前言:中文期刊网精心挑选了医学影像范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
医学影像范文1
2、主要包括X光成像仪器、CT(普通CT、螺旋CT)、正子扫描(PET)、超声(分B超、彩色多普勒超声、心脏彩超、三维彩超)、核磁共振成像(MRI)、心电图仪器、脑电图仪器等。
3、医学影像学可以作为一种医疗辅助手段用于诊断和治疗,也可以作为一种科研手段用于生命科学的研究中。
4、诊断主要包括透视、放射线片、CT、MRI、超声、数字减影、血管造影等。
医学影像范文2
进入实习后才发现,超声远没有想象中的容易, 在学校里学的理论知识主要是诊断,然而临床上所见的并非都是标准的声像图表现, 不同的患者即时是正常结构形态也是各有千秋, 开始的时候真的很困难,图像很多不认识,我的带教老师要求我先认识正常图像, 正常图像认清之后,再记异常声像图表现,只有这样看到了异常图像才能准确的诊断出来, 这就需要长期大量的接触病患,多看、多记,才能提高自己的诊断水平。
超声还有一个关键就是手法,深入的手法必须靠在临床上的实践才能不断进步, 手法的重要性在于有时即使你能诊断,若手法不到位打不到关键的理想的切面, 病变未能清晰显示,诊断就无从谈起了,这就在于超声的实时显像的特点, 尤其是心脏超声,婴幼儿的导管未闭,常常是很细微的, 需要轻微的转动探头,仔细观察,手法稍一不到位, 就会导致漏诊。 手法确实是一个艰难的学习过程,手力、臂力, 都要用的,特别遇到脂肪层较厚的患者,有时需要双手加压才能获得比较理想的图像, 不然根本诊断不了,刚开始操作时只压个几分钟, 手就开始使不上劲发起抖来,我想我也许应该像针灸推拿医师一样, 练手力、指力等等的肢体力量练习,我以后一定加强手法练习。
超声科主任赵老师说过:“手法这个东西要活,不能硬搬书本,比如说观察胎儿唇部,书上肯能会说,先找到胎儿的颏下,往上打唇部,其实当你颏下不好打而眼睛鼻子好打的时候可以选择往下找打唇部,反而更容易一些。”由此看出手法需要一定的领悟能力, 多做,不断总结,才能提高手法技能。 刚开始实习确实心比较急,理论在实践的过程中, 因为差距而不断遇到障碍,但是只要坚持,这样一段过程总会成为过去, 渐渐的熟悉明了:看到肾盂积液下一步开始找结石; 胆囊内的高回声,让患者翻身,动则为结石,不移动则为息肉; 看到肝脏的声像图出现声晕征即为肝占位性病变, 看到肠管明显扩张考虑肠梗阻等理论和实践渐渐联系起来了, 我也逐渐进步了。
我记得赵老师给我讲过一个50几岁的肠套叠患者, 由于很久才下诊断,因为从未见过除小孩之外的肠套叠患者, 但是超声就是这样既然看到了肠套叠的声像图就没什么好怀疑的了, 要敢于诊断。 医学上的无限可能,我们要敢于相信自己的所见: 先天性的个别动脉的狭窄,先天性的单叶肾患者等。 那次就遇到一个患者,始终没能看到胆囊回声, 如果萎缩的话也会看到胆囊窝回声,赵老师坚定的诊断先天性无胆囊, 外科手术果然证实了这一点。 赵老师说诊断的依据就是胆囊、胆总管与毗邻结构的解剖关系。 在老师们的身上我深刻的体会到了自信而不能自负的精神, 也由此可知解剖学对超声的重要性。 超声诊断医师也需要有丰富的临床知识,我们也需要看、问病人的病史, 这样心里有谱,一定的临床经验反过来有助于自己超声诊断。 平时要注意多与临床沟通来逐渐提高诊断水平。 医院定期安排中国医科大学教授讲课,记得那次附属一院的王教授讲胆囊, 小小的一个胆囊学问可真不少,我印象最深的就是慢性胆囊炎脂餐试验后胆囊充盈, 而胆囊腺肌症脂餐后胆囊强烈收缩;还有胆囊颈部的脂肪组织并非局限性增厚; 胆囊疾病并非局限胆囊压痛等等,让我受益匪浅。
医学影像范文3
“获得国家科技进步奖,我很高兴。”谈到获奖当时的感受,卢光明脸上洋溢起一丝自豪:“国家科技进步奖是对我国已取得的科学技术成就的肯定,能获得国家科技进步奖是对一个科技工作者及其团队工作的最佳认同和最大的褒奖。”
卢光明1982年本科毕业于湖南医学院(现为中南大学湘雅医学院),后在中国医学科学院肿瘤医院工作,1985年考取中国协和医科大学医学影像学硕士研究生,1988年起在南京总医院医学影像科工作。
谈到选择医学影像作为自己主攻方向的理由,卢光明说是因为组织分配。当时相关人才缺乏,不少人害怕X射线对健康的影响。但卢光明将组织分配变成了个人意愿,他说:“做好这份工作很有挑战性,对病人、对临床医师都有非常大的帮助。”1983年他开始接触CT,并参加了我国磁共振成像设备的引进与研发研讨会,开始逐渐爱上这个有许多新奇技术、并且具有重要意义的专业。
十六年磨一剑
1997年,南京总医院医学影像科引进电子束CT(超高速CT),该技术可以进行冠状动脉钙化积分扫描以及一些血管的三维重建,但当时冠状动脉的精细解剖图像还难以实现。
为了研究、解决CT血管成像的诸多难题,卢光明团队决定从技术难度、诊断精确性及辐射安全性等三大方面进行立项。同时与北京协和医院、北京安贞医院联合开展研究。
“经过长达16年的艰苦努力,终于取得了一些成绩。”接受采访时,对于十六年间经历的困难和挫折,卢光明说:“遇到困难、矛盾和挫折是取得科研成果的必然过程。”反复提到的是对同事、同行的真挚感谢。他说:“感谢我的合作伙伴和科室诸位同志的默默奉献和鼎力支持。”
“心脑血管病关键CT技术的应用与创新”课题,在重大心血管病关键CT技术上,取得了三大主要创新性成果:
一是研发应用心血管病防治关口前移的CT关键技术,构建了CT冠状动脉成像(CTCA)规范体系。卢光明团队研发了期相优选及心电编辑等多种技术,使CTCA诊断冠状动脉狭窄的阴性预测值达99%,从而提高房颤患者可评价血管节段比率至96.8%,扩大了适应证,为冠心病筛查提供了技术支撑;通过系列研究(包括48533例CTCA),总结出了中国人冠状动脉先天异常分布规律,为早期诊治提供依据;以常规血管造影为参照,应用4D-CT技术将心肌桥检测敏感性从5.7%提高到30.2%;以血管内超声为参照,应用CT定性诊断冠状动脉斑块成分的敏感性达97.4%,为CT评估斑块易损性奠定了基础,该项研究结果被纳入美国和加拿大3份专业指南。
二是研发应用双能量CT技术,提高小病变检出敏感性,实现心脑血管病精准诊断。从实验到临床,研究团队对双能量CT技术进行系列创新研究。通过该技术提供的解剖与功能信息,实现了冠状动脉管腔狭窄量化和心肌灌注一体化评估,诊断心肌缺血敏感性和阴性预测值高达100%。此外还获得肺动脉解剖与肺碘图(肺灌注)同步信息,诊断外周肺栓塞的敏感性比常规CTA提高了22%(从67%提高到89%)。同时改进了双能量和数字减影等CT新技术,将颅内小动脉瘤(≤3mm)检出敏感性从61%提高到91%,证实了CTA是颅内动脉瘤可靠的首选检查方法,研究结果以封面于Radiology、AJR,并被纳入美国《动脉瘤性蛛网膜下腔出血诊治指南》。
三是大幅度降低了CT检查的辐射剂量,提高了CT检查的安全性。团队倡导低剂量CTCA理念,提出根据体质量指数制定CTCA个性化扫描方案。通过低管电压的综合应用,以及前瞻性心电门控、大螺距等降低剂量技术,使CTCA 辐射剂量从平均15.4mSv降至平均0.94mSv,降低了15倍。该项研究结果纳入《2010年亚洲心血管影像学会心脏CT适应证标准》和我国《心脏冠状动脉多排CT临床应用专家共识》。
敢为人先的科研路
在31年的科研路上,卢光明一直敢为人先。他是国内最早应用MRI的医师之一,1986年,他就开始尝试与胸外科和病理科联合,率先在国内将MRI应用于肺癌诊断与术前分期研究, 并于1988年获中华医学会和国家卫生部第三次全国中青年医学学术交流会二等奖。
卢光明的研究领域主要集中在以下三个方面:心脑血管病的影像诊断与技术创新研究;肿瘤的分子影像研究、肿瘤分型、分期研究;重大脑疾病的磁共振功能成像研究。
接触MRI之后,卢光明和同事们开展MRI动态增强扫描技术,大幅度提高了垂体微腺瘤的诊断准确率;通过将功能MRI研究癫痫与创伤后应激障碍,在国际上首次发现癫痫认知功能受损与静息网络的功能变化有关。除此之外,卢光明团队还在国内率先开展铁蛋白报告基因的研究;采用多模态分子成像技术研究肿瘤血管新生。其研究成果――癫痫的功能磁共振成像、心血管影像及肿瘤的分子影像研究,在国内外产生较大影响,卢光明也因此成为我国目前MRI临床应用领域的学科带头人。
“我特别注重医工结合、多学科交叉以及多中心合作,开展结构、功能和分子影像相结合的研究。”在接受采访时,卢光明向记者强调说。
据统计,卢光明共在国内外近300篇,其中以第一或通讯作者发表的SCI论文80余篇,单篇影响因子最高53.29,5分以上者18篇。自2008年以来,以第一完成人获国家科技进步二等奖1项,江苏省科技进步一等奖1项,中华医学科技奖一等奖1项,教育部科技进步一等奖1项。
目前以首席科学家负责国家“973”项目1项,负责国家自然科学基金重大国际合作项目和中国人民“十二五”医学科学技术重点项目各1项;曾承担包括国家自然科学基金重点项目在内的多项国家、军队及省级科研课题。
挑战永不停歇
临床之外,卢光明也带学生。在学生眼中,工作中的卢教授严肃认真,而对待学生,他事必躬亲,像是慈爱的父亲。
“我非常重视人才培养与团队建设,瞄准国际前沿研究方向,与国内外大学和研究机构联合开展科学研究。”在学生培养上,他注重发挥学生的特长,因材施教,因地制宜,制定个性化的培养方案。
“要给学生公平公正的发展机会,给他们施展自己才华的舞台。”得益于这样的育人理念,卢光明科室涌现出了一批优秀的、有潜力的后备科研型和临床医学人才。谈到青年力量,卢光明难掩自豪之色,他说:“期待他们在未来的5~10年内成为学科发展的主要力量。”
近些年来,国内医学影像学发展很快,机器设备基本能够实现与国外同步。更加让人欣喜的是,中国医学影像工作者开始在国际舞台上崭露头角,一些居于国际先进水平的优秀科研成果正逐步在国际著名期刊上发表,代表了中国医学影像学事业的进步。
“尽管有这些可喜的成绩,我们仍应清醒地意识到我们与国际同行的差距,开展高质量的大规模、多中心前瞻性研究是必要的,也是医学影像学界面临的一个大课题。原始创新的技术和研究还有待加强。”面对成绩,卢光明依然保持着清醒的头脑。
医学影像范文4
关键词:医学影像;后处理技术;方法;流程
针对医学影像,利用全网服务器向患者提供医学影像后处理技术,有效解决了大规模数据网络传递等重难点技术问题,为临床诊断和治疗提供了便捷。医学影像后处理技术在临床会诊中心、手术室、内外科中广泛应用,使得医学影像技术更好地服务于诊疗工作,进一步提升了医疗技术水平。
1 医学影像的简介
医学影像技术是当代医学主要的构成部分,而且是当前医学技术中发展最迅速的技术之一。其主要由医学影像分析处理技术、医学成像显示技术和医学图像压缩传输技术构 成[1]。传统医学成像技术是以现代电子计算机技术和物理学技术为理论指导,以成像机理将其划分为X射线计算机断层成像、X射线成像、放射性核素、超声成像、磁共振成像、红外线成像及放射性核素等。随着计算机技术的日益成熟,利用三息摄影为基础的三维成像技术被广泛应用,在很大程度上提高了医学诊断技术的准确度和清晰度。
2 医学影像后处理技术处理方法及流程介绍
在临床疾病诊断过程中,不管是采用功能影像技术还是结构影像技术,随着计算机技术的发展、网络信息技术的日益成熟,医学影像后处理技术在临床医学诊断中发挥着无法替代的作用。医学影像后怎样开展后处理,这是医学科研人员和临床工作人员重点思考的课题之一。
2.1医学影像后处理技术处理方法 医学影像后处理技术是在影像学检查结束后,为了对患者病情进行更加全面、准确的分析,应该对影像进行后续处理与加工的技术。后处理技术主要是全面分析、识别、分割、分类及解释医学影像技术呈现出的结果。该技术的额目的在于更好地分析患者病情,为临床诊断和治疗提供可靠、准确的影像识别。
医学影像后续处理方法主要分为两类,①直接处理技术,这一技术在患者影像学检查完成后,在影像设备上采用软件技术直接进行处理,例如在MRI和CT设备上直接生成血管成像等。但是这一处理方法的缺点在于无法改变影像,只有检查人员基于自身多年处理经验对病理学进行处理。②脱机应用工作站处理,该处理方法是在工作站或把胶片通过扫描仪对已经生成的医学影像进行数字化处理后,再对其进行影像后处理。例如多维影像(以MRI/PET/CT,SPECT)进行融合,同时采用专门软件自动识别、分割影像图。这种影像后处理方法的优势在于处理后的结果对于医护人员而言可靠性、准确性较高。
2.2医学影像后处理技术处理 对于医学影像技术而言,其同数字图像处理技术密切相关,尤其是在医学图像分析处理和图像压缩传递环节中,这一关系表现得更加密切。医学图像分析处理的流程示意图,见图1。
图1 医学图像分析处理的基本流程
3 医学影像后处理技术具体介绍
善于利用计算机软件处理医学影像,其目的在于为临床医学提供更加精确、可靠的判断依据,从而才能更加深入分析患者病情。按照医学影像特点和后处理的目的,医学影像的常见方法包括影像增强、影像分割、影像配准与融合、影像可视化、影像数据压缩等。
3.1医学影像增强 通过相关设备获取的医学影像主要分为CT片、X线片、MRI、B超等,然而这些医学影像成像普遍都是灰度图像。对于临床专业技能强、经验丰富的专家而言,便能够从图像中总结分析出患者准确的病情情况。然而,由于成像设备及其他因素的影响,在一定程度上造成医学影像质量的降低;即便是获得了高品质医学影像资料,但是对于临床技能和经验不足的医护人员而言,便难以从中分析出患者具体病情。所以,应该利用t学影像增强技术。医学影像增强主要是开展信噪比增强操作,对感兴趣对象区域或边缘予以突出,从而为患者病情分析和相关计算提供依据。
3.2医学影像分割 在医学临床实践和研究过程中,为了获取患者组织的功能或病理相关信息,一般需要准确测量人体某一种器官和组织的截面面积、边界、形状及体积等方面。医学影像分割操作过程中需要考虑到不同人体解剖结构不同,且采用设备获得的医学影像具有不均匀和模糊特征。基于此,采取分割技术重点突出医学影像中能够体现出患者病理的重要信息,从而有助于医护人员按照医学影像分析患者病理状况。
3.3医学影像配准与融合 医学影像成像模式较多,不同成像模式的影响包含了不同的病理、生理、解剖学或功能等方面的信息[2]。为了增强诊断可行性和效率,采用计算机图像处理方法对包括不同信息的医学影像进行人工综合方法,这就是医学影像配准和融合。
将具有不同信息来源的影像通过配准后融合在一起,便形成了多模式图像,便可以获得更多的信息,从而为医护人员在临床诊疗、治疗方案设计、外科手术和疗效评价方面更加准确、全面。例如,把密度分辨率最高、显示钙化和骨质结构最佳的CT同软组织对比分辨率最高的MRI,或者把解剖结构显示清晰的CT或MRI与显示功能和代谢改变的SPECT或PET影像进行融合,形成一种新的图像,增加了更多有价值的诊断信息,更加准确定位了病灶,或者更加直观地显示了形态结构,使得医务人员能够从代谢功能和心态学两方面全面判断患者的病灶。
3.4医学影像可视化及压缩 对于医学影像处理技术而言,医学影像可视化是一种价值较大的模块[3]。医学影像可视化的过程便是把CT、MRI等数字化成像技术获得人体信息在计算机上以三维模式呈现出来,利用三维模拟表现出传统手段难以获取的结构信息是该技术的最终目的。医学影像可视化是一种有效的辅助方法,能够有效弥补影像成像设备在成像方面的缺陷,在辅助医务人员诊断、引导治疗和手术仿真等方面发挥着重大价值。
当前,多排螺旋CT的广泛应用,CT/MRI在临床应用的范围越来越广,尤其是在数据采集与传输技术在三维世界中实现可视化的影像成为可能。为了适应CT/MRI技术的改革浪潮,作为临床医生和放射科医务人员必须深入了解医学影像后处理技术,并灵活运用到临床实践中。医学影像后处理技术是医学影像有效的补充,将其同传统影像诊断技术有机结合起来,进一步提高医疗技术水平。
参考文献:
[1]宁春玉.医学影像后处理技术的研究及其在X线影像优化中的应用[D].吉林大学,2011.
医学影像范文5
1.1影像组学的处理流程
影像组学的处理流程可分为5部分:①图像获取;②确定感兴趣区;③图像分割,采用人工方法或者计算机辅助;④特征的提取和量化;⑤数据分析,根据数据建立分类模型进行预测。
1.2核医学中的影像组学发展
影像组学在本世纪初开始逐渐运用于核医学领域,主要对正电子发射计算机断层扫描仪(positronemissioncomputedtomography,PET)图像中肿瘤内异质性进行研究[5-6]。其动机是在临床实践或一些研究中,最大标准化摄取值(standardizeduptakevalue,SUVmax)、平均标准摄取值(SUVmean)或代谢活跃的肿瘤体积(metabolicallyactivetumorvolume,MATV)等指标不能完全描述肿瘤的性质[7]。其中一些特征,如形状和摄取异质性,可能反映不同肿瘤类型与其侵袭性、转移潜能、对特定治疗的反应程度以及预后有关[8-9]。与常规指标相比,量化这些特征可提供更高的临床价值,尤其是在分层及识别治疗反应较差的患者中。既往分析认为,CT或MRI图像比PET图像更具有优越性,这是因为PET图像的信噪比和空间分辨率较低,空间采样也较差。此外,为利于临床医生视觉评估,重建的PET图像常被平滑,图像中可用信息被进一步减少。随着PET-CT系统、飞行时间(timeofflight,TOF)技术的发展,对目前临床金标准迭代算法的一些修正,过去的10年中PET图像的保真度及定量精确度均有大幅改善[10]。
2影像组学在核医学中的临床应用
2.118F-FDGPET-CT影像特征分析
目前,影像组学在核医学领域研究中大多数研究对象是18F-FDGPET-CT中的PET影像部分。要发挥影像组学的临床价值需要大量的患者队列和严格的统计分析方法,而部分研究只纳入了20~70例患者。Soussan等[11]对54例局部晚期乳腺癌患者的初始18F-FDGPET-CT图像进行回顾性研究,认为对于三阴性乳腺癌,结合高灰度游程(high-gray-levelrunemphasis,HGRE)与SUVmax可以获得更高的受试者操作特征(receiveroperatingcharacteristic,ROC)曲线下面积(areaundercurve,AUC),AUC=0.83,而单独运用SUVmax的AUC=0.77。Yip等[12]对54例食管癌患者放化疗前后的PET-CT图像进行研究,认为随时间变化的熵和游程长度矩阵(run-lengthmatrix,RLM),可以比标准化摄取值(standardizeduptakevalue,SUV)更好的评估病理反应和患者生存的联系。Bundschuh等[13]对27例直肠癌患者行新辅助化疗前、开始后2周及化疗完成后4周分别行18F-FDGPET-CT检查,并对图像进行分析,认为变异系数(coefficientofvariation,COV)对于治疗早期的灵敏度68%、特异度88%以及治疗后灵敏度79%、特异度88%的组织病理学反应评估有统计学差异。Mu等[14]对42例不同分期宫颈癌患者的18F-FDGPET-CT图像进行研究,通过自动分类的支持向量机(supportvectormachine,SVM)分类器,得出运行率(runpercentage,RP)是最有判别力的指标,精确度达到88.1%,AUC=0.88,认为肿瘤异质性与肿瘤分期有很好的相关性。近年来,有研究纳入较多患者(80~200例,甚至200例以上)18F-FDGPET-CT图像进行研究。Cheng等[15]对88例T3和(或)T4分期的口咽鳞状细胞癌患者肿瘤区域异质性进行研究,认为区域大小不均匀性(zone-sizenonuniformity,ZSNU)是进展的T分期口腔鳞状细胞癌患者预后的独立预测因子,并且可以改善预后分层。Xu等[16]应用纹理分析和模式分类对103例骨与软组织病变患者的18F-FDGPET-CT图像进行研究,认为该方法可提高对病变良恶性的鉴别能力,尤其是采用PET(熵和粗度)和CT(熵和相关性)纹理参数结合的时候效能最高,灵敏度为86.44%,特异度为77.27%,准确率为82.52%。Wu等[17]对101例早期非小细胞肺癌患者进行研究,得出最佳的预测模型包括两个图像特征,即瘤内异质性SUVmax,在独立验证队列中,该模型的一致性指数为0.71,高于SUVmax(0.67)和肿瘤体积指数(0.64),当结合病变组织学类型后预后能力进一步提高,有助于医生为早期非小细胞肺癌(non-smallcelllungcancer,NSCLC)患者量身定制合适的治疗方案。Gao等[18]研究了132例肺癌患者,认为基于SVM的算法对于淋巴结转移诊断具有潜力,由CT、PET和PET-CT构建的模型曲线下面积分别为0.689、0.579和0.685;而淋巴结最大的短径,SUVmax的曲线下面积分别为0.684和0.652。另有学者对于116例Ⅰ~Ⅲ期NSCLC患者、195例Ⅲ期NSCLC患者及201例局部晚期NSCLC癌患者的PET图像进行了研究,认为PET熵和CT区域百分比与临床分期和功能容积值的互补性最高,共生矩阵中的疾病坚固度、原发肿瘤的能量与患者预后有关,SUVmean与总生存率的预测有关[19-21]。Hyun等[22]对137例胰腺导管腺癌患者进行了研究,得出结论:PET纹理分析得出的瘤内异质性信息是患者生存的独立预测因子(相对于肿瘤分期及血清CA19-9水平)。此外,一阶熵作为衡量肿瘤代谢异质性的指标,是一种比传统PET参数更好的定量显像生物标志物。Lartizien等[23]对188例淋巴瘤患者的PET图像进行了分析,提出了一种基于不同滤波方法相结合的原始特征提取方法,对高代谢区域淋巴瘤组织及炎性或生理性摄取的鉴别有着很好的性能。这些研究中部分研究使用了更可靠的统计分析方法,其中有一些使用机器学习方法,如神经网络[24],支持向量机[16,18,23]或最小绝对收缩和选择算子(leastabsoluteshrinkageandselectionoperator,LASSO)[17,21]。有学者对于PET和PET-CT组件中低剂量CT图像衍生特征进行了研究,Win等[25]发现肿瘤分期和PET-CT组件中CT衍生的纹理异质性归一化熵、中和(或)粗尺度是NSCLC患者生存的最佳预测因子。要注意PET-CT组件的低剂量CT获得的图像与高分辨率CT或诊断CT图像是有差异的,在分析时要加以区别。部分研究认为,结合PET-CT图像中PET及CT的图像特征,可以得出敏感性、特异性及准确性更高的结果[16,18-19,23]。
2.2非18F-FDGPET-CT、PET-MR及免疫组化指标研究
Pyka等[26]对113例高级别胶质瘤患者治疗前的18F-FETPET-CT图像进行研究,认为治疗前18F-FETPET-CT图像中的吸收异质性对肿瘤进展和患者生存率的预测是有价值的,强调肿瘤内异质性在高级别胶质细胞瘤生物学中的重要性,可能有助于将来个体化治疗计划的制定。Vallieres等[27]的研究提取18F-FDG-PET和MRI的影像信息联合预测了四肢软组织肉瘤的肺转移,认为融合的18F-FDGPET-MRI图像可以提供更好的预测信息。Antunes等[28]对两例肾细胞癌患者进行了18F-氟胸苷(fluorothymidine,FLT)PET-MRI检查(分别在治疗前及治疗中期),认为18F-FLTPET-MRI的影像组学特征,即SUV值、表观弥散系数(apparentdiffusioncoefficient,ADC)值和T2加权差平均值,可以评估患者对细胞抑制剂治疗的早期结构和功能反应,但这一结论的可靠性是有限的,因为研究只纳入了两名患者。同时,对PET派生特征和其他相关信息的组合加以考虑,如最近一项研究中,Wang等[29]对113例晚期口咽鳞状细胞癌患者治疗前18F-FDGPET-CT图像和关键的免疫组化指标表皮生长因子受体(epidermalgrowthfactorreceptor,EGFR)和p16中提取的区域大小不均匀性信息进行分析,发现相关信息可以提高患者的预后分层。
医学影像范文6
1B超
什么是超声波?人耳能听到的声音频率为20 Hz~20 kHz,低于20Hz的声波为次声波,高于20 kHz的声波为超声波.B超成像的基本原理是:向人体发射一组超声波,按一定的方向进行扫描.根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质.经过电子电路和计算机的处理, 形成B超图像.B超的关键部件是超声探头,其内部有一组超声换能器,是由一组具有压电效应的特殊晶体制成.这种压电晶体的特殊性质是在晶体特定方向上加上电压,晶体会发生形变,反过来当晶体发生形变时,对应方向上就会产生电压,实现了电信号与超声波的转换.一般的B超工作过程为: 当探头获得激励脉冲后发射超声波,经过一段时间延迟后再由探头接受反射回的回声信号,探头接收回来的回声信号经过滤波,对数放大等信号处理.然后由DSC电路进行数字变换形成数字信号,在CPU控制下进一步进行图像处理, 再同图表形成电路和测量电路一起合成视频信号送给显示器形成我们所熟悉的B超图像,也称二维黑白超声图像.
什么是彩色B超,即“彩超”.其实彩超并不是看到了人体组织的真正的颜色,而是在黑白B超图像基础上加上以多普勒效应原理为基础的伪彩而形成的.那么何谓多普勒效应呢,当我们站在火车站台上听有远处开来的火车汽笛声会比远离我们的火车汽笛声音调要高,也就是说对于静止的观测者来说,向着观测者运动物体发出的声波频率会升高,相反频率会降低,这就是多普勒效应.现代医用超声就是利用了这一效应,当超声波碰到流向远离探头液体时回声频率会降低,流向探头的液体会使探头接收的回声信号频率升高.利用计算机伪彩技术加以描述,使我们能判定超声图像中流动液体的方向及流速的大小和性质,并将此叠加在二维黑白超声图像上,形成了我们今天见到的彩超图像.
B超操作简单,对人体无任何伤害和痛苦,可以反复进行检查.但B超影像清晰度不如CT和MRI,对含气脏器和骨骼疾病的诊断等方面存在局限性.
2CT
CT是“计算机X线断层摄影机”或“计算机X线断层摄影术”的英文简称,是从1895年伦琴发现X线以来在X线诊断方面的最大突破,是近代飞速发展的电子计算机控制技术和X线检查摄影技术相结合的产物.CT由英国物理学家在1972年研制成功,先用于颅脑疾病诊断,后于1976年又扩大到全身检查,是X线在放射学中的一大革命.我国也在70年代末引进了这一新技术,在短短的30年里,CT检查在全国范围内迅速地层开,成为医学诊断中不可缺少的设备.
CT是用X线束对人体的某一部分按一定厚度的层面进行扫描,当X线射向人体组织时,部分射线被组织吸收,部分射线穿过人体被检测器官接收,产生信号.因为人体各种组织的疏密程度不同,X线的穿透能力不同,所以检测器接收到的射线就有了差异.将所接收的这种有差异的射线信号,转变为数字信息后由计算机进行处理,输出到显示的荧光屏上显示出图像,这种图像被称为横断面图像.CT的特点是操作简便,对病人来说无痛苦,其密度、分辨率高,可以观察到人体内非常小的病变,直接显示X线平片无法显示的器官和病变,它在发现病变、确定病变的相对空间位置、大小、数目方面非常敏感而可靠,具有特殊的价值.CT的弱点在于遇到体内蠕动的脏器可以发生伪影,使病变显示不清,因此,CT不适于检查胃肠道炎症、溃疡和肿瘤.
3ECT
ECT即发射型计算机断层,也称放射核素发射型计算机断层.ECT是在人体内注射放射核素,再在体外从不同角度采集人体放射的γ射线,然后运用电子计算机对信息进行计算和处理重建图像,并显示三维影像.当探头固定时可得到γ射线闪烁照相图像;当探头转动时,可得到象CT断层一样的三维断层图像.ECT目前有两类:一类是以正电子发射核素为探测对象的正电子发射型计算机断层(PECT),由于必须配备昂贵的加速器而使其推广受到限制.另一类是以γ光子发射核素为探测对象的单光子发射型计算机断层(SPECT),从70年代应用于临床以来,在国内外应用日趋广泛,并取得了很大进展.其主要特点是,不但可以分层显示脏器的形态图像,而且可以动态观察脏器的功能代谢.
4MRI