温度传感器论文范例6篇

前言:中文期刊网精心挑选了温度传感器论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

温度传感器论文

温度传感器论文范文1

关键词:亮度;人眼仿真;传感器;背光源;测量;LX1970

1主要特点

目前,笔记本电脑、个人数字助理(PersonalDigi-talAssistant,简称PDA)、平板电视和手机均采用液晶显示器(LCD)。但LCD本身并不发光,它只反射或透射外界光线。为便于在光线较暗的环境中或夜间观察屏幕,就必须给LCD加背光源以增强对比度。利用可见光亮度传感器就可根据环境亮度来自动调节背光源(一般为白色发光二极管)的亮度,这样不仅能获得最佳显示效果,还能降低背光源的功耗。

图1

美国微型半导体(Microsemi)公司推出了一种能实现人眼仿真的集成化可见光亮度传感器LX1970,利用该器件可构成平板显示器的亮度监控系统。此外,它还可用做户外照明灯(例如路灯)控制器,以使照明灯能在黄昏时自动开启,清晨时自动关闭。

LX1970型可见光亮度传感器的性能特点如下:

内含PIN型光电二极管、高增益放大器和两个互补式电流输出端该光电二极管阵列的光谱特性及灵敏度都与人眼十分相似,因而能代替人眼去感受环境亮度的明暗程度,并将接收到的可见光转换成电流信号,进而对背光源的亮度进行控制。

峰值发光波长为520nm,电流灵敏度为0.38μA/lx,暗电流为10nA。

非线性误差小,重复性好。两个互补输出端的电流不对称度仅为±0.5%,可任选一端作为输出。

电路简单,价格低廉,使用方便。无须使用滤光片即可有效衰减紫外光及红外光。

微功耗,低压供电。采用2~5.5V电源,电源电流可低至85μA(典型值)。工作温度范围为-40℃~+85℃。其外形尺寸仅为2.95mm×3mm×1mm。

2LX1970的工作原理

LX1970采用MSOP-8表贴塑料封装,其引脚排列和内部框图如图1所示。

LX1970芯片正面有一个面积为0.369mm2的受光区。UDD和USS分别接电源的正、负极。SNK为电流接收器的引出端,SRC为输出电流源的引出端。其余NC均为空脚。芯片工作时由光电二极管产生的光电流经过高增益放大器送至两个电流输出端,其中一个是电流吸收器的引脚SNK,另一个是输出电流源的引脚SRC,二者的电流分别为ISNK和ISRC。其中ISNK为灌入芯片中的电流,简称灌电流。这两种电流信号通过R1、R2可分别转换成电压信号USNK、USRC。改变R1(或R2)的电阻值可调整电压增益,电阻值允许范围是10kΩ~50kΩ。C1和C2为滤波电容,可用来决定传感器的响应时间。输出USNK与环境亮度成反比,USRC与环境亮度成正比,二者呈互补输出特性,可任选一路信号作为输出电压UO。

LX1970的相对灵敏度与波长的响应曲线如图2中的粗线所示,细线是人眼的响应曲线(峰值波长为550nm)。由图可见,LX1970接收光的波段与人眼非常相近,并且也象人眼一样灵敏。其峰值波长λP为520nm,波段大约为350nm~800nm,能覆盖整个可见光波段(400nm~700nm),而紫外光波段(<400nm和红外光波段(>700nm)都很窄,这表明它对可见光的接收灵敏度最高。LX1970在峰值波长为520nm时的灵敏度K为0.38μA/lx,即照度每变化1lx(勒克斯),输出电流变化0.38μA。将照度转换成亮度L(其单位是cd/m2)时,可假定光线照射在一个能满足全反射条件的理想平面上,然后根据1lx=0.314cd/m2进行转换即可得到亮度值。通常,可用实验的方法来测定亮度与照度的比例系数。

3LX1970的典型应用

3.1白光亮度测量电路

测量白光亮度的电路如图3所示。该电路在工作时先由RCC、电流源和白光LED组成的光源发射出可见光,再由LX1970接收该可见光并转换成电流信号。接下来在SNK端、SRC端各串联一块微安表以分别测量光电流ISNK和ISRC,这样微安表的读数值就反映了亮度的高低。

3.2LCD背光源亮度自动控制电路

当环境亮度明显变暗时,LX1970能自动开启LCD的背光源以使白色LED发光。其亮度自动控制电路如图4所示。图中电阻R1和R2用于设定控制亮度的最小值与最大值。改变电容器C的容值可调整响应时间并能滤除50Hz电网干扰。LX1970采用+3.3V~+5V电源。若只使用SRC端,则SNK端应悬空。假定需用0.25V~1.25V的输出电压来驱动白光LED,0.25V代表LED的亮度最小值,1.25V代表亮度最大值那么,可由下式确定R1与R2的比例关系

R1=[(3/0.25)-1]R2=11R2

可根据LX1970在给定亮度下的输出电流最大值(ISRCmax)来计算R2值。实际上在ISRCmax为50μA时R2为25kΩ,这样代入上式即可得到275kΩ的R1值。

3.3LX1970评估板的设计

利用LX1970评估板(EvaluationBoard)不仅能检查出LX1970的质量好坏,还可对LCD背光源亮度控制电路进行各种实验,以便为开发新产品提供依据。此外,评估板上的元器件布局以及印制电路的设计也具有参考价值。LX1970的评估板电路如图5所示。它具有以下特点:

第一,可利用一个转盘(上面开着7个不同孔径的小孔)来改变LX1970入射光窗口的大小,转盘与传感器一同装在机壳内;

第二,通过电位器RP1~RP3调整放大器的增益,再经过LX1970驱动两只白色发光二极管(LED1、LED2)发光,以实现亮度调节,从而适应不同的环境亮度条件;

第三,分别改变跳线器J1~J4的接线方式,以对不同电路进行隔离或偏置;

第四,该电路有4个可选择的控制端口,包括SRC的分压二极管引出端口(A)、SRC的电压调整端口(B)、SRC的固定电压端口(C)和SNK的电压调整端口(D)。此外,还有两个输出端(SRC、SNK)其中,端口A为下拉端(经外部电位器接地,可代替LX1970手动调整亮度)。端口B、C、D均为上拉端(经外部电路接正电源或其它正电压)。端口B和端口C用于设置最低输出电压(将RP1调至最小)或调节SRC端的输出。端口D用来设置最高输出电压(将RP2调至最大)或调节SNK端的输出。

温度传感器论文范文2

关键词:煤矿火灾,光纤光栅,预测预报,本质安全,准分布式测温

 

1.引言随着我国煤矿采掘机械化和电气化程度的提高,外因火灾发生的比例也逐年增高。低压电缆着火、矿用变压器着火、架线电车电弧引燃木支护棚着火等电气火灾事故也时有发生,而且矿井中环境复杂,电气设备众多,一旦发生火灾,后果将不堪设想,具有很大的危险性。今年以来,全国煤矿已发生4起重大以上事故,其中3起为火灾事故。除“3.15”事故外,湖南省湘潭市湘潭县立胜煤矿“1.5”特别重大火灾事故,造成34人死亡和下落不明;江西省新余市庙上煤矿“1.8”重大火灾事故,造成12人死亡。论文大全。这3起火灾事故,都是因电缆及设备(移动空压机)着火引燃木支护而发生的火灾事故。

目前,矿井内采用的火灾检测设备还很少,而且大部分还是采用基于电信号传感器的测温系统。其中红外测温为非接触测量,易受环境及周围电磁场干扰,且需人工操作,无法实现在线测量,效率低下;电子温度传感器易受电磁干扰,机械的温度传感器受环境的影响也比较大,以上几种检测方法的测量效果都不是很理想。因此开发一种大容量分布式在线实时温度监测系统,来监测煤矿高耗能大型机电设备和电缆运行温度已成为当务之急。

光纤光栅温度在线监测系统是一种全新的在线温度监测报警系统,具有防爆、防燃、抗腐蚀、抗电磁干扰,在有害环境中使用安全,实现实时快速准分布式测温并定位,具有程控报警电平等特点。系统本身具有自检测、自标定和自校正功能,是光机电、计算机一体化技术。采用光纤光栅温度检测技术进行煤矿各种设备的温度实时在线检测,充分利用光纤光栅传感系统的大容量、分布式特性将是一种十分可行的方案。

2.煤矿机电设备引起火灾的原因分析煤矿机电设备引起火灾的原因是多种多样的,主要火灾是电器设备引起的火灾和电缆火灾,原因是:过载、短路、接触不良、电弧火花、漏电等原因。这些火灾起初可能致使电气设备中的绝缘材料燃烧,接着火焰传到巷道的支架、煤尘、瓦斯及矿内其它可燃材料上,这就发生矿井电气火灾。 煤矿机电设备火灾主要是由于设备负荷过大引起的。大量高耗能的设备在煤矿中长期使用,不可避免引起设备负荷过大,将使设备达到使自己失去绝缘性能的危险温度,随着温度的不断积累,最后就常常引起电气设备发火。如综掘机、采煤机、刮板输送机、皮带机、绞车、主扇以及各类大功率设备等是煤矿企业广泛使用的大型高档设备,由于长期处于满负荷工作状态,因轴承损坏造成设备相应部位逐渐发热而导致设备损坏,影响正常生产的事频繁发生。

电缆火灾主要是由于电缆接触不良,或接地不好引起的。线路中个别部分接触电阻的增加,主要是接触不良的结果。实践证明,井下电缆与电缆或者电缆与设备的连接部分(接头)做得不好,往往是矿井巷道内因电流以产生火灾最常见的原因。电缆工作尤其是过流、过载时,由于导体发热会导致电缆温度升高,如果电缆不具备良好的阻燃性能,极易引起电缆着火,在燃烧的同时可产生大量有毒有害气体,造成矿工中毒窒息,还可能引起瓦斯煤尘爆炸。因此,电缆的阻燃性能对煤矿安全生产具有重要影响。

通过对机电设备引起火灾原因的分析,可以看出机电设备等电气火灾大部分都伴随着设备,电缆局部温度的逐渐升高,是一个积累的过程,完全可以通过对易发生火灾部位进行温度检测,根据温度上升的趋势来预测电气设备和电缆的运行状态,从而在故障点及时采取措施,防止火灾的发生。

3.矿用准分布式光纤光栅温度监测系统 3.1测温原理光纤传感技术是上世纪70年代末兴起一种先进的多学科交叉技术。经过三十多年,特别是过去十几年的发展,目前已经研制出两千多种基于光纤的传感器。光纤传感器与常规的电子类传感器相比有许多独特之处[7],主要优点包括:

1)以光作为传感信号基本不受外界电磁场干扰,长期漂移小,测量精度高,因而可用来作长期可靠的连续在线检测;

2)由于不带电,因而适于在电力,煤矿,石油,天然气及其它化工行业进行安全和生产状态参数的监测;

3)由于采用光纤传输,可以超远程监测;复用能力强,可实现对一线多点、两维点阵或空间分布的连续监测;

光纤传感器上述独特优点,特别是一根光纤可以对多个点做多变量测量的能力,是电子类传感器很难实现的。在具有强电干扰、高压、易燃易爆等恶劣环境下,传统的电子传感器受到很多局限性。光纤光栅温度监测仪所用温度传感器采用一种叫光纤布拉格光栅(FBG)的光学无源器件,是一种反射式光纤滤波器件,通常采用紫外线干涉条纹照射一段10mm长的裸光纤,在纤芯产生折射率周期调制,光波导内传播的前向导模会与后向反射模式进行耦合,形成布拉格反射,即产生了一个窄带的反射峰。论文大全。窄带反射峰的中心波长称为布拉格波长,研究表明:光纤光栅的空间折射率调制周期和纤芯的有效折射率均可引起光栅布拉格中心波长的改变。因此,通过一定的封装设计,使外界温度、应力和压力的变化导致光栅中心波长发生改变,即可使FBG达到对其敏感的目的[3]。如图2所示,光纤光栅中心波长和温度有着非常好的线性关系。

图1 光纤光栅结构图

图2 光纤光栅中心波长随温度变化曲线

3.2系统组成煤矿光纤机电设备状态检测系统主要包括信号解调模块、光学扩展模块,传输光缆和传感器网络。温度传感器由光纤光栅和连接光缆组成,温度传感器安装在现场;信号解调模块和计算机安装在控制室内,温度传感器和控制室由传输光缆进行信号传输。光纤信号解调控制器通过标准通讯接口与计算机通讯,由计算机完成温度的监控。

图3光纤多点温度传感监测系统框图

由信号解调模块中光源发出的高能量光束通过光缆注入光纤光是那传感器阵列,每个光纤光栅将反射特定的波长,这些波长与各个传感器所测温度成线性关系;这些波峰将由光纤信号解调模块进行波长解调,然后根据设定的参数计算出每个传感器的测量温度值,所测温度值和各种相关信息通过标准的通讯接口实时上传给监控上位机,进行信号的显示,故障诊断、事件记录、报警控制等。

3.3 系统技术特征和主要技术参数1.系统的技术特征

光纤传感器感知温度和位置信息,完全不带电,本质安全。传感器分辨率高,测温精确,响应时间短。传感器可靠耐用,使用寿命长。

阵列复用,大容量,多点分布式测温系统;一台解调仪可带几百个传感器,大范围覆盖测温现场;节省费用。论文大全。

由于全光信号传输,不受传感器距离限制,最大传感距离达10Km,是超远程温度检测系统。

2.系统的主要技术参数:

测温范围:-10℃~+110℃;测温精度:±1℃;温度分辨率:0.1℃;温度探测器响应时间:<5s;空间分辨率:根据现场情况;每通道最大传感器点数:18个/通道;测量时间:<30s/16通道。

4.系统的应用为了解决大规模的煤矿机电设备安全监测问题,在某煤矿的地面110Kv变电所,-312水平中央变电所,地面洗煤厂配电室,井下高压电缆中间接头及地面110Kv变电所电缆间(电缆密集处)等位置,共安装了近800个矿用光纤温度传感器。系统由一个监测仪和一个监控主机组成,所有传感器通过一条多芯的光缆连接起来,结构非常简洁。通过软件我们可以方便观测所监测位置的温度状态,对预防煤矿电气火灾提供了有力的技术基础。

5.总结随着我国煤矿采掘机械化和电气化程度的提高,电气火灾成为煤矿火灾的一个重要原因。通过对煤矿机电设备引起火灾的原因的分析,认为实时检测机电设备的温度可以有效预测预报火灾事故的发生。基于光纤温度传感器建立了一套煤矿火灾实时在线监测系统,通过安装煤矿光纤机电设备状态检测系统,对煤矿供电设备及高压线路接点的温度进行了实时在线监测,有效实现了煤矿供电设备安全状态的监控和火灾的预测预报,为煤矿安全生产提供了有力保障。这种方法的研究和应用对矿井火灾监测预报具有重大的实用价值。

参考文献[1] 绕云江,王义平,朱涛,光纤光栅原理及应用[M]。北京:科学出版社,2006

[2] 郭碧红,杨晓洪,我国电力设备在线监测技术的开发应用状况分析,电网技术,23(8):65-68,1999

[3] 赵勇,光纤光栅及其传感技术[M],北京:国防工业出版社,2007

[4]林全德,浅谈煤矿井下电气火灾原因及其预防,能源与环境, 2006(04)

[5] 时训先,蒋仲安,何理,矿井电气火灾原因分析及其预防[J],矿业安全与环保,2005(01)

[6] 苏国利,等.浅谈综采工作面电缆故障的防护措施[J],煤炭技术,2002(6)

[7] 李艳秋, 曹钟中, 靳 涛. 电力电缆火灾监测及防火预警系统的研制[ J ]. 华北电力技术, 2001 (2) .

温度传感器论文范文3

关键词:保温控制;TEC;DS18b20;多通道

中图分类号:V443文献标识码:A 文章编号:1672-3791(2015)01(b)-0000-00

在现代,CCD相机在多领域被广泛应用,成为人类获取信息的主要工具之一。做为一种半导体集成器件,CCD相机对环境温度变化非常敏感,环境温度过高,引起光学和机械误差将导致相机的视轴漂移和光学系统的波前畸变,造成影像模糊,严重破坏成像质量,而环境温度过低直接会导致CCD相机不能工作。这就限制了其在一些温度环境相对恶劣条件下的使用 。如产品环境模拟试验,环境温度低温达到-40℃,高温要60℃,这就要求CCD相机应具有较宽的工作温度适应能力,通常有两种方法,一是采用制造工艺,生产宽温器件,二是采用保温措施保证CCD器件的工作环境温度,因后者的成本较前者低,被广泛采用。据此文中设计了多通道CCD保温仪,采用DS18b20为温度传感器和TEC半导体为制冷制热器件,STC89c52为中心控制器件,可实现-50℃~+70℃较恶劣环境温度下CCD相机正常过工作条件。

1系统总体结构

本次设计的测温系统不仅要求能够实现多通道同时测温,而且测温精度较高,图1是保温仪的系统硬件设计的总体框架。

1.1单片机控制系统

整个系统由STC89C52进行集中控制和管理。STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案 。

1.2单总线测温系统

DS18b20是由美国DALLAS公司推出的第一片支持“一线总线”接口的温度传感器,它具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,可以直接将温度转化成串行数字信号供处理器处理 。

DS18b20独特的单线接口方式,它与微处理器连接时仅需要一条口线即可实现微处理器与DS18b20的双向通信,并且支持多点组网功能,多个DS18b20可以并联在唯一的三线上,实现组网多点测温,在使用中不需要任何元件,全部传感器及转换电路集成在形如一只三极管的集成电路内,测量温度范围为-55℃―+125℃,可编程分辨率为9―12位,对应的可分辨温度分别为0.5℃,0.25℃,0.125℃,在-10℃―+85℃时精度为±0.5℃ 。

1.3 驱动系统

驱动系统主要是控制保温仪的加热、制冷,以及散热。通常制冷有风冷、水冷、压缩机制冷、TEC制冷等几种方式 。本系统采用TEC加热/制冷,TEC是利用半导体的热―电效应制取冷量的器件,又称热―电制冷片 。利用半导体材料的帕尔贴效应,当直流电通过两种不同半导体材料串联成的电偶时,在电偶两端即可分别吸收热量和放出热量,实现制冷的目的 。本系统采用TEC1-12706。系统采用了6片制冷片,同时控制六个保温仪,输入电压选用12V,总的制冷功率达到 330W。为了保证TEC加热制冷功率,会在TEC的一面加上散热组件(风扇和散热片)。

驱动系统电路如图4(a)所示,由单刀双掷继电器、PNP8550、IN4007以及 两端接的TEC组成,通过三极管 、 的导通和截止来控制继电器的吸合与断开,从而使TEC两端导通,对系统进行加热或是制冷。继电器两端反接的二极管IN4007为消耗二极管,用来消耗反向电动势。

1.4 LCD显示系统

显示系统采用128×64 的 LCD 显示器。5V电压驱动,带背光,液晶显示模块是 128×64 点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置国标 GB2312码简体中文字库(16×16 点阵)、128 个字符(8×16 点阵)及 64×256 点阵显示 RAM(GDRAM)。与 CPU 直接接口,提供两种接口来连接微处理机:8位并行及串行两种连接方式 。 本系统采用并行链接方式。图5是其和单片机的接口。

2 系统软件设计

软件设计是保温仪的重要组成部分,软件流程图如图6所示。

上电以后,单片机首先对其进行初始化设置,设置与继电器连接的个引脚输出低电平,继电器断开,制冷组件停止工作,然后初始化12864,初始化DS18b20温度传感器,开始测温,需要注意的是由于系统是多通道DS18b20同时测温,所以需要先将DS18b20温度传感器的序列号读取出来,然后在测温时通过匹配序列号判断所读取的是哪个保温仪的温度,最后将各保温仪的温度与设定值相比较,如果不在设定温度范围内则调用温控子程序。根据实验需要,在最开始将系统的温度值设定为高温25℃,低温20℃,也可以根据实验环境需要,设定温度警报值,当某个保温仪内温度超出警报温度范围,则调用报警程序,并尽快将系统关闭,以免将其他器件烧毁。

3 应用试验

应用在高低温环境下对瞄准镜进行可靠性试验,,需要CCD相机进行图像采集,试验温度要求在-50℃~60℃。图9(a)为高低温箱内部结构图,将CCD相机及保温仪系统放到放在高低温箱内部,高低温箱负责给实验提供温度条件。(b)保温仪实物图。

高低温箱温度 1号保温箱内温度 2号保温箱内温度 3号保温箱内温度 4号保温箱内温度

-50℃ 19.8℃ 19.6℃ 19.4℃ 19.6℃

-40℃ 19.9℃ 19.7℃ 19.6℃ 19.4℃

0℃ 21.3℃ 22.1℃ 21.4℃ 21.7℃

40℃ 23.2℃ 24.1℃ 23.8℃ 24.0℃

50℃ 24.9℃ 25.1℃ 24.8℃ 25.0℃

保温仪是为确保在一些极端温度下实验可以正常进行,所以系统采用的测温精度为0.1,由测量结果可以看出在高温和低温情况下保温仪内温度合理的控制在了CCD相机的工作温度范围呢,且四通道恒保温仪温度一致性比较好,温度波动性小与±1℃,满足了设计要求。

5结论

采用DS18b20为温度传感器的多通道TEC保温仪,电路简单,不易干扰,不仅为高低温下进行的CCD图像采集实验提供了温度保障,并且也可以应用与其他极端温度下的实验,为工作温度范围较窄的电子器件提供温度保障,保证了个电子器件在高温或是低温下正常工作,不影响实验结构,并且生产简单,操作简单,适合与多种实验与生产中。

参考文献

[1]黄谊.基于工业CCD相机图像处理和数据管理系统的设计[D]硕士学位论文.山西:中北大学.2013

[2]郭天祥.51单片机C语言教程―入门、提高、开发、拓展全攻略[M].北京:电子工业出版社.2009:2-16.342-349.147-167

[3]吕建波.基于单总线数字温度传感器DS18B20的测温系统设计[J].现代电子技术.2012(10):1-3.

温度传感器论文范文4

关键词:防爆柴油机,安全保护系统

 

1引言

随着我国经济建设的快速发展,煤炭等工业不断朝着机械化、自动化的方向发展,各种采煤和运输设备越来越广泛地应用于各种采煤施工中。

在煤矿巷道的掘进开采和运输的过程中,需要使用多种煤矿用特种车辆,柴油机以其较大的功率和较低使用成本,广泛地应用煤矿用特种车辆中,由于在煤矿巷道的特殊生产环境中存在大量的爆炸性气体,当柴油机在工作中产生的热量超过规定值,导致温度升高而超过上述爆炸性气体的燃点时,会造成煤矿中发生爆炸等灾难性的后果,因此,煤矿生产所中使用的柴油机必须具有防爆性,当柴油机在使用过程中的排气温度,机体表面温度以及冷却水温度,水洗箱水位 、机油压力等指标有任一项超标时,柴油机都会报警并自动停机,从而避免柴油机的损坏和矿中爆炸性气体爆炸。

因此,对上述各参数进行有效检测,并对柴油机进行及时控制的保护系统是防爆柴油机至关重要的组成部分,其性能的优劣直接影响着柴油机的安全性能。

2保护系统的要求

保护系统是在防爆柴油机某监控参数出现异常情况时及时发出报警信号并能使防爆柴油机自动停止运转的一种安全系统。当出现下列情况之一时,应报警、自动停机:

a)排气温度最高至70℃时;

b)表面温度最高至150℃时;

c)冷却水位(蒸发冷却)低至设定最低水位或冷却水温度(强制冷却)最高至98℃或厂家设计值时;

d)冷却净化箱水位低至设定最低水位时;

e)机油压力低至设定最低压力时;

f)瓦斯浓度达到1.0%(有煤(岩)与瓦斯喷出区域中瓦斯浓度达到0.5%)时(便携式瓦斯检测报警仪可手动停机)。

3保护系统的分析对比

在比较常见的防爆柴油机中,自动保护系统多为电气保护系统和启动保护系统。

电气保护系统主要包括电温度传感器、压力变送器、水位传感器、控制器以及电磁阀等;电温度传感器检测被测点的温度(排气温度、冷却水温度、表面温度),压力变送器检测机油压力,水位传感器检测冷却净化箱的水位,有的还包含转速传感器,检测发动机转速,这些传感器检测到的信号传送至控制器,当某项指标超标时,控制器便自动控制电磁阀的开闭切断柴油机的进油及进气,进而实现柴油机的报警停机。如图1示意。

图1电气保护系统示意

上述电气自动保护系统的温度传感器、压力等均是电气元件,需要通电才能正常工作,对于煤矿这个特殊环境,电气元件的使用必须根据煤矿安全标准进行防爆处理(隔爆处理或本安处理)。。同时,与其相配合使用的电源、控制器以及电磁阀等涉电元件均需要进行防爆处理,导致该保护系统的结构较为复杂,体积较大,在整机空间确定的情况下,不利于整机结构的布置。另外电气保护系统受环境条件的影响,性能不稳定,可靠性差。

因此,如何在保证防爆安全性的条件下,简化保护系统的复杂程度,减小其体积,以提高整机结构布置的合理性,就成为本领域技术人员需解决的问题。

气动保护系统可以再没有电源的条件下,可实现煤矿用防爆柴油机的自动保护,提高了防爆柴油机在煤矿井下爆炸性气体使用的安全性。

气动保护系统所监测的指标与电气保护系统所监测的指标一致,其温度传感器主要是由感温热敏元件控制方向阀的通断,油压传感器由压力控制方向阀的通断,当任一项指标超标,阀的进气口与出气口连通,压缩空气进入停车气缸,使发动机自动停机,同时压缩空气进入气喇叭报警,实现自动保护。。如图2示意

图2气动保护系统示意

气动保护系统结构组成简单,有效的节省了空间。。另外使用压缩空气作为介质,较液压油更为清洁干净,易于维护。气动保护系统安全可靠,不受环境温度、湿度等影响,性能温度,可靠性高。但此种保护系统也存在一定的不足,当某一指标超高,自动停机后不容易检查出哪个指标出现问题。驾驶员必须检查各个监测点,采取措施解除保护,才能再次启动机器。以此,快速找出报警点,减少维修时间成为今后要解决的一个必要问题。另外,经了解,目前不少设备多多少少的存在漏气现象,造成系统压力降低,由于多数大型矿用车辆启动方式为气启动,当系统压力过低时,会造成再次启动不成功。需要向系统内重新充气达到启动所必须的压力才能再次启动成功。所以必须解决气动系统的漏气问题。由于瓦斯传感器无法集成到气动保护系统中,所以多使用便捷式瓦斯检测报警仪,当瓦斯超标时,报警仪报警,驾驶员手动停机。

4结束语

目前,电气自动保护系统与气动保护系统已大量应用在井下防爆柴油机无轨胶轮车上,两种保护形式虽然解决了防爆柴油机自动保护的问题,但还存在一定的不足,完善各自的系统性能将成为今后的研究重点。

参考文献

[1]马建林,防爆柴油机钢轮机车在煤矿的应用及问题探讨,河北煤炭,2007年第6期

[2]周茂普,矿用防爆无轨胶轮车安全保护系统的研究,液压与气动,2008年第12期

温度传感器论文范文5

【关键词】无线温度测量系统温度计量环境监测应用

在当前的自动化行业中,无线温度传感器的应用极为广泛。设备具备了多个种类,在环境监测、温度计量等方面,传统有线温度测温仪目前已经无法满足上述的使用需求。本论文粗略的阐述了无线射频温度测量系统的相关信息,如组成、特殊环境下如何应用,并总结了其优缺点,最后对其未来的发展进行展望。对比传统的有线通信而言,如下的优势是无线通信技术所具备的:首先,以电磁波作为传输介质,光纤以及电缆不需要被架设起来,使得传统运输中固定的周期长、高成本等问题得以避免;其次,是有线通信构成的单片机多机通信系统,总线上挂接的收发器的数量受接地址编码,收发器的数量不受限制;第三,成本、功耗都比较低、体积小、电路简单等优势。同时在无线通信系统中,其还采用了多字节的方式。在无线遥控系统、工业数据采集系统等方面,极为适用[1]。伴随着物联网、电子信息技术的快速发展,出现了许多无线温度测量系统,它们具备了许多完善的功能,同时使用上也极为便捷。同时在PC机上,它们还能够进行保存、显示、统计等操作,甚至还可以实现远程控制以及警报功能。布线成本由此得以减少,同时有限传感器存在的一些问题也得以解决。

一、无线射频温度测量系统的组成[2.]

结合功能来对无线射频温度测量系统进行划分,主要可以划分为如下两大部分:首先是无线测控终端,具体包括了如下模块:温度采集、处理以及发送模块,另外部分设备为具备程序运行功能的,如数据的接受、处理模块、PC机以及串口通讯模块等。两大部分的联系主要结合无线数据通讯来实现,可以实现数据的实时存储、接收,还可以实现综合分析、计算。以射频技术为基础的此套系统,具备了如下的工作过程:无线数据采集方面,对环境温度的采集,交由数字温度传感器来实现,并向数据处理部分直接传送;数据处理,数字信号被接收之后,会向对应值转换。随后结合特定的协议格式,来打包数据,向无线收发模块发送缓冲区写入,在天线的帮助下,经由无线收发模块来传输数据,无线主机方面,接收数据仍然由无线收发模块来实现,数据由处理模块处理,再结合串口,向PC机传输;此外,无线收发模块中的数据,数据处理模块还将对数据进行处理,结合相应的协议格式,来解析数据,结合获取到的指令值开展相应的处理,进而实现控制采集端的目标。

这一系统具备的功能如下:

(1)以移动设备为基础,可以实现现场的检测、分析;

(2)对检测信号的传输为无线形式,检测终端可以同时、多个连接;

(3)移动设备、探头等之间的连接形式为无线,检测人员可以不必身处现场,尽量避免因为自身的呼吸、活动,而影响测试Y果,另外对于这部分人员的人身安全也可以得到保证。

二、无线射频温度测量系统的特殊应用

国内中国安防提供了SmartNodeWTS01无线温度传感器,测温范围:-50~+150℃,主要应用于环境监测、温度采集以及食品、医药行业温度监测等;上海搜博实业有限公司SLWT1-1系列ZIGBEE无线温度传感器,测温范围:-25~+125℃,实现低成本温度状态在线监测方案的实用型无线组网传感器模块,可广泛应用于实时温度数据采集监测的各种场合。

本文具体进行如下归纳,不论是在房间、医院,或是在实验室、仓库,亦或是运输进程中,无线测温仪都可用来对温湿度进行监控。接下来将具体讨论,起在日常监测中,还能够解决哪些有线传感器解决不了的问题,比如说下列较为特殊的环境试验设备。

(1)高压密封。比如说压力蒸汽灭菌器,如果检测工具为有线传感器,一旦温度上升,会出现极为严重的漏气问题,导致压力无法达到目标,在面对灭菌设备时,也无法实现法兰密封。

(2)真空设备。比如说热压真空罐等,因为使用这部分设备时,都必须要对真空进行抽取,而使用有线传感器时,无法达到真空度要求。

(3)低温设备、大空间。比如说大养护池等。如果使用的传感器是有线的,会导致较长的布线,这和普通温度记录采集仪的使用环境温度范围不符,如果长期处于异常环境中,会导致仪器不工作,另外仪器供电难等问题也时有发生。

(4)环境恶劣,如噪声、粉尘污染较为严重时,普通设备、人员无法长期停留,要想解决这一问题,就必须要运用无线温度测量仪。

(5)自动化设备,如带式输送机,不论是经济效益,还是生产效率,都必须要以持续的运行为基础,检测过程中开展有线传感器的布线工作并不现实。设备具有较好的密封性,且不存在测试孔,将对有线传感器产生影响,所以无线传感器开展测量将是最佳选择。

三、无线射频温度测量系统的优势与不足

在进行日常温度校准时,布线是一项极为繁重的工作,如果布线时间较长,将会对稳定的环境产生影响,要想检测温度湿度等,在必须要在环境再次稳定后进行,工作效率受到影响,并且检测进程中,传感器受到破坏的纪律较高。上述诸多问题,如果能够采用无线温度测量仪,必将得以解决。在其他方面,这一设备也存在较为显著的优势:如存储记录、传感器的一体化;距离不会对传输产生影响;电源方面因为使用了内置电池,所以不会存在限制;仪器设备如果可以由有线温度测量仪去测量,那么必然也可以应用无线温度测量仪;和上位机通讯时,具备了如下功能,能够自动对数据进行采集、处理、判定结果等。

但仍然有一些问题存在:就当前的技术水平来说,其温度记录的范围并不广。要想具备较高的准确定、同时还要具备稳定的性能,就需要对一些价格昂贵的进口测量系统进行购买。内置电池虽然减少了电源方面的限制,但是生命有限,需要经常更换。红外辐射等设备不可应用该测量设备,如果设备为微波加热,同样也不可应用,因为不易散热的金属外壳,会导致爆炸问题的出现。

四、结语

目前,无线温度测量仪还存在一些不足,比较常见的温度记录范围在-40℃~+135℃,高温段的技术问题难以解决,需要进一步的研究探索,以便推广使用。

参考文献

[1]王代华,薛云朝,任立宗.无线遥控触发系统研究[J].中北大学学报,2007(28):171-177.

[2]李余庆,张华,刘继忠.基于DS1820的无线温度采集系统的设计[J].计算机信息,2009(26):187-189.

[2]JJF1366-2012.温度数据采集仪校准规范[S].

温度传感器论文范文6

关键词:ATMEGA16,温度,监控系统,DS18B20,NRF905

 

1 引言

温度是物联网家居系统中一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着各类物联网家居的监控日益改善,各类器件的温度控制有了更高的要求,为了满足人们对温度监控与控制,本文设计了物联网家居系统中基于NRF905的多路无线温度监控系统

随着信息科学与微电子技术的发展,温度的监控可以利用现代技术使其实现自动化和智能化。多路无线温度监控系统就是朝着这一目标进行设计的。本次设计要求利用单片机及无线传输模块实现无线温度监测系统。其中温度数据无线传输利用Nordic VLSI公司生产的NRF905无线传输模块实现。要求完成整体方案设计及硬件和相关软件设计,并完成无线传输模块的调试,要求能实现多路温度信号的远距离传输,并且实现温控范围调节及其超温范围报警。

2 温度采集监控系统的技术要点

由于本系统是一个实时监控的系统,对温度的采集控制是实时的,所以温度采集的时间间隔,数据发送接收的时间差,单片机与PC机之间数据的传送速度以及上位机程序对数据的分析处理是本系统的关键。通过对温度传感器,无线模块的优化选择,实现单片机与PC机通过高速USB接口进行通信及对上位机代码的优化实现本系统的实时监控功能,同时还要考虑的是温度传感器的各个参数,无线模块的参数,以及硬件电路的优化搭建问题。

3 硬件电路的搭建及软件设计

为了使系统能够最优化的工作,系统的硬件器件选择将是十分重要的问题。

(1)温度传感器的选用:

系统是做温度监控的,首要的工作就是如何选取温度传感器,正确的选择温度传感器对系统的性能和价格有着重大的影响。就温度传感器的温度测量范围、精度、响应时间、稳定性、线性度和灵敏度.等几个因素的比较分析,本系统选用的是美国DALLAS半导体公司生产的DS18B20温度传感器。选用该传感器的原因有:

①DS18B20与微处理器仅需要一条线即可实现双向通讯,简化连接难度;

②无需其他的AD转化器件,降低成本,也减少了硬件制板的费用;

③可供使用电压范围大:3.0V到5.5V都可以使用,器件的功耗较低;

④测温分辨率高,最高可达0.125度,便于温度精确控制;

⑤支持多点测试,多个DS18B20可以并联在一根线上,实现多点测温;

(2)无线模块的选用:

本系统是多点监控,同时他的数据传输是通过无线传输的,所以无线传输模块的需要支持多点的数据的传送。考虑稳定性,传输数据的速度,错误率等方面,本系统选用的是NRF905无线数据传输模块,选择该模块的原因有:

①433MHZ开放ISM频段免许可证使用,无需额外申请频段;

②传输速率高,最高数据传输速率可达50KB,满足实时监控的需要;

③自带有CRC纠错功能,抗干扰能力强。所需电压仅3.3V,功耗低;

④125个频道,支持多点通信,满足系统多点监控的需要;

(3)主控芯片选用

ATmega16是ATMEL公司推出的一款基于AVR RISC构架的低功耗CMOS的8位单片机。ATmega16在16MHz时有16MIPS的运算速度,具有两周期硬件乘法器,从而使得设计人员可以在功耗和执行速度之间取得平衡,且非易失性程序和数据存储器资源较大能满足程序代码设计需要。外设资源丰富:2个具有独立预分频器和比较器功能的8位定时/计数器;一个独立预分频器和比较/捕捉功能的16位定时/计数器;支持4路PWM输出、8路10位ADC。支持TWI接口、USART、SPI接口多机通信满足扩展功能的需要。(4)其他外围器件

USB与PC机通信中USB控制芯片PDUSBD12,显示模块1602,报警蜂鸣器等。。

3.1 系统的硬件连接方法

硬件方面主要由两部分组成,温度采集发送部分和数据接受分析控制部分。

3.1.1 温度采集发送部分

主要的连接器件有NRF905无线数据传输模块,DS18B20温度传感器采集模块,1602显示模块,报警模块,及温度异常处理模块。其连接方法如图3.1.1所示。主控芯片M16通过SPI总线协议向无线模块发送配置信息,使其工作初始化。温度传感器与M16的连接使用的是单总线协议,来采集温度。显示芯片1602来显示采集到得温度,同时使用蜂鸣器作为报警装置,当温度有异常时单片机会控制加热设备或降温设备来对异常进行处理。

3.1.2 数据接收分析控制部分

主要的连接器件有无线数据传输模块,USB传送模块,和PC机构成。其电路连接如图3.1.2所示。同样主控芯片M16通过SPI总线协议向无线模块发送配置信息,使其工作初始化。接收到温度后通过PDUSBD12芯片利用USB协议将数据发送到PC机上,可以直接在VC界面上显示。PC机可以自动分析数据是否存在异常,当存在异常时,PC发送控制信号来远程控制加热或降温设备对异常进行处理,同时发出报警信号,这样可以将危险降到最低,实现自动化与智能化。

3.2 软件程序的设计

由于系统由两个模块构成,所以软件程序的设计也分为温度采集发送模块程序设计和数据接受分析控制模块程序设计。

3.2.1 温度采集发送模块

主要需要设计的程序有NRF905的内部寄存器配置,温度传感器温度采集程序,液晶显示模块程序,报警系统程序。。程序流程图如图3.2.1:

3.2.2 数据接受分析控制模块

主要需要设计的程序有NRF905的内部寄存器配置,USB模块的驱动编写,上位机程序的建立,由于篇幅有限,源代码及流程图不再给出。

4 系统的工作流程

本系统主要由两个模块组成,温度采集发送模块和数据接收监控模块。

4.1 数据采集发送模块

该模块的主要功能是采集温度和发送数据。主控单片机发出命令开始有DS18B20进行温度采集,温度传感器将采集到的温度传回主控芯片,在1602上进行显示,然后主控芯片通过SPI总线将数据传送给无线发送模块NRF905,由无线发送模块将数据发送出去。同时主控芯片会检测温度是否异常,当温度出现异常时会发出报警信号,同时启动异常处理模块。。具体工作流程如图4.1.1:

4.2 数据接收监控模块

该模块的主要功能是接收和处理数据,由单片机控制无线模块接收数据,同时控制USB模块将数据发送到PC机上去,PC机接收到温度后会对温度进行分析处理,当温度由异常时,会发出报警信号,同时通过将控制指令发送至单片机,通过无线模块来远程控制异常处理模块执行工作,从而实现异常自动处理和双报警,从而最大限度的确保被监控地的预警和安全。具体工作流程如图4.2.1:

5 硬件调试结果及结束语

对本系统进行远距离具体温度测试有,经数据对比发现实地温度采集与上位机显示数据完全吻合,且能实现实时温度监控。同时可以通过PC机对单片机进行远程控制,性能稳定。

本系统采用的数据传输是通过无线技术实现的,不仅仅可以用在物联网家居上,还可以在很多环境条件恶劣,且不容易铺设电缆的地方使用,同时移动起来比较方便,在不久的将来会有更大的利用价值。

6 参考文献

[1] DS18B20资料dallas.com M16资料atmel.com

[2] 周洪,胡文山,张立明等物联网家居控制系统[M]北京:中国电力出版社.2006

[3] 谭浩强.C程序设计.清华大学出版社,1999

[4] 宋建国.AVR单片机原理及控制工程应用.北京航天航空出版社,2008

[5] 韩江洪.物联网家居系统与技术[D].合肥工业大学出版社,2005.

[6] 赵继春.基于GPRS无线物联网家居安防系统的研究与实现[D].邯郸:河北工程大学,2007.