前言:中文期刊网精心挑选了集成电路范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
集成电路范文1
一、集成电路布图设计的概念
集成电路的布图设计是指一种体现了集成电路中各种电子元件的配置方式的图形。集成 电路的设计过程通常分为两个部分:版图设计和工艺。所谓版图设计是将电子线路中的各个 元器件及其相互连线转化为一层或多层的平面图形,将这些多层图形按一定的顺序逐次排列 构成三维图形结构;这种图形结构即为布图设计。制造集成电路就是把这种图形结构通过特 定的工艺方法,“固化”在硅片之中,使之实现一定的电子功能。所以,集成电路是根据要实现的功能而设计的。不同的功能对应不同的布图设计。从这个意义上说,对布图设计的保护也就实现了对集成电路的保护。
集成电路作为一种工业产品,应当受到专利法的保护。但是,人们在实践中发现,由于集成电路本身的特性,大部分集成电路产品不能达到专利法所要求的创造性高度,所以得不到专利法的保护。于是,在一九七九年,美国众议院议员爱德华(Edward)首次提出了以著作权法来保护集成电路的议案。但由于依照著们法将禁止以任何方式复制他人作品,这样实施 反向工程也将成为非法,因此,这一议案在当时被议会否决。尽管如此,它对后来集成电路保护的立法仍然有着重要意义,因为它提出了以保护布图设计的方式来保护集成电路的思想;在这基础上,美国于1984年颁布了《半导体芯。片保护法》;世界知识产权组织曾多次召集专家会议和政府间外交会议研究集成电路保护问题,逐渐形成了以保护布图设计方式实现对集成电路保护的一致观点,终于在一九八九年缔结了《关于保护集成电路知识产权条约》。在此期间,其他一些国家颁布的集成电路保护法都采用了这一方式。
虽然世界各国的立法均通过保护布图设计来保护集成电路,但关于布图设计的名称却各不相同。美国在它的《半导体芯片保护法,)中称之为“掩模作品”(maskwork);在日本的《半导体集成电路布局法》中称之为“线路布局”(cir— cuitlayout);而欧共体及其成员国在其立法中称布图设计为“形貌结构”(topography);世界知识产权组织在《关于集成电路知识产权条约》中将其定名为布图设计。笔者以为,在这所有的名称中以“布图设计”一词为最佳。“掩模作品”一词取意于集成电路生产中的掩模。“掩模作品”一词已有过时落后之嫌,而“线路布局”一词又难免与电子线路中印刷线路版的布线、设计混淆。“形貌结构”一词原意为地貌、地形,并非电子学术语。相比之下,还是世界知识产权组织采用的“布图设计”一词较为妥当。它不仅避免了其他名词的缺陷,同时这一名词本身已在产业界及有关学术界广泛使用。《中国大百科全书》中亦有“布图设计”的专门词条‘
二、布图设计的特征
布图设计有着与其他客体相同的共性,同时也存在着自己所特有的个性。下面将分别加以论述。
1.集成电路布图设计具有无形性
无形性是各种知识产权客体的基本特性,,因此也是布图设计作为知识产权客体的必要条件。布图设计是集成电路中所有元器件的配置方式,这种“配置方式”本身是抽象的、无形的,它没有具体的形体,是以一种信息状态存在于世的,不象其他有形物体占据一定空间。
布图设计本身是无形的,但是当它附着在一定的载体上时,就可以为人所感知。前面提到布图设计在集成电路芯片中表现为一定的图形,这种图形是可见的。同样,在掩模版上布图设计也是以图形方式存在的。计算机辅助设计技术的发展,使得布图设计可以数据代码的方式存储在磁盘或磁带中。在计算机控制的离子注入机或者电子束曝光装置中,布图设计也是以一系列的代码方式存在。人们可通过一定方式感知这些代码信息。布图设计是无形的,但是其载体,如掩模版、磁带或磁盘等等却可以是有形的。
2.布图设计具有可复制性
通常,我们说著作权客体具有可复制性,布图设计同样也具有著作权客体的这一特征。当载体为掩模版时,布图设计以图形方式存在。这时,只需对全套掩模版加以翻拍,即可复制出全部的布图设计。当布图设计以磁盘或磁带为载体时,同样可以用通常的磁带或磁盘拷贝方法复制布图设计。当布图设计被“固化”到已制成的集成电路产品之中时,复制过程相对复杂一些。复制者首先需要去除集成电路的外封装;再去掉芯片表面的钝化层;然后采用不同的腐蚀液逐层剥蚀芯片,并随时拍下各层图形的照片,经过一定处理后便可获得这种集成电路的全部布图设计。这种从集成电路成品着手,利用特殊技术手段了解集成电路功能、设计特点,获得其布图设计的方法被称为“反向工程”。
在集成电路产业中,这种反向工程被世界各国的厂商广泛采用。集成电路作为现代信息工业的基础产品,已渗透到电子工业的各个领域,其通用性或兼容性对技术的发展有着非常重要的意义。因此,而反向工程为生产厂商了解其他厂商的产品状况提供了可能。如果实施反向工程不是单纯地为复制他人布图设计以便仿制他人产品,而是通过反向工程方法了解他人品功能、参数等特性,以便设计出与之兼容的其他电路产品,或者在别人设计的基础上加以改进,制造出更先进的集成电路,都应当认为是合理的。著作权法中有合理使用的规定,但这种反向工程的特许还不完全等同于合理使用。比如,合理使用一般只限于复制原作的一部分,而这里的反向工程则可能复制全套布图设计。改编权是著作权的权能之一,他人未经著作权人同意而擅自修改其作品的行为是侵权行为,但这里对原布图设计的改进则不应视为侵权。
综之,无论何种载体,布图设计是具有可复制性的。
3.布图设计的表观形式具有非任意性著作权客体的表现形式一般是没有限制的。同一思想,作者可随意采取各种形式来表达,因此著作权法对其表现形式的保护并不会导致对思想的垄断。布图设计虽然在集成电路芯片中或掩模版上以图形的方式存在,具备著作权客体的外在特性,但是其表现形式因受诸多客观因素的限制,却是有限的或者非任意的。
首先,布图设计图形的形状及其大小受着集成电路参数要求的限制。如果要求集成电路 具有较高的击穿电压,设计人在完成布图设计时就必须将晶体管的基区图形设计为圆形,以 克服结面曲率半径较小处电场过于集中的影响。对于用于功率放大的集成电路,其功放管图 形的面积必须较大,使之得以承受大电流的冲击。
其次,布图设计还受着生产工艺水平的限制。为了提高集成电路的集成度或者追求高频 特性,常常需将集成电路中各元件的面积减小。这样,布图设计的线条宽度也相对较细。目前国。外已达到亚微米的数量级。但如果将线条设计得太细,以致工艺难度太大将会大大地降低集成电路成品率和可靠性,这是极不经济的;同样地,如果一味,地追求功率参数,将芯片面积增大,也会降低集成电路的成品率。
此外,布图设计还受着一些物理定律以及材料类及其特性等多种因素的限制。比如,晶体管可能因为基区自偏压效应而导致发射极间的电位不等。为克服基区自偏压效应,则需在加上均压图形。
虽然从理论上讲,突破这些限制条件的图形也可以受到著作权的保护,但由于布图设计的价值仅仅体现在工业生产中,所以对那些完全没有实用价值的、由设计人自由挥洒出来的所谓“布图设计”实施保护是没有任何意义的。这些图形不是真正意义上的布图设计,称其为一种“抽象作品”或许更为恰当。布图设计在表现形式的有限性方面,与工业产权客体相似。
三、布图设计权的特性
从上面的分析可知,集成电路布图设计有其自身的特征,并同时兼备著作权客体和工业产权客体的特性。在立法保护布图设计、规定创作人的布图设计权时,应当考虑这一特点。
首先,布图设计权应具备知识产权的共同特性,即专有性;时间性和地域性。布图设计具有无形性,同一布图设计可能同时为多数人占有或使用。为保障布图设计创作人的利益,布图设计权应当是一项专有权利。另一方面,布图设计的价值毕竟是通过其工业应用才得以实现。仅就一特定的布图设计而言,使用它的人越多,为社会创造的价值就越大。如果布图设计权在时间上是无限的,则不利于充分发挥其对社会的作用,也不利于集成电路技术的发展。所以布图设计权应有一定时间期限。当然,对时间期限的具体规定应当既考虑公共利益,又照顾到创作人的个人权益。只有找到二者的平衡点,才是利益分配的最佳状态。地域性作为知识产权的共性之一,同样为布图设计权所具备,在世界知识产权组织的《关于集成电路的知识产权条约》第三条;第四条和第五条的内容都涉地域问题,这实际上肯定了布图设计权的地域性。
其次,布图设计权还具有其独特的个性。下面将其分别与著作权和工业产权相对照,从而分析其特点。
1.布图设计权的产生方式与著作权不同,只有在履行一定的法律程序后才能产生。集成电路作为一种工业产品,一旦投放市场将被应用于各个领域,性能优良的集成电路可能会因其商业价值引来一些不法厂商的仿冒。另一方面,由于集成电路布图设计受到诸多因素的限 制,其表现形式是有限的,这就可能存在不同人完全独立地设计出具有相同实质性特点的布图设计的情况。这就是说,布图设计具有一定的客观自然属性,其人身性远不及普通著作权客体那样强。所以法律在规定布图设计权的产生时,必须对权利产生方式作出专门规定,否则便无法确认布图设计在原创人和仿冒人之间,以及不同的独立原创人之间的权利归属。
2.布图设计权中的复制权,与著作权中的复制权相比,受到更多的限制。翻开各国集成电路技术的发展史,反向工程在技术的发展中有着不可取代的作用。如果照搬著作权法中关于复制权地规定,实施反向工程将被认为是侵权行为。为了电子工业和集成电路技术的发展,应当对复制权加以一定的限制,允许在一定条件下或合理范围内实施反向工程,美国《半导体芯片保护法》第906条第一款中规定,“仅为了教学、分析或评价掩模作品中的概念或技术,或掩模作品中所采用的电路、逻辑流和图及元件的布局而复制该掩模作品者”;或进行上述的“分析或评价,以便将这些工作的结果用于为销售而制造的具有原创性的掩模作品之中者”均不构成侵犯掩模作品专有权。与此相反,单纯地为复制布图设计而实施反向工程仍为侵权。反向工程是对复制权的一种限制。
3.与工业产权相比,布图设计权产生的实质性条件也有所不同。专利法中“创造性”条件要求申请专利的技术方案具备“实质性特点”,而大多数集成电路达不到这一要求。比如,在设计专用集成电路时,常将一些已为人所熟知的单元电路加以组合,这种拼揍而成的集成电路大多难以满足专利法的创造性要求,这使得大量集成电路得不到专利法的保护,这正是传统专利制度与集成电路这一新型客体之间不协调的一面。所以集成电路保护法在创造性方面的要求不应象专利法要要求那么严,但也不能象著作权法完全不要求任何创造高度要求,因为布图设计的价值毕竟体现在工业应用上。
集成电路范文2
1、芯片是集成电路。芯片(chip)是半导体元件产品的统称,是集成电路(IC,integratedcircuit)的载体,由晶圆分割而成。
2、集成电路是指组成电路的有源器件、无源元件及其互连一起制作在半导体衬底上或绝缘基片上,形成结构上紧密联系的、内部相关的事例电子电路。它可分为半导体集成电路、膜集成电路、混合集成电路三个主要分支。
(来源:文章屋网 )
集成电路范文3
一、集成门电路的测试
集成门电路静态测试,一般采用模拟开关输入模拟高、低电平,用发光二极管显示方式或万用表、逻辑测试笔测试输出的高、低电平,看其是否满足门电路的真值表。动态测试时,各输入端接入规定的脉冲信号,用双踪示波器直接观察输入、输出波形,并画出这些脉冲信号时序关系图,看输入输出是否符合规定的逻辑关系。
1.CMOS门电路的测试
以CC4012为例进行分析。CC4012是双四输入与非门,两个四输入端的与非门制造在同一器件内。14脚接电源VDD,7脚接地。2、3、4、5为一个与非门的输入端,1为输出端;9、10、11、12为另一与非门输入端,13为输出端。测试时,测试电路应正确连接,以免损坏器件或引起逻辑关系混乱,测试结果不正确。CMOS与门和与非门的多余的输入端不允许悬空,应接+VDD,电源电压不能接反,输出端不允许直接连接+VDD或地,除三态门外不允许两个输出端并联使用。测试时应先加电源电压+VDD,后加输入信号。关机时应先切断输入信号,后断开电源+VDD。若用测试仪器测试,所有测试仪器外壳必须良好接地,若需焊接时,应切断电源电压+VDD,电烙铁外壳必须良好接地,必要时拔下烙铁,利用余热进行焊接。
测试时,将四个模拟开关接四输入端,按不同的组合模拟输入“0”、“1”电平。输出端接发光二极管,它的阳极通过电阻接+VDD,阴极接输出端。输出为“1”时,发光二极管不亮,输出为“0”时,发光二极管亮。若测试结果与其逻辑功能相符,说明被测器件正常。
CMOS或门、或非门使用时,除多余输入端应接地(低电平)外,其余同与非门相同。
2.TTL门电路测试
测试方法与CMOS门电路基本相同,在实际应用中,TTL器件的高速切换,将产生电流跳变,其幅度为4~5mA,该电流在公共地线上的压降会引起噪声干扰,所以要尽量缩短地线。可在电源输入端与地间并接1个100μF电解电容作低频去耦,并接一个0.01-0.1μF电容作高频去耦。
3.集电极开路门电路(OC门)与三态门(TSL门)测试
(1)OC门测试
OC门测试前,应先接好上拉电阻RC,测试方法与非门测试方法相同。
(2)三态门TSL的逻辑功能测试
三态门除正常数据输入端外,还有一个控制端EN,也称使能端。对于控制端高电平有效三态门,当控制端为高电平时,TSL与普遍与非门无异,当控制端为低电平时,即“禁态”时,输出端对电源正、负极均呈高阻抗。还有一种控制端低电平有效电路,即控制端为低电平时,TSL逻辑功能与普遍与非门相同;为高电平时,输出端呈高阻抗。
测试方法和与非门基本相同,在输入端与使能端分别接模拟开关,输出端接发光二极管。当使能端为有效电平时测出输入输出逻辑关系;当使能端为“禁态”时,测输出端是否呈高阻抗。
二、组合逻辑电路的测试
组合逻辑电路的功能,由真值表可完全表示出来,测试工作就是验证电路的功能是否符合真值表。
1.组合逻辑电路静态测试
(1)将电路的输入端分别接到逻辑电平开关,注意按真值表中输入信号高低位顺序排列。
(2)将电路的输入端和输出端分别连至“0-1”电平显示器,分别显示电路的输入状态和输出状态。注意输入信号的显示也按真值表中高、低位的排列顺序,不要颠倒。
(3)根据真值表,用逻辑电平开关给出所有状态组合,观察输出端电平显示是否满足所规定的逻辑功能。
对于数码显示译码器可在上述测试电路基础上加接数字显示器加以测试。在数码显示译码器输入端输入规定信号,显示器上应按真值表显示规定数码。
2.组合逻辑电路的动态测试
动态测试是根据要求,在组合逻辑电路输入端分别输入合适信号,用脉冲示波器测试电路的输出响应。输入信号可由脉冲信号发生器或脉冲序列发生器产生。测试时,用脉冲示波器观察输出信号是否跟得上输入信号变化,输出波形是否稳定并且是否符合输入输出逻辑关系。
3.译码显示电路测试
译码显示电路首先测试数码管各笔段工作是否正常。如共阴极LED显示器,可将阴极接地,再将各笔段通过1kΩ电阻接电源正极+VDD,各笔段应发光。再在译码器的数据输入端依次输入0000~1001的数码,则显示器对应显示出0~9数字。
译码显示电路常见故障分析判断如下:
(1)数码显示器上某段总是“亮”而不灭,可能是译码器的输出信号幅度不正常或译码器工作不正常。
(2)数码显示器上某段总是不“亮”,可能是数码管或译码器连接不正确或接触不良。
(3)数码显示器字符模糊,且不随输入信号变化而变化,可能是译码器的电源电压偏低或电路连线不正确或接触不良。
三、时序逻辑电路测试
时序逻辑电路的特点是任意时刻的输出不仅取决于该时刻输入逻辑变量的状态,而且还和电路原来状态有关,具有记忆功能。其构成有两类:一类是由触发器或由触发器和门电路组成;另一类由中规模集成电路构成,如各类计数器、移位寄存器等。
1.集成触发器的测试
集成触发器是组成时序电路的主要器件。静态测试主要测试触发器的复位、置位、翻转功能。动态测试是触发器在时钟脉冲作用下测试触发器的计数功能,用示波器观测电路各处波形的变化情况,并根据波形测定输出、输入信号之间的分频关系、输出脉冲上升和下降时间、触发灵敏度和抗干扰能力以及接入不同性质负载时对输出波形的影响。测试时,输入触发脉冲的宽度一般要大于数微秒,且脉冲的上升沿和下降沿要陡。
2.时序逻辑电路的静态测试
时序逻辑电路的静态测试主要测试电路的复位、置位功能。它的静态测试应称为“半动态测试”,因对时序逻辑电路逻辑功能测试时,必须有动态的时钟脉冲加入。输入信号既有电平信号,又有脉冲信号,所以称为“半动态测试”。测试步骤如下:
(1)把输入端分别接到逻辑电平开关上,输入信号由逻辑电平开关提供;把时钟脉冲输入端CP接到手动单次脉冲输出端,时钟脉冲由能消除抖动的手动单次脉冲发生器提供。
(2)把输入端、时钟脉冲CP端与输出端分别连接到逻辑电平显示器,连接时注意输出信号高、低位的排列顺序。
(3)测试时,依次按动逻辑电平开关和手动单次脉冲按钮,从显示器上观察输入、输出状态的变化和转换情况。若全部转换情况都符合状态转换表的规定,则该电路的逻辑功能符合要求。
3.时序逻辑电路的动态测试
时序逻辑电路动态测试是指在时钟脉冲的作用下,测试各输出端的状态是否满足功能表的要求,用示波器观察各输入、输出端的波形,并记录分析这些波形与时钟脉冲之间的关系。动态测试通常用示波器进行观测。若所有输入端都接入适当的脉冲信号,则称为“全动态测试”。而一般情况下,多数属于半动态测试,全动态与半动态测试的区别在于时钟脉冲改由连续时钟脉冲信号源提供,输出由示波器进行观测。工程实际中,一般均用全动态测试。
四、数字电路测试方法
数字电路多采用集成器件,在检查焊接电路无误后进行测试。通常测试步骤和方法是:
1.首先调好振荡电路部分,以便为整机提供标准的时钟信号。
2.调整控制电路部分,保证分频器、节拍发生器等控制信号电路能正常工作。
3.调整信号处理电路,如各种寄存器、计数器、累加器、编码、译码器等,首先应使各单元电路工作正常,再相互连接,使整体电路的逻辑功能符合设计要求。
4.调整输出电路、驱动电路以及各种执行机构,保证输出信号能推动执行机构正常工作。数字电路调试中,因为集成电路管脚密集,连线又多,要求各单元之间时序关系又严格,所以出现故障不易找出原因。应注意以下问题:
(1)注意检查容易产生故障的环节,掌握排除故障的方法。出现故障时,可以从简单部分逐级查找,逐步缩小故障点的范围,也可以对某些预知点的特性进行静态或动态测试,判断故障部位。
(2)应当十分注意各部分电路的时序关系。对各单元电路的输入和输出波形的时间关系要十分熟悉;也要注意掌握各单元之间的相互时间关系,应对照时序图,检查各点波形,并要弄清哪些是上升沿触发,哪些是下降沿触发,以及它和时钟信号的关系。
集成电路范文4
关键词:集成电路;静电防护;研究措施
DOI:10.16640/ki.37-1222/t.2016.13.158
0 引言
在现代社会,随着微米等新技术的发展应用,集成电路的构造更加简便实用。由于集成电路的简单化设计,因而内部内绝缘层变得很薄,对静电的抵抗能力也就相对变弱[1]。集成电路在生产到运输过程,都会不同程度的受到静电影响。
1 集成电路产生的静电
1.1 静电产生原因
静电,指停留在物体表面由于正负电荷失去平衡产生的电能。摩擦起电,也是产生静电的直接原因[2]。摩擦起电,主要是因为两种物质的接触表面在摩擦时,由于停留在自身的电荷不同而产生的排斥现象。在这个电荷转化过程中,物质内部的机械能转化为内能,在转化过程中,物质的原子结构由于物质表面的能量进入原子结构,原子结构增加能量,使得电子脱离原子核,自动外放的物理反应,在这种物力反应中,产生的电子所带的是正电荷;而另一物质的表面在进行相似的物理反应时,外放的电子所带的是负电荷。因此,当两个物质摩擦时,由于正负电荷的反应,就会造成因摩擦产生静电。另外感应带电也是物体产生静电的原因。感应带电,指由于外电场的作用,电场力过大会产生电子脱离原子核,从而产生的静电现象。
1.2 影响静电的因素
静电产生的因素有很多,主要包括物理环境、物体材质和运动状况三种。物理环境对产生静电的影响,是指由于物体的因为环境改变,静电量的数量随着物质内部温度升高而增加,相反静电量的数量随着物质内部温度的降低而减少。在这种物理环境中,集成电路产生的静电和内部的物理环境温度有关[3]。应注意做好物力环境对集成电路产生的静电作用。物体材质对静电产生的影响,是指物体材质的不同,也会影响自身受到外力作用下,产生的静电量,如果物体材质导向性能良好,就比较容易产生电荷,在与其他物体摩擦时或者外力的作用下,很容易在物体表面产生静电量;相反,如果物体材质属于绝缘性能良好的材质,那么在外力作用下或者与其他物体摩擦时,产生的静电量也会由物体材质自动引导出去,产生的静电量很少或者根本没有。运动状况对静电的影响,是指物体的运动速度和受力大小等运动状况都会造成静电的产生。例如物体的运动速率过快,受到的碰撞力就会增大,阻力就会变小,接触面的面积就会增大,压力同时也会增大,物体在这种运动状况中,因与地面摩擦等产生的静电量就会很大,危害也会很大;相反如果物体的运动状况很平稳,受到的碰撞力就会减小,阻力变大,在这种情况中,物体的运动状况产生的静电量就会很小,一般很难发现。
1.3 静电的危害
目前现阶段化纤物质在物理和化学生产中,应用都非常广泛。化纤物质本身就属于导向性良好的材料,产生静电现象普遍,如果这种电荷不能及时引导,静电量就会变得很大,危害也大。但是化纤物质产生的静电受人体动作的制约,比较明显。
静电是造成集成电路受破坏的主要因素。因为在静电放电的过程中,对集成电路形成作用力,这种作用力包括造成电路失效的硬击穿和软击穿。在这两种作用力的共同作用下,集成电路的使用期限和使用范围都会严重受到制约,如果集成电路的静电量不能及时解决,就会对集成电路的性能和使用质量造成影响,也会造成集成电路报废。
2 集成电路的防静电措施
2.1 生产过程
集成电路在生产过程,容易产生静电的原因:人为因素、环境因素和选材因素。人为因素,是指工作人员和电路板的接触,导致集成电路留有静电。对这种人为因素,应从生产车间制服统一入手,统一规定着装防静电的防化服装,避免人为因素在生产过程中,产生的静电停留集成电路表面,不易察觉的问题。环境因素,是指贮存环境温度过高,容易引发集成电路静电的产生。针对这种问题,应对集成电路的贮藏进行封闭式管理,尽量选择在温度可以控制调节的生产车间,避免因为贮藏环境造成集成电路出现静电的问题。选材因素,是指在选择原材料方面,应倾向使用绝缘线良好的材质,可以对集成电路表面停留的静电及时引导,减少静电对集成电路产生破坏作用。
2.2 运输过程
集成电路容易产生静电的原因是生产过程和运输过程。针对运输过程,为了有效实现防静电的产生,应从电路板的运动状况入手。在运输过程中,应避免过快行驶或者猛踩刹车,产生运输车厢严重失去平衡,在这种情况下产生静电量也是可以有效避免的,同时也是集成电路出厂后容易产生的问题。同时针对,工作人员和搬运人员,应统一着橡胶制品衣服,尽量减少集成电路在搬运途中,避免因为摩擦产生的静电问题。
2.3 完善管理制度
针对集成电路的静电防护措施,最直接最根本的要从管理制度开始。只有严格有效的管理制度,才能形成有效的约束力,对各个阶层的人员进行统一规范,才可以从根本上做好静电防护工作。在集成电路静电产生的原因中,多数是人为因素和潜在的人为因素,都应该得到具体解决。同时也应加强安全巡检制度,对集成电路的生成过程和运输过程,都要加强抽检,确保集成电路得到安全生产和放心运输,尽量减少静电量在集成电路的产生,也也是有效做好静电防护工作的关键。静电防护器材也应加强开发,静电防护器材包括集成电路的包装器材、储藏器材和运输器材。针对静电防护工作,应全方面入手,才有利于完成做好静电防护工作。
3 结束语
集成电路的生产到实际应用,都会受到很多方面的影响,产生静电量。静电量的产生多数是可控因素,只有针对可控因素做出应对措施,才能有效解决集成电路的静电防护工作。对集成电路的选材控制、生产过程可控因素的处理和运输过程可控因素的处理,都需要完整的制度来形成约束力,通过各方面的努力才可以实现静电防护工作,从而减少静电对集成电路的影响,保证集成电路的质量和使用期限。
参考文献:
[1]李柯逊.浅谈集成电路静电损害及防护措施[J].推广技术,2014(07):227-228.
集成电路范文5
2001年我国新增“集成电路设计与集成系统”本科专业,2003年至2009年,我国在清华大学、北京大学、复旦大学等高校分三批设立了20个大学集成电路人才培养基地,加上原有的“微电子科学与工程”专业,目前,国内已有近百所高校开设了微电子相关专业和实训基地,由此可见,国家对集成电路行业人才培养的高度重视。在新形势下,集成电路相关专业的“重理论轻实践”、“重教授轻自学轻互动”的传统人才培养模式已不再适用。因此,探索新的人才培养方式,改革集成电路设计类课程体系显得尤为重要。传统人才培养模式的“重理论、轻实践”方面,可从课程教学学时安排上略见一斑。例如:某高校“模拟集成电路设计”课程,总学时为80,其中理论为64学时,实验为16学时,理论与实验学时比高达4∶1。由于受学时限制,实验内容很难全面覆盖模拟集成电路的典型结构,且实验所涉及的电路结构、器件尺寸和参数只能由授课教师直接给出,学生在有限的实验学时内仅完成电路的仿真验证工作。由于缺失了根据所学理论动手设计电路结构,计算器件尺寸,以及通过仿真迭代优化设计等环节,使得众多应届毕业生走出校园后普遍不具备直接参与集成电路设计的能力。“重教授、轻自学、轻互动”的传统教学方式也备受诟病。课堂上,授课教师过多地关注知识的传授,忽略了发挥学生主动学习的主观能动性,导致教师教得很累,学生学得无趣。
2集成电路设计类课程体系改革探索和教学模式的改进
2014年“数字集成电路设计”课程被列入我校卓越课程的建设项目,以此为契机,卓越课程建设小组对集成电路设计类课程进行了探索性的“多维一体”的教学改革,运用多元化的教学组织形式,通过合作学习、小组讨论、项目学习、课外实训等方式,营造开放、协作、自主的学习氛围和批判性的学习环境。
2.1新型集成电路设计课程体系探索
由于统一的人才培养方案,造成了学生“学而不精”局面,培养出来的学生很难快速适应企业的需求,往往企业还需追加6~12个月的实训,学生才能逐渐掌握专业技能,适应工作岗位。因此,本卓越课程建设小组试图根据差异化的人才培养目标,探索新型集成电路设计类课程体系,重新规划课程体系,突出课程的差异化设置。集成电路设计类课程的差异化,即根据不同的人才培养目标,开设不同的专业课程。比如,一些班级侧重培养集成电路前端设计的高端人才,其开设的集成电路设计类课程包括数字集成电路设计、集成电路系统与芯片设计、模拟集成电路设计、射频电路基础、硬件描述语言与FPGA设计、集成电路EDA技术、集成电路工艺原理等;另外的几个班级,则侧重于集成电路后端设计的高端人才培养,其开设的集成电路设计类课程包括数字集成电路设计、CMOS模拟集成电路设计、版图设计技术、集成电路工艺原理、集成电路CAD、集成电路封装与集成电路测试等。在多元化的培养模式中,加入实训环节,为期一年,设置在第七、八学期。学生可自由选择,或留在学校参与教师团队的项目进行实训,或进入企业实习,以此来提高学生的专业技能与综合素质。
2.2理论课课堂教学方式的改进
传统的课堂理论教学方式主要“以教为主”,缺少了“以学为主”的互动环节和自主学习环节。通过增加以学生为主导的学习环节,提高学生学习的兴趣和学习效果。改进措施如下:
(1)适当降低精讲学时。精讲学时从以往的占课程总学时的75%~80%,降低为30%~40%,课程的重点和难点由主讲教师精讲,精讲环节重在使学生掌握扎实的理论基础。
(2)增加课堂互动和自学学时。其学时由原来的占理论学时不到5%增至40%~50%。
(3)采用多样化课堂教学手段,包括团队合作学习、课堂小组讨论和自主学习等,激发学生自主学习的兴趣。比如,教师结合当前本专业国内外发展趋势、研究热点和实践应用等,将课程内容凝练成几个专题供学生进行小组讨论,每小组人数控制在3~4人,课堂讨论时间安排不低于课程总学时的30%[3]。专题内容由学生通过自主学习的方式完成,小组成员在查阅大量的文献资料后,撰写报告,在课堂上与师生进行交流。课堂理论教学方式的改进,充分调动了学生的学习热情和积极性,使学生从被动接受变为主动学习,既活跃了课堂气氛,也营造了自主、平等、开放的学习氛围。
2.3课程实验环节的改进
为使学生尽快掌握集成电路设计经验,提高动手实践能力,探索一种内容合适、难度适中的集成电路设计实验教学方法势在必行。本课程建设小组将从以下几个方面对课程实验环节进行改进:
(1)适当提高教学实验课时占课程总学时的比例,使理论和实验学时的比例不高于2∶1。
(2)增加课外实验任务。除实验学时内必须完成的实验外,教师可增设多个备选实验供学生选择。学生可在开放实验室完成相关实验内容,为学生提供更多的自主思考和探索空间。
(3)提升集成电路设计实验室的软、硬件环境。本专业通过申请实验室改造经费,已完成多个相关实验室的软、硬件升级换代。目前,实验室配套完善的EDA辅助电路设计软件,该系列软件均为业界认可且使用率较高的软件。
(4)统筹安排集成电路设计类课程群的教学实验环节,力争使课程群的实验内容覆盖设计全流程。由于集成电路设计类课程多、覆盖面大,且由不同教师进行授课,因此课程实验分散,难以统一。本课程建设小组为了提高学生的动手能力和就业竞争力,全面规划、统筹安排课程群内的所有实验,使学生对集成电路设计的全流程都有所了解。
3工程案例教学法的应用
为提升学生的工程实践经验,我们将工程案例教学法贯穿于整个课程群的理论、实验和作业环节。下面以模拟集成电路中的典型模块多级放大器的设计为例,对该教学方法在课程中的应用进行详细介绍。
3.1精讲环节
运算放大器是模拟系统和混合信号系统中一个完整而又重要的部分,从直流偏置的产生到高速放大或滤波,都离不开不同复杂程度的运算放大器。因此,掌握运算放大器知识是学生毕业后从事模拟集成电路设计的基础。虽然多级运算放大器的电路规模不是很大,但是在设计过程中,需根据性能指标,谨慎挑选运放结构,合理设计器件尺寸。运算放大器的性能指标指导着设计的各个环节和几个比较重要的设计参数,如开环增益、小信号带宽、最大功率、输出电压(流)摆幅、相位裕度、共模抑制比、电源抑制比、转换速率等。由于运算放大器的设计指标多,设计过程相对复杂,因此其工作原理、电路结构和器件尺寸的计算方法等,这部分内容需要由主讲教师精讲,其教学内容可以放在“模拟集成电路设计”课程的理论学时里。
3.2作业环节
课后作业不仅仅是课堂教学的巩固,还应是课程实验的准备环节。为了弥补缺失的学生自主设计环节,我们将电路结构的设计和器件尺寸、相关参数的手工计算过程放在作业环节中完成。这样做既不占用宝贵的实验学时,又提高了学生的分析问题和解决问题的能力。比如两级运算放大器的设计和仿真实验,运放的设计指标为:直流增益>80dB;单位增益带宽>50MHz;负载电容为2pF;相位裕度>60°;共模电平为0.9V(VDD=1.8V);差分输出摆幅>±0.9V;差分压摆率>100V/μs。在上机实验之前,主讲教师先将该运放的设计指标布置在作业中,学生根据教师指定的设计参数完成两级运放结构选型及器件尺寸、参数的手工计算工作,仿真验证和电路优化工作在实验学时或课外实训环节中完成。
3.3实验环节
在课程实验中,学生使用EDA软件平台将作业中设计好的电路输入并搭建相关仿真环境,进行仿真验证工作。学生根据仿真结果不断优化电路结构和器件尺寸,直至所设计的运算放大器满足所有预设指标。其教学内容可放在“模拟集成电路设计”或“集成电路EDA技术”课程里[4]。
3.4版图设计环节
版图是电路系统和集成电路工艺之间的桥梁,是集成电路设计不可或缺的重要环节。通过集成电路的版图设计,可将立体的电路系统变为一个二维的平面图形,再经过工艺加工还原为基于硅材料的立体结构。两级运算放大器属于模拟集成电路,其版图设计不仅要满足工艺厂商提供的设计规则,还应考虑到模拟集成电路版图设计的准则,如匹配性、抗干扰性以及冗余设计等。其教学内容可放在课程群中“版图设计技术”的实验环节完成。通过理论环节、作业环节以及实验的迭代仿真和版图设计环节,使学生掌握模拟集成电路的前端设计到后端设计流程,以及相关EDA软件的使用,具备了直接参与模拟集成电路设计的能力。
4结语
集成电路范文6
关键词: 数字集成电路 电压匹配 接口技术
一、引言
当今社会是数字化的社会,数字集成电路具有可靠性高、静态功耗小、工作速度高、寿命长和低成本等优点,因此它在通信、电力、自动化设备和家用电器等诸多方面得到了广泛应用。目前数字集成电路种类繁多,不同类型的集成电路在连接时,如果逻辑电平不匹配,且考虑到负载能力的限制,那么中间就需要串入接口电路,否则将引起逻辑混乱,甚至损坏集成芯片。因此,为了更好地使用数字集成电路,就有必要对其具体使用方法和接口技术要有一定的认识。
二、数字集成电路的分类
按照电路结构的不同,数字集成电路可分为两大类:一类是双极型集成电路,采用晶体管作为开关元件,管内有电子和空穴两种极性的载流子参与导电;另一类采用绝缘栅场效应晶体管作开关元件,称为MOS(Metal Oxide Semiconductor)集成电路。这种管子内部只有一种载流子,即电子或空穴参与导电,故又称单极型集成电路。下面我对这两种类型的数字集成电路予以简要说明。
(一)双极型集成电路
TTL电路(Transistor-Transistor Logic即晶体管――晶体管逻辑电路)也称为TL,是目前双极型数字集成电路中应用得最多的一种。它具有较快的开关速度、较强的抗干扰能力,以及足够大的输出幅度,且带负载能力也比较强,所以得到了最为广泛的应用[1]。
在双极型数字集成电路中,除了TTL电路以外,还有高阈值逻辑(High Threshold Logic,简称HTL)、二极管―三极管逻辑(Diode-Transistor Logic,简称DTL)、发射极耦合逻辑(Emitter Coupled Logic,简称ECL)和集成注入逻辑(Integrated Injection Logic,简称IL)等几种逻辑电路。其中较为常用是ECL电路,其电路中的三极管工作在非饱和状态,是一种非饱和电路,有极高的工作速度。此外它还具有输出阻抗低、带负载能力强、电路内部开关噪声低、使用方便灵活等优点。它的主要缺点是:噪声容限低,电路功耗大,输出电平的稳定性较差。目前ECL电路主要用于高速、超高速数字系统中。
(二)MOS集成电路
MOS数字集成电路是指只有一种载流子参与导电的电路,其中只有电子参与导电的称为NMOS电路;只有空穴参与导电的称为PMOS电路;如果是用NMOS及PMOS复合起来构成的互补(Complementary)MOS集成电路,则称为CMOS电路。PMOS和NMOS组件中各只含有一种MOS管,习惯上称它们为MOS集成电路,以与CMOS集成电路相区别。
PMOS集成电路问世较早,但由于其速度低,现已很少使用;NMOS集成电路速度稍高,且直流电源电压较低,在工艺上可以制造出开启电压较低的器件,故NMOS集成电路仍在使用中。CMOS数字集成电路与TTL数字集成电路相比,有许多优点,如工作电源电压范围宽,静态功耗低,抗干扰能力强,输入阻抗高,成本低,等等。因而,CMOS数字集成电路得到了广泛的应用。
三、CMOS电路和TTL电路的使用注意事项
由于CMOS与TTL数字集成电路有其各自的工作特点,因此在应用数字集成电路时对其要有正确的使用方法。下面我就对CMOS与TTL相应使用事项作以简要说明。
(一)CMOS电路的使用知识
1.输入电路的静电保护
CMOS电路的输入端设置了保护电路,给使用者带来很大方便。但是,这种保护还是有限的。CMOS电路的输入阻抗高,极易产生感应较高的静电电压,从而击穿MOS管栅极极薄的绝缘层,造成器件的永久损坏。为避免静电损坏,应注意以下几点。
(1)所有与CMOS电路直接接触的工具、仪表等必须可靠接地。
(2)存储和运输CMOS电路,最好采用金属屏蔽层做包装材料。
2.多余的输入端不能悬空
输入端悬空极易产生感应较高的静电电压,造成器件的永久损坏。对多余的输入端,可以按功能要求接电源或接地,或者与其他输入端并联使用。
(二)TTL电路的使用知识
1.多余输入端处理方法
(1)与其他输入端并联使用。
(2)将不用的输入端按照电路功能要求接电源或接地。比如将与门、与非门的多余输入端接电源,将或门、或非门的多余输入端接地。
2.电路的抗干扰处理
(1)在每一块插板的电源线上,并接几十μF的低频去耦电容和0.01―0.047μF的高频去耦电容,以防止TTL电路的动态尖峰电流产生的干扰。
(2)整机装置应有良好的接地系统[2]。
四、常用数字集成电路接口技术
在数字系统设计中,往往由于工作速度或者功耗指标的要求,需要采用多种逻辑器件混合使用,而由于每种器件的电压和电流参数各不相同,因此需要采用接口电路来连接不同类型的集成电路。如TTL和CMOS电路需要采用接口电路一般要考虑两个问题:一是要求电平匹配,即驱动门要为负载门提供符合标准的输出高电平和低电平;二是要求电流匹配,即驱动门要为负载门提供足够大的驱动电流。下面我就CMOS电路和TTL电路之间的接口问题加以分析[3]。
(一)TTL门驱动CMOS门
1.电平不匹配2.电流匹配
因为CMOS输入电流几乎为零,所以TTL驱动CMOS在电流的兼容性上不存在问题。
3.解决电平不匹配问题的方法
(1)外接上拉电阻在TTL门电路的输出端外接一个上拉电阻R5V。(如图1所示)
图1 TTL驱动CMOS接口电路
(2)选用电平转换电路(如CC40109)
若电源电压不一致时可选用电平转换电路。CMOS电路的电源电压可选3―18V;而TTL电路的电源电压只能为5V。
(3)采用TTL的OC门实现电平转换。
若电源电压不一致时也可选用OC门实现电平转换。
(二)CMOS门驱动TTL门
1.电平匹配
CMOS门电路作为驱动门,U.8V。电平匹配是符合要求的。
2.电流不匹配
由于TTL门电路的低电平输入电,而CMOS门电路的低电平输出电流远小于1.6mA,因此电流不匹配,需要加接口电路。
3.解决电流匹配问题的方法
(1)选用CMOS缓冲器:比如,CC4049的驱动电流可达4mA,完全可以满足TTL输入电流的要求。(如图2所示)
图2 CMOS驱动TTL接口电路
(2)选用高速CMOS系列产品:如选用CMOS的54HC/74HC系列产品可就以直接驱动TTL电路。
(3)CMOS电路并联驱动TTL,这种方法只允许在CMOS为同一集成芯片时使用。
五、结语
在数字电路或数字系统的设计中,常常需要根据设计指标对工作速度或功耗的要求选用不同类型的数字集成电路。因此不同类型的集成电路在混合使用时,要根据其相应引脚的逻辑电平和带负载能力采用相应的接口电路,这样才能确保电路逻辑准确、性能可靠。
参考文献:
[1]阎石.数字电子技术基础(第五版)[M].北京:高等教育出版社,2006.5.
[2]侯伯享.数字系统设计[M].西安:西安电子科技大学出版社,2004.1.