=475r/min,Vfc=475mm/s,则实际切削Vc=3.14*60*475/1000=119.3m/min,
实际进给量为fzc=Vfc/ncz=475/(300*10)=0.16mm/z。
校验机床功率查《切削手册》Pcc=2.3kw,而机床所能提供功率为Pcm>Pcc。故校验合格。
最终确定ap1=1.8mm,ap2=0.2mmnc=475r/min,Vfc=475mm/s,
Vc=119.3m/min,fz=0.16mm/z。
计算基本工时
tm=2xL/n*fz=2x(100+60)/475x0.16=4.2min。
2.5.2工序四铣面E、F(见工艺卡片)
2.5.2.1.加工条件
工件材料:HT200,铸造。
工艺设计论文范文5
根据废水处理工艺流程,养鸭污水直接泵入细格栅,经细筛网分隔出鸭毛等污物后流入水解池进行大分子水解酸化降解,然后流入生物接触氧化池(设有微孔曝气装置),使小分子有机物进一步降解,达到排放标准,同时完成氨氮硝化,通过混合液回流,使硝态氮在水解池中还原成氮气,降低NH3-N含量,接触氧化池出水经斜板沉淀池泥水分离后清水自流入水生植物塘,经进一步吸附后泵回至养鸭池。
2工艺特点
2.1废水处理工艺的选择原则
在工艺选择和设计过程中充分考虑污水特点,并根据同类废水处理设计和实践经验,进行主体工艺选择时,注意重点考虑以下原则。一是采用生化处理原则。采用水解酸化结合生物接触氧化工艺流程,脱氮方式采用A/O泥膜法工艺。二是采用先进可靠的系统设备。降低系统维护工作量,保证系统长期正常运转。三是采用适宜的自动化控制系统。保证处理效果和减少劳动力需求。
2.2废水处理主体工艺的确定
2.2.1水解酸化工艺
水解池内培养厌氧菌,废水经厌氧菌降解,使大部分大分子有机物分解为小分子有机物。
2.2.2生物接触氧化工艺
好氧生物处理主要有活性污泥法和生物膜法。生物膜法工艺主要采用生物接触氧化法,生物接触氧化工艺占地面积较小,不会发生活性污泥法中易产生的污泥膨胀现象,运行较为稳定、简单。该工艺在生活废水处理中已经得到广泛应用,效果较好。处理工艺成熟可靠、具有较高的缓冲水质水量冲击能力,采用混合液回流进行硝化、反硝化使NH3-N达到排放标准。
3工艺优势
3.1社会效益
项目实施后,通过政府推介、客户指导、例行蛋鸭养殖技术人员培训等方式积极宣传本项目的成功经验,普及开展生态循环农业的必要性,促进养殖户、孵化场增产增收,加速蛋鸭养殖科学化、现代化。通过技术培训和宣传,极大提高了广大养殖户的环保意识,减少养殖业所带来的环境污染。
3.2经济效益
工艺设计论文范文6
核设施退役工艺检索系统采用的是基于客户端/服务器(C/S)的3层结构:第1层为数据层;第2层为应用层;第3层为表示层。系统的总体结构模型如图1所示。数据层主要完成数据的存储和管理,分析核设施退役过程中所需要的各个工艺数据,并将工艺数据库的数据划分为去污技术数据库、拆除技术数据库、拆除工具数据库及防护工具数据库。应用层根据退役工艺的不同及检索要求的需要将整个检索系统分为10个子系统:去污技术管理子系统、去污技术检索子系统、拆除技术管理子系统、拆除技术检索子系统、拆除工具管理子系统、拆除工具检索子系统、防护工具管理子系统、防护工具检索子系统、法律规程子系统及数据库管理子系统。表示层提供数据的导出,完成数据操作与各种工艺的显示。
2数据库与检索模块的设计与实现
2.1数据库开发工具
对于常用的数据库有3种,分别为SQLserver数据库、access数据库及Oracle数据库。3种数据库不尽相同,都有各自的优缺点。SQLserver数据库与access数据库相比,SQLserver的安全性、并发控制能力、数据挖掘、联机等方面都是access数据库无法比拟的。此外,access数据库只能建立小型数据库,不适合海量数据的存储,而SQLserver既可以建立大型数据库,也可以建立中性数据库。与Oracle数据库相比,虽然SQLserver的兼容性的诸多性能都不如Oracle,但是SQLserver的易用性要比Oracle强得多。通过对多种数据库进行比对分析,研究中最终选择SQLserver2005作为本系统的数据库软件,来建立相应的数据库。
2.2系统数据库的建立
数据是系统加工处理的对象,要设计好一个软件系统,需要仔细分析数据,弄清数据的内容和特点。经过大量的查阅、分析和汇总将退役工艺的数据分为4大类:去污技术信息、拆除技术信息、拆除工具信息及防护工具信息,在设计数据库时必须先确定数据库所需的“表”、每个“表”中数据的类型以及可以访问每个“表”的用户。在创建“表”及其对象之前,应先规划并确定以下特征:
1)“表”要包含的数据和数据类型;
2)“表”中的列数,每一列中数据的类型和长度(如果必要);
3)哪些列的数据允许空值;
4)是否要使用以及何处使用约束、默认设置和规则;
5)所需索引的类型,哪些列是主键。所设计的数据库名称是db_retirement(核设施退役去污拆除工艺信息数据库),该数据库包含4个数据库表,分别是:tb_decon(去污技术信息表)、tb_remove(拆除技术信息表)、tb_removetool(拆除工具信息表)、tb_protecttool(防护工具信息表)。每一个信息表都有他相应信息与属性。
2.3检索模块的建立
本系统利用传统数据库的like“%关键字%”的办法,对输入的条件通过后台的编程语言将关键字传递给数据库,来得到与关键字有关的数据信息。多个检索词之间可用and、or等连接词链接,来提高检索查询信息的准确定性。检索模块分为简单检索与高级检索,二者之间的区别在于检索条件的数目不同,高级检索的检索条件是通过and来进行连接。其中检索条件包括:工艺的名称、工艺的原理、机理、使用对象、使用条件和参考文献。选择相应的检索条件输入需要检索的关键字就可以得到满足要求的数据信息。
3系统的设计与实现
3.1系统功能的设计
本系统对去污技术、拆除技术、拆除工具以及防护工具设计了添加、管理、检索和显示这4个功能。此外,还可对法律规程进行浏览。系统框图如图3所示。系统框图中主要显示的是应用菜单中的主要功能。首先是可以对数据库中的各种技术工艺数据进行添加、修改、删除、检索和导出等基本操作,以实现整个系统对数据的检索功能以及管理功能;其次,实现对已收集法律规程进行浏览,并可以在浏览时对法律规程进行打印和标记等操作;最后,对已经建立好的数据库进行管理,以保证数据的完整性。管理者应该经常备份检索系统内的数据库。这样一旦发生故障,管理者可以利用恢复功能将备份好的数据库进行恢复,从而减少故障给使用者带来的损失。
3.2系统功能的实现
对于检索界面的设计与实现,是利用visualstudio2010中的WPF组件来开发的。本系统采用主窗口嵌套选项卡的结构,系统中去污技术、拆除技术、拆除工具和防护工具的添加、管理、检索和显示以及法律规程显示等都以选项卡的形式嵌入在主窗口内;数据备份和还原是从主窗口中独立出来的窗口。
3.2.1主系统的设计与实现
系统主窗口(见图4)由导航菜单、应用菜单以及选项卡显示区3部分组成。导航菜单以树形结构形式位于主窗口的左侧,详细地显示各个菜单项,包括去污技术、拆除技术、拆除工具、防护工具、法律规程以及数据管理等功能。由于去污技术的种类比较繁多,所以本研究在去污工艺汇总时将去污技术分为物理去污技术、化学去污技术、电化学去污技术以及其他去污技术。导航菜单使得各个功能选项的显示更直观,用户操作更快捷。应用菜单以下拉式结构形式位于主窗口的顶部,清晰地显示各个菜单项。在图片区中显示以选项卡的形式出现的“子窗口”。在导航菜单下的3个按钮分别执行:关闭所有选项卡并显示主窗口的图片;将导航菜单的所有节点展开和折叠。
3.2.2子系统的设计与实现
1)管理系统
本研究在查阅大量相关文献的基础上,总结出115项工艺技术,其中包括:51项去污技术、25项拆除技术、19项拆除工具、6项防护工具以及14项法律规程(详细信息见表2)。所以有必要建立一个管理窗体对以上工艺技术进行修改与删除操作。窗口整体分为3个部分:位于顶部的工具栏对信息进行操作,位于左侧的是可以显示和隐藏技术目录,位于右侧的是需要进行管理操作的技术信息。
2)检索系统与浏览系统
本系统的检索功能分为简单检索与高级检索2种,其中窗体如图6所示。窗口整体分为2个部分:位于上部的检索区以及位于下部的显示区。检索区分初级检索和高级检索两部分,但二者不能同时存在,可以相互切换。本系统的检索条件包含:名称、原理、机理、适用对象、使用条件以及参考文献。初级检索中选择检索条件,文本框中添加检索信息,检索后就可以将符合条件的技术及其信息显示在下方的表格中。与初级检索不同的是高级检索还可以对多个检索条件同时进行检索,使得检索出来的信息更加精准。由于显示区的空间有限,难以详细的浏览某一特定技术的信息,因此可以通过相应操作来调出显示详细技术信息的窗体。技术浏览窗口的出现是通过主窗口导航菜单的各种技术的点击和检索窗口显示区的查看来实现的。整个窗口分为2个部分:位于左侧的以网格形式显示的技术工具文本信息;位于右侧的显示技术的图片和视频信息。
3)数据管理系统
数据是整个检索系统的主体,只有当数据库中的数据完整性得以保证,检索系统的其他操作才有意义。但是在PC系统运行时,可能由于系统软件的错误、环境因素等多种原因而造成相应的故障或操作人员的错误操作,导致数据库数据的破损,给使用者带来不必要的损失。因此为整个系统开发一个数据管理功能变得非常必要,用以实现对数据库进行备份与还原。管理者在更新数据库数据后应该对其进行备份,这样一旦发生故障,管理者可以利用恢复功能将备份好的数据库进行恢复,从而避免故障或错误操作给使用者带来的损失。
4结束语
核设施退役去污拆除实施是一个种类繁多、工作量庞大的退役工程。其实施过程前技术和工具的选择对整个退役工作的经济性和效率产生重要影响。本研究在查阅大量相关文献的基础上,汇总和整理了核设施退役去污拆除工艺的大量信息,并根据这些整理后的信息建立了相应的退役工艺数据库,在此基础上,利用WPF组件开发核设施退役去污拆除工艺检索系统,并通过将二者相连接,最终实现了对核设施退役去污拆除工艺的有效检索。开发的核设施退役去污拆除工艺检索系统具有以下特点:
1)所包含的信息量比较多。系统中设计了六大功能模块,分别是添加模块、管理模块、检索模块、浏览模块、法律规程模块和数据管理模块。
2)视觉良好的界面设置、较多的检索方式。在系统中,针对不同技术工具,使用者可以通过多个条件进行检索。
3)整个检索系统结构清晰,操作简单,便于用户的使用。