重金属污染范例6篇

前言:中文期刊网精心挑选了重金属污染范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

重金属污染范文1

新华刚2010年10月25日《河南6城市堆放52万吨铬渣数十年,致持久污染》一文指出,河南6处铬渣堆共计52万吨,其中最小的在新乡,2.84万吨,最大的在义马市,32.5万吨,义马的铬渣量占全省的67%。铬渣中含有致癌物铬酸钙和剧毒物六价铬,这些铬渣堆大多没有防雨、防渗措施,经过几十年的雨水冲淋、渗透,正一天天地成为持久损害地下水和农田的污染扩散源。

新华网2011年11月11日的文章《调查组专家解读蓬泶19-3油田溢油事故原因凋查结论》指出,蓬莱19-3油田溢油事故联合调查组在2011年11月11日公布的事故调查结果显示:康菲石油中国有限公司在蓬莱19-3油田生产作业过程中没有执行相关方案,事故定性为“重大海洋溢油污染责任事故”。

中广网2010年7月14日题为《紫命矿业渗漏污染,福建汀江渔民生计受损》的文章说,2010年7月3日,紫金矿业集团发生污水渗漏事故。福建汀江流域数百万斤鱼类死亡。当地政府虽然以平均每斤6块的价格收购渔民所有的鱼,基本能补偿渔民在鱼上的损失,但渔民的投资并没有得到补偿,同时汀江今后将禁止养鱼,不少断了生计的渔民对未来感到茫然。

央视《新闻1+1》2011年8月15日的节目《迷雾重重的“铬污染”》,报道了云南曲靖陆良化工实业有限公司5000多吨工业废料铬渣非法倾倒导致污染的事件。住在附近的兴隆村村民王建有说,村内每年至少有6至7人死于癌症,自己也是肺癌晚期,兴隆村已经成为远近闻名的“死亡村”。村民怀疑这和附近的化工厂污染有关。

重金属污染困境

光明网2012年2月8日的文章《隐藏在广西龙江镉污染事件之下的原罪》指出,地处广西西北部的河池市被誉为中国有色金属之乡,境内锡、锑、锌、铟、铅等矿产储量丰富,已探明有色金属40余种,储量价值700亿美元。这些矿藏大多伴生有砷、镉等重金属矿物。目前。河池有规模以上采选企业41家,规模以上冶炼加工企业31家,在全市亿元产值以上的42家企业中,有色金属企业就占了19家。有色金属带来大笔财富的同时,也带来了严峻的环境问题,有色金属的开采及冶炼对当地环境造成了包括土壤、水源在内不同程度的污染。

龙江镉污染事件在当地并非首发。2001年至今。河池已发生至少3起特大砷污染事故,其中2008年10月3日发生在河池市郊区的砷污染水源造成附近村民450人尿砷超标。此次镉污染事件中被怀疑为污染源企业的金河矿业股份有限公司曾在官方2009年涉砷企业整治行动中收到过整改通知。

2006年河池市未完成减排任务,2008年被国家“区域限批”,暂停新项目审批。不过作为广西有色金属工业重要基地,有色金属采选冶炼及加工业仍然是河池市工业经济和财税的重要增长点。

新华网2011年10月16日的文章《重金属污染危害“升级”》说,从频频发生的“血铅事件”到震惊全国的“镉米风波”,我国重金属污染警钟频频敲响。据了解,在湖南、辽宁、内蒙古等省区,我国重金属污染正由大气、水体向土壤污染转移,土壤重金属污染已进入到集中多发期;同时,重金属污染出现了工业向农业转移、城区向农村转移、地表向地下转移、上游向下游转移,从水土污染到食品链转移。由逐步积累的污染正在进入突发性、连锁性、区域性的爆发阶段。

《人民日报・海外版》2011年6月4日发表文章《重金属污染事件频发,中国环境形势依然严峻》称,中国目前重金属污染形势比较严峻。从环保部当天的《2010年中国环境状况公报》看,一是地表水污染较重。虽然全国地表水国控断面高锰酸盐指数年均浓度为4.9毫克/升,比2009年下降3.9%,比2005年下降31.9%,但是全国地表水污染依然较重。长江、黄河、珠江、松花江、淮河、海河和辽河等七大水系总体为轻度污染。其中,长江、珠江总体水质良好,松花江、淮河为轻度污染,黄河、辽河为中度污染,海河为重度污染。

二是农村环境相当严峻。中国环保方面城乡差距非常明显,农村的环境基础设施建设严重滞后,环境管理的基础也很薄弱,法规标准很不完善,监管能力严重不足。农村环保欠账过多,据第一次全国污染源普查,农村的污染排放已经占到了全国的“半壁江山”,其中COD(化学需氧量)占到了43%,总氮占到了57%,总磷占到了67%。

新华网2011年2月23日的文章《中国农地污染日益严重,官员看报告后称无力治理》指出,国土资源部称,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。

2009年中国食品安全高层论坛报告上的数据显示,我国1/6的耕地受到重金属污染,重金属污染土壤面积至少有2000万公顷。中国农业大学食品工程学院院长罗云波称。食品中药物残留和重金属对我国食品安全的潜在影响巨大。其中,铅和镉污染问题突出,有36%的膳食铅摄入量超过安全限量,特别是皮蛋的含量比较高。国家疾控中心曾对1000余名0~6岁儿童铅中毒情况进行免费筛查、监测,结果显示,23.57%的儿童血铅水平超标。

重金属污染不仅仅威胁着企业周边的人群,这个“隐形杀手”还在不知不觉中侵蚀着我们的躯体。我们和我们的后代,正在承受牺牲环境、盲目发展经济带来的严重后果,而且由于重金属污染已经渗透到生活中的每一个环节,我们几乎无处可去、无路可逃。

重金属污染频现之因

《经济参考报》2011年10月14日发表的文章《土壤重金属污染加剧处集中多发期,地方政府片面追求GDP之祸》说到,我国重金属污染的主要来源是化工和矿山。上世纪80年代中期以来,国内采矿业的粗放式发展方式,加上科学技术落后、环保投入不足与意识不强、资源盲目开发,滥挖滥采使得云南、广西、湖南、四川、贵州等重金属主产区的土地被日渐污染。

而在东部沿海经济发达地区,重金属污染则来自于工厂。国内30多家环保组织联合的《2010IT品牌供应链重金属污染调研》称,IT企业重金属污染居首。一项由原国家环保总局进行的土壤调查结果显示,广东省珠江三角洲近40%的农田菜地土壤遭重金属污染,且其中10%属严重超标。

农业、养殖业也成了重金属污染源。根据《湖南省洞庭湖区生态地球化学调查评估报告》中对宁乡、益阳等6个研究区的镉输入土壤的途径分析:来自灌溉水的镉输入约为每亩0.013克,而来自磷肥的为每亩0.11克,镉输入后者比前者超过近10倍。

在一些小规模的养殖场,人们常常在猪、鸡等农畜的饲料中添加含砷制剂,因为这种重金属可以杀死猪体内的寄生虫,促进牲畜生长。这些牲畜的粪便又是农民乐于使用的有机肥料。当含砷的肥料被堆积入田时,肥料内的重金属就会悄无声息地潜入地下。并随着耕种传递到农作物中。人们吃掉了这些重金属污染的饲料喂养的猪,又吃掉了被重金属污染的土壤中种植出来的蔬菜和粮食,有些人甚至还喝着被重金属污染的

地下水,人体就这样被二度污染、甚至三度污染。

此外,一些地方政府错误的“发展观”与“政绩观”阻碍着重金属污染防治。环境专家认为,与资金、技术上面临的难题相比,防治土壤重金属污染的关键更在于遏制地方政府片面追求GDP增长的冲动。湖南省环保厅2010年6月通报显示,自2009年9月起。湖南省和衡阳市两级环保部门对耒阳市先后下发8次整改令。要求耒阳市对所属遥田镇多家存在严重重金属污染隐患的企业实施淘汰关闭,但8次整改均没有得到有效执行。

《检察日报》2012年2月9日发表题为《广西镉污染:需要检讨的还有环境法》的文章。文章指出,这起镉污染事件的发生,进一步暴露出我国目前已有的环境污染灾害风险防范制度的空白以及缺陷。仅以我国环境保护领域最具综合性与基本性的《环境保护法》为例,自1989年修订后,《环境保护法》已历经20余年未被修订。随着经济发展、环境形势的变化,这部法律的缺陷也日益显现,立法缺乏广度和高度,没有充分体现可持续发展的环境保护思想和与时俱进的内容。比如对于公民参与,法律只原则性规定了公众享有检举权、控告权等,而环境知情权、环境请求权、公众监督权等都没有得到体现;缺乏对行政审批部门或监督管理人员的法律责任规定。这就纵容了一些地方政府遇到经济发展与环境保护冲突时,往往采取牺牲环境换取GDP的发展。

重金属污染解决之道

中国网2011年4月13日的《重金属污染难降解,治理待突破须防治相结合》指出,中国农科院农业资源与农业区划研究所土壤研究室副主任杨俊诚表示,土壤污染,必须防治结合,首先严把入口,完善监管,尽量杜绝污染源;再有就是治理,尽管当前针对重金属对土壤的治理很难,但还是有所突破的。

据了解,在湖南郴州、云南、广西等地开展产业化示范工作的“蜈蚣草”种植已经在被重金属污染、无法耕种的土地上取得了成效,因此“蜈蚣草”也被称为“土壤清洁工”。“蜈蚣草”吸收土壤中砷的能力相当于普通植物的20万倍,通过“蜈蚣草”的吸附、收割,3至5年内,被污染的土地就可“恢复健康”。

凤凰网2011年6月4日的题为《环保部称中国农村环保欠账过多,重金属污染频发》的文章指出,为了解决农村突出的环境问题,从2008年开始,中央实施农村环境综合整治“以奖促治”政策。3年来,中央财政共投入40亿元,带动地方的社会资金超过80亿元,一共整治了6600多个村庄,有2400万农民直接受益。未来5年内。环保部门还将制定全国农村环境保护规划,推动畜禽污染防治条例和土壤污染防治法的出台,力争在饮水安全、污水处理、垃圾处置、土壤保护、畜禽养殖污染防治这5个方面取得积极进展。

中新网2011年12月22日的文章《2012年中国将对重金属污染进行集中整治》指出,环境保护部部长周生贤21日在全国环境保护工作会议上表示,2012年将全力做好重金属污染防治工作,将对重点防控地区、行业和企业,进行集中治理。

周生贤表示,将加快实施《重金属污染综合防治“十二五”规划》,印发规划实施考核办法,对重点防控地区、行业和企业,进行集中治理。对有色金属矿采选冶炼业、含铅蓄电池业、皮革及其制品业进行风险排查,妥善处理解决铬渣堆存等重金属污染历史遗留问题。严格落实各项防治要求,对达不到要求的企业,一律停产整顿,直至关闭取缔。

据介绍,2011年,国务院批复《重金属污染综合防治“十二五”规划》,提出了控制目标,明确了重点防控地区、行业和企业。各省(区、市)已编制完成重金属污染综合防治规划。环保部下发《关于加强铅蓄电池及再生铅行业污染防治工作的通知》,全面开展涉铅行业排查整治,首次将该行业所有企业的环境信息向社会公开,接受监督。目前,全国80%以上的铅蓄电池企业被关闭或处于停产中,整治力度之大前所未有。

重金属污染范文2

关键词:食品重金属污染危害

一、概述

相对密度在5以上的金属,称作重金属。如铜、铅、锌、锡、镍、钴、锑、汞、镉、铋等。有些重金属如铁、锌、铜是人体所必须的微量元素,但大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都会对人体产生一定危害,因为重金属能使人体中的蛋白质变性。进入人体的重金属,尤其是有害的重金属,在人体内积累和浓缩,可造成人体急性中毒、慢性中毒等危害,这类金属元素主要有:汞(Hg)、镉(Cd)、铬(Cr)、铅(Pb)、砷(As)等。砷(As)本属于非金属元素,但根据其化学性质,又鉴于其毒性,一般将其列入有毒重金属元素中。

重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。食品中的有毒重金属元素,一部分来自于农作物对重金属元素的富集,一部分来自于水产动物重金属的污染,还有一部分来自于食品生产加工、贮藏运输过程中出现的污染。进入人体的重金属要经过一段时间的积累才显示出毒性,往往不易被人们所察觉,具有很大的潜在危害性。

二、有毒重金属对食品的污染

我国重金属污染比较严重的地方往往集中于矿山和工业密集地区和城镇,特别是矿山和城市周围问题更加突出。在这些地区,采矿、冶炼、制造业和交通等生产和生活过程中会产生含有重金属的废渣、废水、废气,如果不对其进行非常严格的污染控制和无害化处理,所含的污染物则会扩散到周围的环境中,给当地生态环境造成极大的危害。

1、铅和砷

铅在自然界分布甚广。世界上每个角落都有铅存在。土壤中通常含有2-200mg/kg的铅,华南地区为26-47mg/kg。据统计,目前全世界平均每年排放铅500万吨。含铅排放物除小部分可以回收利用外,其余均通过各种途径进入环境,造成污染和危害。目前人为的铅污染十分严重,如开采铅矿、冶炼、蓄电池、含铅物质(汽油)的燃烧等。我国每年从工业废气中排出铅2918吨,废水排出铅2382吨。一辆汽车每年可向环境排出2.5kg的铅,含铅汽油已造成严重的污染。铅在生活中应用也十分广泛,如彩釉陶瓷,印有彩色画面的图书,塑料制品等都含有铅。铅是对人体毒性最强的重金属之一,由于人类的各种活动,特别是随着近代工业的发展,铅向大气圈、水圈以及生物圈不断迁移,再加上食物链的累积作用,人类对铅的吸收急剧增加,吸收值已接近或超出人体的允许浓度。

砷在自然界分布很广,常与硫、氧等元素结合成化合物广泛存在矿物层中,动、植物机体中都含有微量的砷。砷污染的来源主要有:含砷矿石的冶炼和煤的燃烧产生的三废;含砷农药的使用;畜牧业中含砷制剂的使用,如五价砷作为促生长添加剂,苯砷酸造成的兽药残留;水生生物的富集,通过食物链可富集3300倍,龙虾含砷可高达170mg/kg,大虾40mg/kg。

2、汞和镉

汞极易于由环境中的污染物通过各种途径对食品造成污染,直接影响人们的饮食安全,危害人体的健康。土壤的汞污染主要来自于汞冶炼和制剂厂的排放、含汞颜料的应用、含汞农药的施用等。据统计,目前全世界平均每年排放汞约1.5万吨。土壤中汞以无机态与有机态存在,在一定条件下互相转化。在土壤微生物作用下,汞可发生甲基化反应,形成脂溶性的甲基汞,可被微生物吸收、积累,而转入食物链造成对人体的危害。

镉是最常见的污染食品和饮料的重金属元素。镉可通过环境污染、生物浓缩和含镉化肥的使用而致食品污染。我国约有1.3万公顷耕地受到镉污染,每年有数亿千克的“镉米”流向市场。镉主要来源于镉矿、镉冶炼厂。常与锌共生,所以冶炼锌的排放物中必有CdO,以污染源为中心可波及数千米远。镉工业废水灌溉农田也是镉污染的重要来源。土壤中镉的存在形态大致可分为水溶性和非水溶性镉两大类。离子态和络合态的水溶性镉CdCl2等能为作物吸收,对生物危害大,而非水溶性镉CdS、CdCO3等不易迁移,不易被作物吸收,但随环境条件的改变二者可互相转化。被工业“三废”污染的水和土壤种植的植物,含镉就会增加。一般食品都能检出镉,含量在0.004-5mg/kg之间。如贝类,非污染区镉的浓度为0.05mg/kg,污染区为0.75mg/kg,有的高达12mg/kg。污染灌溉的水稻中,镉的水平在0.2-2.0mg/kg,个别地区高达5.43mg/kg。

3、铬

在非污染的低层大气和天然水中均含有微量的铬,如雨水中含铬2-4μg/L,土壤中含铬约在100-500mg/L之间。其中六价铬的毒性比三价铬大,六价铬是一种常见的致癌物质,对人体和农作物均有毒害作用。铬的化合物在工业上应用较多,如电镀、化工、印染等行业都含有三价铬或六价铬的废水排出,使局部地区受到铬的污染。

三、有毒重金属的主要污染来源

食品中有毒重金属污染主要来自三个方面:一是三废排放污染农田、水源和大气,导致有害重金属在农产品中聚积;二是随着农业产品使用量的增加,一些农药和化肥中的有害重金属残留在农产品中;三是食品生产、加工所使用的金属机械、管道、容器,或食品添加剂品质不纯,含有有毒重金属杂质,引起食品污染。

1、三废排放引起的污染。

未经处理的工业废水、废气、废渣的排放,是汞、镉、铅、砷等重金属元素及其化合物对食品造成污染的主要渠道。土壤污染是人类现在和未来都必须面对的最困难的环境课题。土壤一旦被污染,其中的污染物就很难清除。土壤污染过程是不可逆的,如发展成生态灾难,其危害和损失将难以估量。有毒重金属元素由于某些原因未经处理就被排入河流、湖泊、海洋或土壤,使得这些河流、湖泊、海洋或土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者被重金属污染的大米、小麦等农作物被人类食用,重金属就会进入人体使人产生重金属中毒。

2、所施的农药和化肥引起的污染。

农药和化肥的不合理使用是造成污染的另一渠道。磷肥、钾肥和复合肥中含有镉,大量使用这些肥料,土壤和作物吸收了不易被移除的镉而造成污染。又如一些小规模的养殖场,在猪、鸡等饲料中添加含砷制剂,猪、鸡吃了这些饲料后,一方面可以杀死猪体内的寄生虫,促进牲畜生长,另一方面可能“让猪肉的颜色变得更红润”。这些含砷饲料通过猪肉与鸡肉的粪便,作为肥料被堆积入田,富集在土壤下,并随着耕种传递到农作物中。据国家质检部门抽查,蔬菜类农产品的农药残留超标问题相当严重,喷洒农药的方式不合理及使用禁用农药等,使土壤中农药残留量及衍生物含量增加,造成严重污染。土壤中农药被灌溉水、雨水冲刷到江河湖海中,又污染了水源。

3、食品加工环节引入的污染。

加工食品所使用的设备、管道都是金属物质,食品与其长期磨擦接触,总会造成微量金属元素掺入食品中,引起污染。包装和贮藏食品的材料及容器大部分也含有微量重金属元素,在一定条件下也会掺入食品,造成污染。

四、有毒重金属对人体的危害

1、铅

在这几种有毒重金属中,铅对人体的危害最大,其次是砷和汞。铅对人的神经系统、骨髓造血机能、消化系统、生殖系统及人体其他功能都有明显毒害作用,特别对孕妇、婴儿和儿童的健康危害较大。当血铅浓度超过40µg/dl时,会造成肾功能损害;当血铅浓度超过300µg/dl时,人就会出现注意力不集中、易怒、头痛、肌肉发抖、失忆以及产生幻觉,严重的将导致死亡。铅在人体的生物半衰期为4年,骨骼中可达10年。

2、砷

砷在环境中由于受到化学作用和微生物作用,大都以无机砷和烷基砷的形态存在。不同形态的砷,其毒性相差很大。无机砷的毒性大于有机砷,三价砷化合物的毒性大于五价砷化合物,砷化氢和三氧化二砷(俗称砒霜)毒性最大,故卫生标准以无机砷制定。人体一旦食用含砷食品,砷与细胞中含巯基的酶结合,抑制细胞氧化,麻痹血管运动中枢,长期接触砷化合物或饮用含砷物质,会诱发皮肤癌。

3、汞

汞在常温下是一种液体金属,汞对人体的危害主要表现在以甲基汞(有机汞,毒性很强)的形式通过食物链进入人体,并在人的中枢神经系统中富集,造成运动失调、语言及听力障碍、视野缩小,严重者可发生瘫痪、肢体变形、吞咽困难,甚至死亡。汞蓄积于体内最多的部位为骨髓、肾、肝、脑、肺、心等。汞对人体的神经系统、肾、肝脏等可产生不可逆的损害。汞蓄积性很强,在体内的生物半衰期为70天,在脑内可达180-250天。

4、镉

镉进入体内可损害血管,导致组织缺血,引起多系统损伤;镉还可干扰铜、锌等微量元素的代谢,阻碍肠道吸收铁,并能抑制血红蛋白的合成,还能抑制肺泡巨噬细胞的氧化磷酰化的代谢过程,从而引起肺、肾、肝损害。镉在人体的生物半衰期为15-30年,镉中毒是长期低剂量摄入后蓄积造成的,其潜伏期可达2-8年。

5、铬

进入人体的铬被积存在人体组织中,代谢和被清除的速度缓慢。六价铬具有强氧化作用,对人主要是慢性毒害,即以局部损害开始逐渐发展到不可救药。铬在体内主要积聚在肝、肾和内分泌腺中,它能降低生化过程的需氧量,从而发生内窒息。

重金属污染范文3

关键词:重金属污染;土壤污染;生物修复;超量积累

作为人类发展的基础,土壤资源往往在城市化以及工业化的发展之下出现了不同程度的污染以及破坏。在这样的背景之下,我国的土壤容易受到重金属的污染而危害人类的生命安全。本文基于此,分析探讨国内外土壤重金属污染防治技术以及相关研究的发展。

1 土壤重金属污染预防的发展历程

1.1 预防体制

基于世界各国城市化以及工业化发展程度的日益加深,各国家普遍存在土壤重金属污染的问题。为了进一步促进各类问题的解决,世界各国加强了对于土壤重金属污染预防。关于土壤重金属污染预防的发展历程,笔者进行了相关总结,具体内容如下。

日本为了进一步促进土壤重金属污染问题的解决,颁布了《土壤环境标准》《土壤污染对策法》等法律法规,而我国自改革开放之后,逐步加强了对于环境问题的关注,并于1989年颁布《中华人民共和国环境保护法》,开始了我国土壤重金属污染问题的处理,随后中国在该法律的基础之上进行修订工作,从而实现了对于污染物排放的限制与处理。

1.2 预防技术

为了进一步实现按土壤重金属污染问题的解决,各国逐步提出了清洁生产的概念。在这样的背景之下,欧共体于1979年宣布推行工业清洁生产的政策。在这样的背景之下,该区域的农业生产部门加强了对于各类先进生产技术的运用,从而实现了农业的清洁生产,规避了农业化学产品的超量使用对土壤污染。

事实上,这种从源头上降低污染源的措施,能够降低了土壤中重金属离子的引入,从而实现了土壤资源的保护。

2 土壤重金属污染治理方法

目前,我国处于经济结构转型期间,土壤重金属污染的问题也较重。在这样的背景之下,为了实现我国社会的绿色、低碳、可持续发展,我国的有关部门加强了对于该类问题的解决。关于常见的土壤重金属污染治理方法,笔者进行了相关总结,具体内容如下。

2.1 工程治理法

所谓的工程治理法,指的是相关单位借助物理原理以及方法进行土壤重金属污染问题的解决。在传统的工程治理过程中,工作人员多借助换土、翻土等方法进行作业,但伴随着科学技术的不断变更,我国有关部门逐步采用淋洗法、电解法、热处理等办法进行作业。

一般而言,工程治理方法在运行的过程中具有效果显著等特点,但是其因为工程复杂、工程量等问题进而导致工程成本的进一步增加。此外,该方法在运用的过程中往往因为维护措施不到位而导致部分土壤中的金属元素被迁移到其他地区,造成土壤重金属污染面积的扩大,难以真正改善土壤的重金属污染现状。

以日本富士县神通川流域的土壤重金属污染防治为例,为了降低土壤中的镉元素,相关单位加强了对于工程治理法的运用。在这一过程中,工程单位去除污染区域15cm的表土,并压实心土,并采用淋洗法对污染土壤进行清洗。

2.2 农业治理

所谓的农业治理,指的是通过优化、完善传统的耕作管理制度,实现土壤重金属污染的降低。在这一过程中,工作人员需要依据重金属污染的实际状况而选择相应的植物种植,从而实现了对于土壤中重金属元素的消除。此外,在农业治理的过程中,作业人员还需要合理选择花费,从而降低土壤中的重金属元素。

学者林汲等人就通过实验分析发现了硅藻土有机肥能够实现对于Cd、Zn重金属离子的吸收,从而降低了土壤中的重金属离子。一般而言,该方法在运行的过程中普遍存在操作简便、费用低的特点,但是由于其仍旧未能够从根本上消除重金属污染,进而导致其只能够作为辅助手段进行处理。

在进行广西壮族自治^环江县废矿土壤污染治理的过程中,中科院地理所环境修复中心陈同斌率团队,借助蜈蚣草等植物开展了土壤重金属处理工作,并成功修复1280亩重金属污染农田。

2.3 生物治理

生物治理方法在运行的过程中主要借助生物生命代谢活动的开展,从而降低了环境中重金属污染的浓度。从而确保部分受到污染的土壤能够恢复到初始状态。一般而言,生物治理方法在运用的过程中因为参与治理的主角不同,故而分为动物修复、微生物修复以及植物修复。

所谓的动物修复技术,指的是有关部门以及人员利用土壤中的低等动物进行土壤中重金属的吸收,从而实现了土壤中重金属含量的进一步降低。相关的研究表明,蚯蚓的出现能够实现对于硒、铜元素的吸收。事实上,该方法在推行的过程中也具有一定的问题:诸如低等动物往往会将吸收的金属元素再次释放到土壤中,从而造成了二次污染。

微生物修复技术则是利用土壤中的微生物进行各类金属元素的吸收。目前,最为常用的微生物就是――真菌。真菌在生存的过程中往往能够分泌一定量的氨基酸、有机酸等物质,从而实现了对于重金属的溶解。目前,从相关的研究分析可以发现:微生物修复技术在运行的过程中具有较为光明的前景,且能够较好的实现我国土壤重金属问题的解决。

植物修复技术的运行原理主要是在污染的区域种植特定植物,从而借助植物的生长过程实现对于重金属的吸收以及化解。目前,植物提取技术获得了相关研究人员的重视,并由此促进了土壤重金属问题的解决。现阶段,最为常用的植物有遏蓝菜、高山甘薯等。

仍旧以日本富士县神通川流域的土壤重金属污染防治为例,土壤重金属处理单位在含镉100mg/kg土壤上进行苎麻的种植,从而由此实现对于土壤中镉元素含量的降低。该地区在采取生物法治理土壤重金属污染的过程中,实现了镉元素含量降低27.6%。

3 发展论述

为了进一步促进我国土壤重金属污染问题的解决,我国的有关部门需要从法律的角度出手,加强对于各类土壤重金属污染法律法规的制定。此外,我国还需要加强对于清洁生产的发展,并大力运用清洁能源。而在已经发生的土壤重金属污染问题,作业人员需要加强植物修复技术的运用。

4 结束语

为了进一步促进我国土地重金属污染问题的解决,我国的有关部门以及人员需要采取科学的方式进行问题解决。本文基于此,分析探讨土壤重金属污染预防的发展历程(预防体制、预防技术),并就常见的土壤重金属污染治理方法进行分析,最后论述了我国土壤重金属污染问题解决的措施。笔者认为,随着相关措施的落实到位,我国的环境问题必将得到显著的改善。

参考文献

[1] 李录久,许圣君,李光雄,张祥明,王允青,刘英,况晶.土壤重金属污染与修复技术研究进展[J].安徽

农业科学,2014(1):156-158.

[2] 董文洪,杨海,令狐文生.土壤重金属污染及修复技术研究进展[J].化学试剂,2016(12):1170-1174.

[3] 廖健.土壤重金属污染及其化学修复技术的研究进展[J].中国石油和化工标准与质量,2013

(24):30+28.

重金属污染范文4

关键词 土壤 重金属污染 植物修复

中图分类号:X53 文献标识码:A

0引言

造成我国土壤重金属污染的原因复杂多样,如生活废物、矿业废物的随意堆放,污水、废水灌溉,农药和化肥的不合理使用等。土壤污染具有普遍性,世界各国都有局部土壤存在不同程度的污染。全世界平均每年排放Hg约1.5万t、Cu约340万t、Pb约500万t、Mn约1500万t、Ni约100万t。数量巨大的重金属进入土壤对生态环境,给人类健康带来严重危害,特别是重金属污染土壤上种植的农作物产品,通过饮食进入人体,使重金属在体内逐渐富集,可能造成人体制畸制癌的风险。因而,人们对重金属污染的土壤采取了一系列修复措施。如易操作的客土、异位等物理修复方法,但其工程量大而且没有真正解决土壤的重金属污染;添加化学物质调节土壤理化性质或pH的化学修复方法,但费用高而且存在二次污染。相比较而言,利用超富集植物吸收土壤中重金属的特性,对重金属污染的土壤进行修复具有更好的应用前景。

1植物修复原理

植物修复这个概念的提出距今已有几十年的历史。它在20世纪80年代初发展起来,是一种利用自然生长或遗传培育植物修复重金属污染土壤的技术总称。植物在去除土壤中重金属的过程中发生了复杂的多相反应,其反应机理也十分复杂。学者们经过大量研究发现,植物修复的机理主要依靠植物的萃取作用、根系过滤作用、植物挥发作用和植物固定化作用。而植物修复作用途径有两个:一是改变土壤中重金属的化学状态,使其由有效态转变为固定态;二是通过植物吸收、代谢从而降低土壤中重金属含量。第一个途径通过固定土壤中的重金属从而降低了重金属进入农作物内进而危害人体的潜在风险。第二个途径通过降低土壤中重金属含量从而使其慢慢降低到土壤中重金属的本底值,进而减轻甚至消除其危害。

2 超富集植物

通常认为特定植物积累某种或多种重金属元素含量,如Cr、Co、Ni、Cu、Pb等含量达到1000mg/kg以上,积累的Mn、Zn含量在10000mg/kg以上,积累的Cd含量在100mg/kg以上,我们成称这样的植物为超富集植物。经过多年研究发现了有的植物只能富集一种重金属,而有的能富集两种或多种重金属,如Cd/Zn超富集的东南景天。然而,能够富集多种重金属的超富集植物很少,而土壤污染往往是多种重金属污染,其余重金属的存在会对植物的生长和富集带来不利影响。因此,发现或培育能够富集多种重金属且富集能力强、修复效率高的超富集植物成为了当前植物修复研究的热点。从超富集植物这个概念的提出到超富集植物的陆续发现,乃至进行盆栽试验和实验田的种植经历了漫长的时间,科研工作者做出来大量的努力,取得了一定的成果。然而,超富集植物往往只对一种重金属有吸收能力,且植物的生物量小、生长速度缓慢。此时,强化超富集植物的修复效率就具有必要性。

3植物修复强化

植物修复的缺陷使得它治理重金属污染土壤的修复效果往往并不理想。此时,通过添加外来物质提高其生物量或者吸收能力就显得十分必要。常用的措施有添加螯合剂、添加表面活性剂和调节pH。当螯合剂投加到土壤后,和土壤重金属发生螯合作用,能够形成水溶性的金属-螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,进而可以强化植物对目标重金属的吸收。常用的人工合成螯合剂有EDTA,EDDS等,常用的天然螯合剂有小分子酸如柠檬酸等。表面活性剂具有亲水亲脂的特性,表面活性剂经土壤界面吸附和重金属缔合后,通过降低表面张力和增流作用, 解吸被吸附的重金属。从而增加植物对重金属的吸收,增大其吸收能力,提高其修复效率;重金属的溶解浓度与其所处环境的pH密切相关,同时所处环境的pH也会对植物生长带来重大影响。所以,通过人工调控控制其pH在一个适宜范围内亦可以增加其修复效率。除此之外,添加根际促生菌或者进行电动修复也是强化植物修复效果的方法,亦有很多学者做了大量研究并取得了一定成果。

4结论与展望

植物修复在治理重金属污染上具有的优势使得植物修复的研究日趋深入,克服其存在的缺点,具有广阔的应用前景。通过添加外来物质,克服超富集植物具有生物量小、生长慢等缺点。同时,考虑到成本和二次污染的问题,开发出高效价廉且环保的物质,应用于植物修复的过程,培育或者寻找能够富集多种重金属的超富集植物具有十分重要的意义。

参考文献

[1] 李法云,藏树良,罗义.污染土壤生物修复技术研究[J].生态学杂志,2003,22(1):35-39.

[2] SALTDE,BLAYLOCKM,NANDA-KUMARPBA,etal.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants[J].Nature Biotechnology,1995(13):468-474.

[3] 陈武.环境中重金属污染土壤的植物修复研究进展[J].化学工程与装备,2009,8(8):191-192.

[4] 黄益宗,郝晓伟,雷鸣,铁柏清.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013(3):409-417.

[5] 徐良将,张明礼,杨浩,土壤重金属污染修复方法的研究进展[J].安徽农业科学,2011,39(6):3419-3422.

重金属污染范文5

关键词:重金属;污染;土壤;植物修复

中图分类号:X24文献标识码:A文章编号:1674-9944(2015)12-0226-03

2土壤重金属污染现状

随着社会经济的发展,越来越多的工矿企业被建立。资源的紧张也导致越来越多的污水被灌溉到农田中。污灌区的污水是经过简单处理的日常用水以及工业废水,其中大部分是来自于附近厂区的工业用水。随着我国城镇建设的不断增强,各个大中小城市对污水的处理也得到了进一步的改善。但是其中潜在的污染风险也一直是人们研究的对象,尤其是近年来粮食安全问题层出不穷,长期累计的土壤问题开始显露,并呈现不断加强的趋势。

近年来,在全国土壤调查的基础上我国研究学者对部分地区农用地土壤展开了调查研究。其中天津、沈阳、保定、兰州等工业城市的污灌区表层土壤呈现不同程度的重金属污染[6~10]。张丽红等[11]以国家土壤环境质量标准为标准,采样调查分析了100个河北省清苑县及清苑县附近的农田土壤样品,结果显示:土壤中Cd污染最为严重,超标率65%,达中度污染水平;Pb、Zn、Cu超标率分别为37%、44%和33%,达到轻度污染水平,足以引起各位学者关注。茹淑华等[12]对河北石家庄典型污灌区进行取样调查,结果显示:污灌区Cu 、Zn 、Pb 、Cd 和Cr存在不同程度的富集现象,而清灌区仍处于清洁水平。虽然污灌区土壤重金属含量总体上均未超过我国农产品产地土壤环境质量标准,但土壤样品仍有个别样点的Cd出现超标现象。因此,对污灌区土壤重金属修复迫在眉睫。

3土壤中重金属污染的植物修复措施

针对环境污染,越来越多的污染修复方式被人类利用。其中植物修复是以清除污染,修复或治理为目的利用绿色植物从环境中转移容纳或转化污染物的环境污染治理技术[13~15]。其根据修复植物的特点和功能用于重金属污染土壤等接种的植物修复技术主要有4种类型:植物挥发、提取、过滤以及稳定或固化[16]。

3.1普通植物对土壤重金属的修复

近年来,我国对植物修复重金属污染土壤作出了很多研究。陈同斌等[17]试验小组分别发现在我国湖南、广西南方等地存在大面积的蜈蚣草等蕨类植物,并指出其具有超富集砷能力,且其植物体内氮磷养分的含量远远低于其叶片含砷量。刘金林等[18]对一年蓬进行实验研究发现,该原产自北美的一年蓬对土壤中重金属的富集能力较强。同时lin等[19]以汞污染的稻田为实验材料,研究了改作苎麻对土壤中重金属的净化作用,研究显示改作苎麻能净化汞污染的稻田,其中年净化率达41%,并连种稻田土壤的自净时间缩短了8.5倍。黄会一等[20]也发现杨树对汞和镉有很好的耐性和净化功能。

3.2花卉植物对土壤重金属的修复

随着经济和社会的不断发展,越来越多的研究学者也将目光转向花卉植物。花卉植物具有一定的观赏性,而且种类繁多。同时花卉植物对重金属有一定能力的积累转移作用。周霞等[21]对鸭脚木、小叶黄杨等8中花卉植物进行研究发现:花卉植物对重金属的转移能力大小顺序为Zn>Cd>Cu>CrPb 。对重金属的积累能力大小顺序为Cr>Zn>Cu>Cd>Pb。其中,亮叶忍冬、小叶黄杨、金叶假连翘对土壤中Cd的修复效果较为理想;鸭脚木、亮叶忍冬、小叶黄杨对土壤中Zn的修复效果较好;鸭脚木、金光变叶木、细叶鸡爪槭、胡椒木、等花卉植物对土壤中Cr的富集能力均较高,且根部积累系数都大于1,这说明对土壤中Cr的修复效果较好。

3.3草本能源植物对土壤重金属的修复

草本能源植物作为生物生长和人类发展的生物能源基础在社会发展及人类生存过程中占有重要地位[22,23]。同时在倡导低碳经济的当今社会,草本能源植物作为草本植物的一种,其同样具有非常高的应用生态价值及经济价值[24~27]。最重要的是,部分草本能源植物具有较强的生态适应能力使其在污染土地的治理中具有一定的应用潜力。侯新村等[28]对柳枝稷、荻、芦竹、杂交狼尾草、四种草本能源植物的规模化种植并对其积累重金属作用进行研究,研究结果表明:草本能源植物对砷汞铜铬铅镉等重金属的绝对富集量较为可观。对于砷铜铅镉均以杂交狼尾草的绝对富集量最高,柳枝稷、荻、芦竹次之;杂交狼尾草对污染土壤中污染物汞的绝对富集能力最高;芦竹对铬的绝对富集能力最高,最高达1 333.37 g/hm2,这说明草本能源植物可以作为重金属污染植物修复的一类修复植物,其具有一定的修复潜力。

4结语

土壤的重金属污染危及粮食生产、食物质量、生态安全、人体健康以及区域可持续发展。以预防为主[29],预防、控制和修复相结合的土壤保护政策迫在眉睫。我国虽然在植物修复上起步较晚,但是仍然发展迅速。植物修复是利用具有修复性能的植物的生命活动对重金属污染土壤进行积累修复的一项新技术。与此同时,我国很多的研究学者也就此问题展开过多种研究且证明植物修复是一种极具有潜力的土壤重金属修复方式。因此接下来仍需要在找到具有较强积累能力的植物之后对其生长发育规律及发育调控措施进行研究从而不断提高植物修复的效率以加快对土壤重金属污染的修复进程。

参考文献:

[1]汪小勇.被农药污染的土壤植物修复研究进展[J].中国农学通报,2005,21(7):382~382.

[2]徐磊,周静,崔红标,等.重金属污染土壤的修复与修复效果评价研究进展[J].中国农学通报,2014,30(20):161~167.

[3]杨军,陈同斌.北京市再生水灌溉对土壤、农作物的重金属污染风险[J].自然资源学报,2011,26(2):209~217.

[4]胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展[J].中国农学通报,2007,23(6):519~523.

[5]杨旭,向昌国,刘志霄.重金属污染对土壤动物的影响[J].中国农学通报,2008,24(12):

[6]龚钟明,曹军,朱学梅,等.天津市郊污灌区农田土壤中的有机氯农药残留 [J].农业环境保护,2002,21 (5):459~461.

[7]张乃明,刑承玉,贾润山,等.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(1):21~23.

[8]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182~186.

[9]谢建治,刘树庆,刘玉柱,等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325~327.

[10]王国利,刘长仲,卢子扬,等.白银市污水灌溉对农田土壤质量的影响[J].甘肃农业大学学报, 2006,41(1):79~82.

[11]张丽红.河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价[J].农业环境科学学报,2010,29(11):2139~2146.

[12]茹淑华,张国印.河北省典型污灌区土壤和植物重金属累积特征研究[J].河北农业科学,2008,12(10):78~81.

[13]邢艳帅,乔冬梅,朱桂芬,等.土壤重金属污染及植物修复技术研究进展[J].中国农学通报,2014,30(17):208~214.

[14]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.

[15]毕君,郭伟珍,高红真.9种植物对镉的忍耐和富集能力研究[J].中国农学通报,2013,29(34):12~16.

[16]白向玉,韩宝平.花卉植物修复重金属污染技术的国内外研究进展[J].徐州工程学院学报,2010,25(3):56~60.

[17]陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3).

[18]Liu Jin lin.The research of absorption and accumulation of higher aquatic vascular plants to heavy metals[J].Chinese Environmental Science.1986,52:24~28.

[19]Lin Zhi qing , Huang Hui yi. Study on the tolerance of woody\|plants to mercury [J].Acta Ecology Sinical.1989,9(4):316~319.

[20]Huang Hui yi, Jiang De ming, Zhang Chun xing, et al. Study on control of cadmium polluted soil by forestry eco\|engineering [J].Chian encironmental science.1989,9(6):419~426.

[21]周霞,林庆昶.花卉植物对重金属污染土壤修复能力的研究[J].安徽农业科学,2012,40(14) :8133~8135.

[22]石元春.生物质能源主导论[N].科学时报.2010-12-09(3).

[23]谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学.2007,29(5):74~80.

[24]贺庭,刘婕,朱宇恩,等.重金属污染土壤木本-草本联合修复研究进展[J].中国农学通报,2012(11):237~242.

[25]云锦凤.低碳经济与草业发展的新机遇[J].中国草地学报.2010,32(3):1~3.

[26]章力建,刘帅.保护草原增强草原碳汇功能[J].中国草地学报.2013,32(2):1~5.

[27]侯新村,范希峰,武菊英,等.石油污染土地能源草生态价值与经济效益评价[C]/倪维斗,徐进良./2010中国可再生能源科技发展大会论文集.武汉:美国科研出版社,2010.

重金属污染范文6

生物酶是一种生物螯合剂,它具有对环境营养条件要求不高;低浓度污染物,处理更有效;在和毒物共存时能保持较高活性;在土壤中具有较大的移动性;微生物吸收有机物和重金属时需借助特定吸收机制(扩散和渗透),而酶不需要等优点,比微生物、植物对重金属污染土壤的处理更具有优势。当酶遇到重金属时,重金属与底物竞争,重金属同时进入,与底物结合形成“酶-重金属-底物”的络合物,能降解和转化土壤中的污染物,使污染物的浓度降低到可接受的浓度,土壤修复效果较好[7]。利用生物酶可有效提高重金属污染土壤的处理效果,此方面研究国内外尚未见相关报道。本研究将生物酶溶液应用于污染土壤中重金属Cd、Cr、Cu、Ni、Zn的淋洗、解吸、去除,以提高重金属的去除效果。论文探讨了酶的种类、酶的质量浓度、pH、反应时间等对重金属去除率的影响,并利用响应面法对去除反应条件进行优化,试图为淋洗修复重金属污染土壤提供新方法。

1材料与方法

1.1供试土壤土壤样品采自武夷山市武夷学院湖边的耕地土壤,属于粘土性土壤。样品经自然风干后,研碎,过100目尼龙筛。人工污染土壤样品:将100g土壤样品浸入500mLCuSO4•5H2O、ZnSO4•7H2O、Cd(NO3)2•4H2O、Cr(NO3)3•9H2O、NiCl2•6H2O配制的混合溶液中(该溶液含Cu100.5mg/L、Zn439.7mg/L、Cd4.8mg/L、Cr365.2mg/L、Ni128.1mg/L),25℃恒温振荡72h,4000r/min离心除去上层清液,自然风干陈化2周,备用,即为供试土壤样品。经测试,该人工污染土壤样品pH为6.80,有机质含量为2.87%,阳离子交换容量为12.45cmol/kg,Cd、Cr、Cu、Ni、Zn含量分别为2.38、93.33、279.38、148.39和89.68mg/kg。

1.2试剂与仪器试剂:α-淀粉酶,脲酶,过氧化物酶(生化试剂,上海鹤善实业有限公司);其他试剂均为市售分析纯试剂,实验用水为去离子水。仪器:AA-6300原子吸收分光光度计(日本岛津公司),SHA-C恒温振荡箱(常州国华电器有限公司),TDL-40B离心机(上海安亭科技仪器厂),PB-10型pH计(德国赛多利斯集团),AB204-S电子天平(梅特勒-托利多仪器(上海)有限公司)。

1.3实验方法

1.3.1实验用酶的选用取0.6g供试土壤样品置于锥形瓶中,分别加入质量浓度为0.1%的不同酶溶液15mL,在25℃、pH4.0条件下恒温振荡12h,离心后,取上清液用火焰原子吸收分光光度法测定各重金属的含量。

1.3.2酶溶液处理重金属污染土壤各工艺条件的确定取0.6g供试土壤样品置于锥形瓶中,加入一定量的酶溶液,在不同的反应时间、pH条件下,25℃恒温振荡。离心后,取上清液测定各重金属的含量。

1.3.3酶溶液处理重金属污染土壤工艺条件的优化取0.6g供试土壤样品分别加入酶溶液15mL,根据Box-Behnken中心组合设计原理,在单因素的基础上,以淋洗液的pH、反应时间、酶质量浓度3个因素为自变量,重金属去除率为响应值,作3因素3水平的响应曲面分析实验,实验因素与水平见表1,确定土壤重金属去除的最佳工艺条件。

2结果与分析

2.1实验用酶的选用酶作为土壤的组成部分,参与土壤系统中许多重要的代谢过程,因而可用它来检测土壤中重金属的相对污染程度[8]。其反应机理是重金属与酶活性中心结合或与酶分子中的巯基、胺基和羧基的结合,从而改变酶的活性。因此,酶依靠其专一性、高效性,与重金属产生良好的络合作用,从而达到去除土壤中重金属的目的。实验选择土壤中常见脲酶、过氧化氢酶和α-淀粉酶溶液各15mL进行实验,对供试复合污染土壤样品进行处理,在25℃、pH4.0条件下恒温振荡12h,以求达到良好的去除效果和降低处理成本。由图1可知,脲酶、过氧化氢酶、α-淀粉酶对土壤中重金属的去除都有一定的效果,但效果差异显著,去除率的大小顺序为α-淀粉酶>过氧化氢酶>脲酶。其主要原因可能是,脲酶活性对重金属最敏感,与重金属的污染程度呈良好的负相关关系[8],因此重金属在浓度较低时,脲酶空间结构迅速变化而失活,无法进一步络合重金属;过氧化氢酶活性对重金属Cu、Ni含量表现较敏感,故过氧化氢酶对部分重金属如Cu、Ni,络合效果差,对其他类型的重金属有一定的络合效果,去除重金属效果要好于脲酶;重金属与α-淀粉酶没有专一性对应关系,酶活性没有受到影响,对重金属有良好的络合效果。

2.2不同反应条件对重金属去除效果的影响

2.2.1pH值对重金属去除率的影响pH值对酶的生物活性会造成影响,还会对土壤中各重金属的赋存形态造成影响,是影响土壤重金属去除率的重要因素。在酸性条件下,土壤中的重金属主要以酸提取态存在;pH越低,土壤中重金属游离越多,活性越强。蒋煜峰等[9]发现,随土壤pH值增加,重金属解吸率逐渐减小,皂角苷冲洗土壤重金属的适宜pH应在4~5。实验选择pH值3.0~5.0范围内考察pH对重金属去除率的影响。由图2可知,在所研究的pH范围内,pH值低,α-淀粉酶对重金属的去除率较高,当pH为3.5时,去除率达到最大值。随着pH值继续增加,去除率降低。这种变化一方面与酶本身结构有关:在酸性条件下,α-淀粉酶分子中的巯基和羧基易分解,与重金属产生良好的络合。另一方面,与各金属的赋存形态有关:在酸性条件下,Cd、Cr2种重金属在土样中的存在形态以酸提取态(即离子态)为主,去除率高;Cu、Zn、Ni在土样中的存在形态以可还原态、可氧化态和残渣态为主,去除较困难,去除率较低。

2.2.2酶的质量浓度对重金属去除率的影响重金属在土壤中的存在状态大多数是吸附并固定在有机质和土壤粘粒上,以吸附态存在[10]。由图3可知,酶质量浓度低于0.20%时,重金属去除率随酶浓度的升高而增加。Mulligan等[11]研究认为,在重金属未与土壤分离时,酶就已经与重金属络合了,使金属从土壤上解吸下来,随着淋洗液不断的冲洗,金属就被从土壤中去除。在低浓度时,酶主要与土壤中游离的金属络合,重金属的去除率低;随着酶浓度的增大,土壤中重金属进入酶的活性中心,与酶分子的巯基、胺基和羧基结合,重金属不与土壤颗粒的重新结合,重金属的去除率也随之增加。当酶浓度超过0.20%时,与还原态、可氧化态和残渣态的各重金属的解吸与吸附达到动态平衡,重金属去除率不再发生较大变化。不同重金属去除率差别较大,可能是由于重金属的存在形态以及重金属与酶的络合能力不同造成的。

2.2.3反应时间对重金属去除率的影响由图4可知,各重金属去除率随反应时间增加而上升,在反应时间为12h时,Cd、Cr、Cu、Ni和Zn去除率分别为69.56%、58.05%、35.72%、32.67%和53.39%。随后,重金属去除率不再变化。其可能与金属离子在土壤中赋存状态、酶的传质速率机理和酶的反应机理有关。反应初期,酶分子吸附在土壤颗粒表面,重金属的去除率低;随着振荡时间增加,酶的传质速率提高,进入土壤中与重金属相结合,去除率得到提高;当酶的活性中心达到饱和,与重金属的络合反应达到平衡,重金属的去除率趋于稳定。

2.3酶溶液处理重金属污染土壤最佳工艺条件的确定

2.3.1酶溶液处理重金属污染土壤实验分析和回归方程建立(以Cd含量方差分析表为例)根据单因素实验的结果,采用统计软件Design-Expert进行实验优化设计,实验安排及实验结果见表2。由表2实验数据进行回归分析,得二次多元回归方程为。对该模型进行方差分析,结果见表3。从表3可知,模型具有高度显著性(P<0.01),而R2=0.9651,R2Adj=0.9203较高,可见回归方程拟合度和可信度均较高,实验误差较小,方程模拟得较好,可用于组合液去除污染土壤中Cd的实验分析与预测。通过回归模型的响应面和等高线图(见图5~图7),能够很直接地看出反应因素之间两两交互作用对去除率的影响。从图5~图7可知,pH、反应时间、酶浓度的交互作用较显著(圆形表示二因素交互作用不显著,椭圆表示二因素交互作用显著)[15]。其中各因素在实验范围内对去除率的影响大小依次为pH(A)>反应时间(B)>α-淀粉酶的质量浓度(C)。这3个实验因素对去除率均产生不同程度的影响。在各因素选取的范围内,通过DesignExpert软件分析回归模型,得出Cd最优去除率的工艺参数为:pH3.5、反应时间12h、α-淀粉酶的质量浓度0.20%,Cd去除率预测值为82.172%。为检验Box-Behnken实验设计所得结果的可靠性,采用上述优化提取条件进行重复实验,得Cd去除率为82.36%,与理论预测值相比,相对误差为2.3‰,结果较理想。

2.3.2酶溶液处理重金属污染土壤实验优化结果分析本实验利用响应曲面实验分析方法还对Cr、Cu、Ni、Zn进行分析,结果表明,回归方程拟合度和可信度均较高,实验误差较小,方程模拟的较好,可用于污染土壤中Cr、Cu、Ni、Zn实验分析与预测。各因素在实验范围内对去除率的影响大小依次都为pH(A)>反应时间(B)>α-淀粉酶的质量浓度(C)。在各因素选取的范围内,通过DesignExpert软件分析回归模型,得出最优去除率的工艺参数也为:pH3.5、反应时间12h、α-淀粉酶质量浓度0.20%。RSM预测出来的最佳结果Cr、Cu、Ni和Zn分别为75.02%、38.38%、34.69%和57.54%。为检验Box-Behnken实验设计所得结果的可靠性,采用上述优化提取条件进行重复实验,最终Cr、Cu、Ni和Zn去除率分别为75.44%、38.34%、34.74%和57.69%,与理论预测值相比,相对误差分别为5.6‰、1.1‰、1.3‰和0.3‰,结果较理想。5种重金属去除率的大小顺序为Cd>Cr>Zn>Cu>Ni。

3讨论