前言:中文期刊网精心挑选了电压不稳范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电压不稳范文1
【关键词】稳定性;电压;破坏;措施
随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。
1.电压稳定性破坏的原因
研究认为,电压崩溃日趋严重的主要原因有以下几点:一是由于经济上及其它方面(如环保)的考虑,发、输电设备使用的强度日益接近其极限值;二是并联电容无功补偿大量增加,因而当电压下降时,向电网提供的无功功率按电压平方下降;三是线路或设备的投切,引起电压失稳的可能性往往比功角稳定研究中所考虑的三相短路情况要大得多,然而人们长期以来只注意功角稳定的研究。
电力系统稳定问题的物理本质是系统中功率平衡问题,电力系统运行的前提是必须存在一个平衡点。电力系统的稳定问题,直观的讲也就是负荷母线上的节点功率平衡问题。当节点提供的无功功率与负荷消耗的无功功率之间能够达成此种平衡,且平衡点具有抑制扰动而维持负荷母线电压的能力,电力系统即是电压稳定的,反之倘若系统无法维持这种平衡,就会引起系统电压的不断下降,并最终导致电压崩溃。当有扰动发生的时候,会造成节点功率的不平衡,任何一个节点的功率不平衡将导致节点电压的相位和幅值发生改变。各节点电压和相位运动的结果若是能稳定在一个系统可以接受的新的状态,则系统是稳定的,若节点的电压和相角在扰动过后无法控制的发生不断的改变,则系统进入失稳状态。电力系统的电压稳定和系统的无功功率平衡有关,电压崩溃的根本原因是由于无功缺额造成的,扰动发生后,系统电压无法控制的持续下降,电力系统进入电压失稳状态。无论是来自动态元件的扰动还是来自网络部分的扰动,所破坏的平衡均归结为动态元件的物理平衡。电力系统的动力学行为仅受其动态元件的动力学行为及其相互关系的制约。
2.电压不稳定的危害
在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。
3.电压不稳定的类型
电压不稳定主要表现在电压偏差和电压波动两个方面。电压偏差是在某一时段内,实际电压幅值“缓慢”变化而偏离了额定电压,偏差是稳态的,就是我们常说的电压偏高或偏低。电压偏差的大小,主要取决与电力系统的运行方式、线路阻抗及有功负荷和无功负荷的变化。电压偏差主要是用电设备所处的位置及运行的时间,如线路末端电压偏低,后夜电压偏高等。
为改善电压偏差,可采取以下措施:一是正确选择变压器的变压比和电压分接头;二是合理减少线路阻抗;三是提高功率因数,进行合理的无功补偿,并根据电压与负荷变化自动接切无功补偿设备容量;四是按照电力系统潮流分布,及时调整运行方式;五是采取用载调压手段,如选用有载调压变压器等。
电压波动是在某一时段内,实际电压幅值急剧变化而偏离了额定电压,偏差是动态的,就是我们所说的电压忽高忽低。电压波动主要是由大型用电设备负荷快速变化引起的冲击性负荷造成的,如轧钢机咬钢、起重机提升启动、电弧炉熔化期发生工作短路、电弧焊机引弧、电气机车启动或爬坡等都有冲击负荷产生。电压波动的大小,主要取决于电压波动的频度、波动量的大小及工作场所对电压质量的要求等。抑制电压波动的措施一是增加供电系统容量,即更换大容量的变压器,或由大的电网来承担供电任务;二是提高供电电压等级;三是采用专用变压器和专线供电;四是改进生产工艺及操作水平;五是采用专用稳压设备等。
4.电压不稳定的解决办法
按供电系统节点来看,电压波动可分为高压侧电压波动和低压侧电压波动。高压侧电压波动又可分为进线电源处电压不稳定和高压母线上电压不稳定。进线电源处电压不稳定原因之一是上一级电源质量不高。解决方法是更换电源或在上一级负荷处重新架设一条供电线路。原因之二是传输过程中(进线电缆)存在问题。解决方法是检查是否存在电缆破损、电缆质量、电缆选型不正确的情况,有针对性地加以改善。高压母线上电压不稳定原因之一是变压器三相空载导致高压侧母线电压不稳定。解决方法是重新计算变压器的负载率,更换更大一级容量的变压器。原因之二是在变压器负载时,大功率设备冲击电网造成高压侧母线电压不稳定。解决方法一是对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。二是大功率设备尽量采用高压电机,以优化电能质量。三是对个别大功率设备,采用单独无功补偿装置稳定电压。
低压侧电压波动可分为电缆出线端电压不稳定、设备入线端电压不稳定和低压母线上电压不稳定。电缆出线端和设备入线端电压不稳定原因分析。原因之一是外接负载功率较大导致的启动电流冲击。解决方法是优化设备启动方式。对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。大功率设备尽量采用高压电机,以优化电能质量。对个别设备采用单独无功补偿装置稳定电压。原因之二是传输过程中存在问题。解决方法是检查电缆是否存在电缆破损等质量问题,如有则更换电缆,如非质量问题则存在电缆选型问题,应重新计算电缆压降,从配电柜出线端到设备进线口的电缆压降,看是否超过了5%,如果超过了,要更换大一级的电缆来进行电能的传输。
低压侧母线电压不稳定原因是整个供电系统功率因数的问题。解决方法是提高整个供电系统的功率因数,增大无功功率,使功率因数提高到90%以上。按交流与直流来分,低压侧母线电压不稳定可分为交流电压波动和直流电压不稳定。交流电主要承担煤矿除工艺集中控制外的所有负荷;直流电主要负责供给工艺集中控制信号的电源。直流电压不稳定原因有三:一是电源、二是负载、三是接触不良。解决方法一是更换电源或改善传输路径、二是提高负载供电等级、三是检查接触装置按设备负载。按设备负载来分,低压侧母线电压不稳定可分为带冲击负载的电动机引起电压波动、由反复短时工作负载引起电压波动、大型电动机启动时引起电压波动和供电系统短路电流引起的电压波动。
由反复短时工作负载引起电压波动。这类负载的特点是呈现周期替的增减变化。但其交替的周期是不定值,且交替的幅值也是不定值,如吊运工件的吊车,手工交直流电焊机等。当前企业为节能降耗在交直流电焊机上都装设了自动断电装置,因此在节电的同时电动机的启动电流和焊接变压器的涌流却加剧了所在电网的电压波动。)供电系统短路电流引起的电压波动。由于各种原因,企业的许多高、低压配电线路及电气设备可能发生不同性质的短路。在这种情况下,如继电保护装置或断路器失灵就会使故障持续存在也会造成越级跳闸,轻则损坏配电装置,重则造成大面积停电,延长整个电网的电压波动时间,并扩大波动范围。解决方法是合理选择变压器的分接头,保证用电设备的电压水平。设置电容器进行人工补偿。配电变压器并列运行。采用电抗值最小的高低压配电线路方案、线路出口加装限流电抗器、大型感应电动机带电容器补偿、采用电力稳压器稳压等。
【参考文献】
[1]张黎阳.电网运行状态实时稳定评估预想事故管理研究[D].福州:福州大学.2006.
电压不稳范文2
(河北工程技术高等专科学校,河北 沧州 061001)
【摘要】大量的分布式电源接在中压或低压配电网上运行,将彻底改变传统配电系统单向潮流的特点,势必要求系统使用新的保护配置方案、监控系统和仪表。通过高级自动化系统把这些分布式电源集成到现有电网中来,将为社会带来巨大的效益。
关键词 电源;调整;调节
1电压调节装置
电力系统需要利用多种装置调节电压,譬如负载分支变换变压器,自动电压调节器,电容器等。这些调节装置在假设电流从变电站到负载单向流动的基础上进行调整和操作。分布式电源的引入会导致配电电路不同部分的电流速度减慢,甚至反向流动。电流方向的翻转会扰乱电压调节器控制电路,导致调节器不能将馈电线电压控制在需要的范围里。
2电压调节器的使用
(1)电压调节器常常使用线电压降补偿器电路调节电压调节器下级的馈电线的电压。线电压降补偿器(LDC)是一个小型的电子电路,它是调节器控制的一部分,可以模拟电路压降,预测距调节器几英里之外的电压。线电压降补偿器能够在没有测量较远处的电压的情况下保持较远处的电压稳定。它通过测量调节器的线电流和电压,然后将这些阻抗传回折合阻抗。折合阻抗是小型线性模型的一部分,这模型允许调节器预测稍远处的电压。遗撼的是,LDC控制工作只适用于没有下级电源连接的线性电路。一台分布式发电机会使线电压降补偿器误认为线电流反向或低于实际值,从而严重扰乱线电压降补偿器,这样就会导致配电线路尾部的电压降低。
(2)在配电线外安装有小型辅助电压调节器,而且在小型辅助电压调节器下级安装有大容量分布式电源的情况时最有可能出现这种情况(见图1)。以前也曾报到过这样的事件,当分布式电源成为整个负载的一大部分,在相对较长,不耐用的配电电路上就会出现这种情况。当很大的分布式电源(1MW或更大)连接在相距很近的变电站的时候也会发生这种情况。
上述所述情况中,分布式电源的安装使得调节器误认为在自己所服务的部分存在无功负载。这会使得调节器降低电压导致超出ANSI标准。
3使用中应注意的问题
(1)通常来说,在任何时候分布式电源的输出都是可以测量的。如果电压调节器在分布式电源的上级,会出现严重的电压控制问题。这个问题的一个不彻底的解决方法是仅仅避免在电压调节器的较近的下级处放置分布式电源。如果能将分布式电源放置在上级较远处或下级,在许多情况下系统的表现会得到重大改善,也能够通过调整电压调整器来限制功率反向分支变换器的扰动,从而防止过低压出现。但是这些措施也不能保证不出现问题。一些新型的基于微机的电压调节器允许反向电流,而且人类完全可以对其进行正确的设置。
(2)如果分布式发电机没有对应的过压保护装置,在系统电压升高的时候去关闭发电机或进行限压,会导致系统电压超出ANSI C84.1-1995限制。分布式发电机的位置,容量和保护控制决定这是否会产生问题。10kW左右的分布式电源可能在为多个用户服务的较长二次线路产生高压。相反的,如果一个5MW的分布式电源接近一个很大的变电站,可能不会导致任何问题。每种情况都必须在发电机的容量,电压调节器的相对位置和稳定性(故障等级/分布式电源的输出比率)基础上进行评估。最终,第三方分布式电源运营商和电力公司都需要保证配电一次线和二次线能够承受在没有电压问题下电流的输入。这就是为什么在分布式电源中好的电压控制是很重要的。分布式电源需要时间延迟电压继电器,从而保证连接处的电压不超过ANSI C84.1-1995(或特定的)的电压限制。如果超过这些限制,该单元应该和系统隔离,因为对于大多数小系统来说,只能影响二次侧系统,专用变压器会将分布式电源和系统隔离,所以也将专用的变压器作为防止持续过压的保护装置。
4结束语
近年来不断增加的分布式电源应用加快了对互联实践指导理论的需求。分布式电源或者储能和电力系统的互联的关键在于其安全性和效果,在连接中必须考虑的问题。
参考文献
[1]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.
电压不稳范文3
关键词:无功补偿 电压控制 电力系统
1 前言
电网无功平衡是保证电压稳定的基本条件,但电力系统无功功率的发、供、用呈现明显的分散性,因而无功功率只有在分层、分区、分散合理平衡的基础上,才能实现电网电能的合理分布和维持电网稳定运行。
2 电力系统无功电压优化的问题
电力系统无功优化问题是一个多目标、多变量、多约束的混合非线性规划问题,其优化变量既有连续变量,又有离散变量,整个优化过程十分复杂,也使优化过程中离散变量的处理更困难。理论上,无功分布可以达到最优,但实际上,一个复杂庞大的电力系统几乎不可能在线实现最优控制。最主要的瓶颈在于优化计算的数据基础——状态估计(SE)结果的正确性、可靠性还无法满足实时控制的要求。这也是至今国内外还没有成功将全局潮流优化(OPE)结果直接用于实时控制的重要原因[1]。从工程应用角度看,现实中的电力系统无功只能实现次优分布。一般认为,比较接近无功次优分布的做法是,无功功率尽量做到分层分区平衡,减少因大量传送无功功率而产生的电压降和电网线损,在预留事故紧急备用的前提下,尽可能使系统各点电压运行在允许的高水平,这样不但有利于系统运行的稳定性,也可获得接近优化即无功次优分布的经济效益。
3 研究现状及发展方向
目前,国内电力系统的无功补偿和电压控制多采用传统的方式,有载调压变压器、静电电容器等职能手动调节和投切,不能实现实时电压控制或无功补偿。因此,实现实时无功补偿以保证电力系统电压的连续稳定性,是研究的主要方向[1,2,3]。
多数电网中电压控制技术仍停留于人工方式,效果并不令人满意,原因有三:
(1)电压曲线和无功设备运行计划是离线确定的,不能反映电网的实际情况,存在安全隐患;
(2)电网运行人员需要时刻监视系统电压无功情况,并进行人工调整,工作强度大,而且会因容易出现过调量往往造成电网电压波动大;
(3)各厂、站无功电压控制未予以协调,造成电网运行不经济。
近年来几次重大电网事故都是由偶遇无功电压问题致使电网瘫痪。无功电压自动控制技术逐渐引起重视。过去几年中,基于分层分区控制的二、三级电压控制技术已逐渐得到推广应用,并取得明显的控制效果。
二、三级电压控制技术的要点与问题如下:
(1)由于电压太复杂实时自动控制电网中各节点是不现实、不经济、不必要的;
(2)发电机无功是电网中电压支撑和调节的主要资源,最容易控制而且廉价,应充分利用;
(3)简单可行的电压控制系统应当只考虑控制少数主导母线,使电网电压达到次优;
(4)靠近主导母线的厂站母线,宜与其组成一个控制区;
(5)通过控制主导母线电压使控制区域内所有母线电压满足要求,而各个控制区域是独立控制;
(6)区域内控制资源主要是依靠大机组无功功率,即通过控制发电机组无功功率来调节区域内母线电压在允许范围。
3.1 部分省网几种无功电压njiu现状
(1)为提高电网电压稳定水平,对电网的多种运行方式进行全面的静态和暂态电压稳定大规模离线分析研究,分析近年电网电压稳定的薄弱区域和薄弱点,评估电网的静态电压稳定水平,同时也评估采取增强网络结构、电源优化布局、SVC应用等措施的效果。应用稳定控制技术,研究提高供电可靠性和安全稳定运行水平,增强供电能力。
(2)进行全局无功最优控制的仿真研究,针对发电机、并联电容器、变压器有载分接头等无功可控设备的特点及调节性能进行分析,确定将发电机作为唯一控制手段的仿真研究方法。
(3)开发电网无功电压优化集中控制系统,通过采集调度自动化SCADA系统的实时数据,进行综合优化处理后,形成集中控制指令,运用调度自动化“四遥”功能,实现电网无功电压优化运行。
(4)对典型电网结构和负荷分布进行计算和理论分析,优化无功补偿配置容量。具体内容包括典型结构220kV变电站补偿容量研究、典型结构100kV变电站补偿容量研究、变电站主变额定电压选择和抽头比较与配合选择研究、无功分层和分区平衡情况分析和支路无功经济分点的数学验证。并开发了分布式无功电压全局实时优化控制系统,控制电网内各节点电压在允许范围内,实现全网有功损耗最小。
总体来看,从全局的角度进行无功电压自动控制的工作,目前处于初步研究阶段。电压的调控仍未能从技术上实现类似于SGC的闭环控制,电压质量也难尽人意。
目前总结的无功补偿经验:
整个系统的安全,以用户就地补偿为最大原则。一般电网补偿为过补偿。无功储备留在发电机中以便迅速调出。系统电压是主动、经济、高校的,有较强抗事故冲击能力。
3.2无功电压控制的发展方向
电力系统是一个复杂的动态关联系统,其潮流是动态变化并相互关联的。变电站内变压器分接开关在某个范围内的调整将影响无功功率的交换,进而影响电网无功潮流的分布和节点电压的变化。单个变电站独立实行无功电压控制,存在局部优化但影响全局的弊端。
要解决上述弊端,必须考虑全局的优化,将各个变电站点采集的无功电压数据和控制结果送至调度中心或集控站的主机,依据实时的潮流进行状态估计,确定各个变电站节点电压和无功要求,对全网的无功电压进行分层分区综合调整。
基于调度系统或集控站的区域集中控制模式是维护系统电压正常,实现无功优化综合控制,提高系统运行可靠性和经济性的最佳方案。但大量信息输入调度中心计算机,必然会造成无功电压控制软件复杂化和控制的实时性变差,因此分层分区和分散就地的关联控制已成为全网无功电压控制的发展方向。
分层分区和分散就地的关联控制优点在于:系统正常运行时,各变电站的电压无功控制装置或软件自动执行电压无功调控,实现功能分散、责任分散、危险分散;紧急情况下调度中心执行应急程序,闭锁下级调度或集控站以及各变电站的自动调控功能,由调度中心直接控制或下达电压无功系统参数至枢纽变电站,保证全网系统运行的安全性和经济性。为达到分层分区和分散就地控制人物的装置或软件(VQC装置或软件),并且应具有对受控变电站状态的分析、判别和控制功能,以及较强的通信能力和手段。由于此类分散就地控制装置或软件能够根据变电站不同的运行方式和计算机投切电容器,以及调节分接头可能发生变化的配合问题。因此,分层分区和分散就地的关联控制兼顾了全局优化和局部优化的问题。
4 AVC研究现状
基于最优潮流OPF的实时电压自动控制(AVC)集安全性和经济性于一体,可实现安全约束下的经济闭环控制。正常运行情况下,AVC通过实时监视电网无功电压情况,进行在线优化计算,分层调节控制电网无功电源及变压器分接头,调度自动化主站对接入同一电压等级、电网各节点的无功补偿可控设备实行实时最优闭环控制,满足全网安全电压约束条件下的优化无功潮流运行,达到电压优质和网损最小。省级电网研究的AVC是集中控制型的,也即在电网调度自动化系统SCADA、EMS与现场调度装置之间通过闭环控制实现AVC[2,3]。
电力系统电压自动控制主要有以下两个方面:
(1)无功补偿可控设备的自动化。包括发电机、有载调压器、电容(电抗器)、SVC、STATCOM及其他无功补偿设备的自动控制;
(2)全网无功电压的最优化。
5 结论
无功补偿及电压调节的优化首先要搞好无功就地平衡,无功补偿的理想状态是各级电压线路上没有无功电流流动,各级电压母线的功率因数均为1。为此,应本着自下而上,由末端向电源端的顺序逐级平衡补偿。在补偿方式上宜采用集中补偿和分散补偿相结合,以分散为主;高压补偿和低压补偿相结合,以低压为主的原则。并安装自动补偿投切装置。在电网中采用有载调压变压器,安装无功/电压优化自动控制装置,可以实现经济调压[2,4]。
电网的无功及电压调节的必要措施如下:
(1)采取电网分层分区运行;
(2)加强电网无功及电压的调节和管理;
(3)电力系统分区并确定各个区的电压中枢点以便对电压进行分级分布式控制;
(4)合理配置无功补偿设备,做到无功就地补偿、分层分区平衡;
(5)加强送、受端电网建设,提高运行可靠性、调度灵活性和通道的输送能力,并提供足够短路容量和足够大惯性的系统;
(6)在长距离、大容量送电线路中大量采用串联补偿,以提高电网输送能力、改善运行电压水平;
(7)在落点集中的负荷中心、受端电源少、受端大规模接受西电东送的落点采用动态无功设备;
(8)研究省网受端系统电压稳定和动态无功补偿问题,根据研究成果合理配置无功电源,使之满足电网动态无功备用;
(9)对省网进行无功优化调节控制,实施分级分布式的控制策略,实现整个省网的闭环实时控制,实现全网无功优化配置;
(10)运用“无功电压优化集中控制系统”,完善电压自动监测网络,实现数据自动采集、自动传输和自动统计分析,实现全网无功优化实时控制。
参考文献:
[1]周双喜,刘明波,李端超等.电力系统电压稳定及电压无功优化控制研讨会会议资料[C].广东省电机工程学会电力系统专委员会,2005.
[2]许文超,郭伟,李海峰,胡伟.AVC应用于江苏电网的初步研究[J].继电器,2003,31(5):23-26.
电压不稳范文4
幸运的是,当8位单片机开始不断涉足更多的混合信号应用时,越来越多具有模拟背景的设计人员开始使用单片机。这些采用混合信号单片机的设计人员非常熟悉电压比较器的灵活性和功能,便着手发掘其潜能。使用片上电压比较器的应用不断涌现,包括传感器输出的模拟信号到数字信号的转换、逻辑门、放大器以及电源转换。
遗憾的是,混合信号单片机设计人员的人数尚不足以有效推广电压比较器。因此,本文旨在使设计人员认识到不起眼的片上电压比较器可能给混合信号应用带来的价值。全面探讨这个主题需要数百页的篇幅,我们将尽量多地选取一些可能的应用进行阐述。
我们首先将讨论传感器数字转换。大多数模拟传感器会产生与其测量的环境因素成比例的阻值、电感或电容值的变化。热敏电阻阻值的变化与温度成比例,湿度传感器改变其电容值,而某些接近传感器甚至会改变自身的电感值。传统的转换方法先将电阻、电容或电感转换为电压,然后使用一个ADC将电压转换为数字值。但是,假使我们可以将传感器的输出直接转换为数字值,又会怎样?
利用不起眼的片内电压比较器构建简单的张弛振荡器,可以将电阻、电容或电感转换为可变的频率,然后使用定时器外设来测量该频率。图l显示了两个简单的振荡器电路。除了简单这一显而易见的优点外,两个电路由于自身会对输入信号求平均,因而具有一定的噪声抑制能力。不过,其分辨率还由采样时间决定。
在两个电路中,电阻Rl、R2和HR3提供滞回电压,根据比较器的输出状态来调节比较器跳变电平的大小。左边电路中的R4和L1与右边电路中的R4和C1作用相同,用于设置工作频率。通过用适当的阻性、容性或感性传感器替换R4、C1或L1,就能构建一个频率可随传感器输出值变化的变频振荡器。然后使用TimerO和Timerl将频率转换为数字值。Timerl的计数频率与振荡器频率相同,TimerO设置采样周期。当TimerO溢出时,Timerl停止计数,它的当前值就是转换的结果。
这一对内部定时器与少量的外部元件和一些软件相结合,向设计人员提供了一种使用比较器测量电阻、电感或电容的简便方法。设计人员只需延长Timerl的计数周期,就可以提高转换器的分辨率。
此外,大多数带有片上比较器的新型单片机在比较器的反相输入端上有一个2选1或4选1的模拟多路开关。只需给每个传感器添加一个电阻R4,然后将传感器/电阻的接点连接到多路开关的各个输入端,设计人员就能在多达4个传感器中选择转换器的输入。
构建逻辑门只不过是将二极管逻辑与一些电阻组合起来,以实现必需的逻辑功能。图2给出了实现了逻辑“与(AND)”和逻辑“或(OR)”功能的简单电路,以及略为复杂的逻辑“异或(XOR)”功能的电路。
图2中,左边的电路实现逻辑“与”和逻辑“或”功能。要实现逻辑“与”功能,选择R3和R4的值,使得反相输入端的电压高于Vnn/2。要实现逻辑“或”功能,选择可使反相输入端的电压略低于Vnn/2的值。(R1和R2的值应相等)。在逻辑“与”配置中,A和B两个输入端必须同为高电平以将同相输入端的电压拉高到VDD/2之上,才能使输出变为高电平。在逻辑“或”配置中,A或B中必须至少有一个为高电平以将同相输入端的电压拉至VDD/2,才能拉高输出电平。要构建逻辑“非与(NAND)”或“非或(NOR)”电路,只需将反相和同相输入端交换即可。
图2中,右边的电路用于实现逻辑“异或”功能。如果A或B中有一个为低电平,那么反相输入端将被钳位在0.7V,若另一个输入为高电平,就会产生高电平输出。如果A和B均为高电平,那么同相输入端的电压将保持为略低于VDD,而反相输入端被拉至VDD--导致输出低电平。(注:对于任何逻辑电路,选定的电阻值应足够大以使所有电流处于1~10mA范围内,这样比较器的输出驱动电路才能容易地驱动逻辑)。
接下来,让我们研究如何将比较器用做低频运放。只需使用一个足够低频的低通滤波器来对脉冲链进行滤波,任何占空比可变的数字信号均可被转换为直流电压。要使用比较器来构建运放,我们将使用同样的滤波器求平均功能来生成反馈和输出电压(见图3)。
在同相电路中,R1和R2如同在常规运放电路中一样,用于确定增益。C1和R3/C2充当滤波器对比较器输出端的PWM数字信号求均值,并将求得的结果作为反馈的直流电平和电路的线性输出。在反相电路中,R4和R5确定增益,C3和R6/C4充当平均滤波器将数字PwM信号转换为线性电压。注:在反相拓扑结构中,需要R7和R8来产生电路的虚拟地。
最后要讲述的是开关电源电路。产生交变电源电压的一种方法是产生由输出反馈电压门控的PwM开关信号。在该电路中,一个比较器产生斜坡波形,而另一个提供输出电压的反馈信号。图4中的原理图给出了使用两个比较器的实现方案。
在该电路中,比较器U1a是一个脉冲发生器,与前面所述的将传感器输出转换为数字信号的振荡器类似,其工作频率由R4、R5和C1决定。电路中R5的作用是确保C1上的充电电压绝不会低于约1.5V。这一点非常重要,因为U1b通过将U1a的同相输入端拉至约0. 7V来控制振荡器的工作,使其停振。(注:振荡器被设计为在关断时将输出拉为低电平,因此此时Q1也将处于截止状态)。
当振荡器运行时,Q1会定期导通,使得电流流过L1。当Q1截止时,流过L1的电流会使D3正偏,从而给C2充电,继而抬高输出电压。c2上采样得到的输出电压经过分压后与D2上的正向电压作比较。如果输出电压过高,U1会关断振荡器,C2会向负载放电,从而使输出电压降低。当输出电压跌落到所需电压以下时,U1b的输出就会变成高电平,振荡器重新起振,将重新有电流流向C2。
电压不稳范文5
[论文摘要]低压电网如何有效保持良好的工作状态,降低电能损失,与电网稳定工作、电力设备安全运行、工农业安全生产及人民生活用电都有直接影响。分析无功补偿的作用和主要措施。
无功补偿是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低电能的损耗,改善电网电压质量。
从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤其是以低压配电网所占比重最大。为了最大限度的减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配
置,应按照“分级补偿,就地平衡”的原则,合理布局。
一、低压配电网无功补偿的方法
随机补偿:随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。
随器补偿:随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。
跟踪补偿:跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。
二、无功功率补偿容量的选择方法
无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。
(一)单负荷就地补偿容量的选择的几种方法
1.美国:Qc=(1/3)Pe
2.日本:Qc=(1/4~1/2)Pe
3.瑞典:Qc≤√3UeIo×10-3(kvar)Io-空载电流=2Ie(1-COSφe)
若电动机带额定负载运行,即负载率β=1,则:Qo根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。
4.按电动机额定数据计算:
Q=k(1-cos2φe)3UeIe×10-3(kvar)
K为与电动机极数有关的一个系数
极数:246810
K值:0.70.750.80.850.9
考虑负载率及极对数等因素,按式(4)选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。
(二)多负荷补偿容量的选择
多负荷补偿容量的选择是根据补偿前后的功率因数来确定。
1.对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:
Qc=KmKj(tgφ1-tgφ2)/Tm
式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2是指负载阻抗角的正切,tgφ1=Q1/P,tgφ2=Q2/P;tgφ(UI)可由有功和无功电能表读数求得。
2.对处于设计阶段的企业,无功补偿容量Qc按下式选择:
Qc=KnPn(tgφ1-tgφ2)
式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。
多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。三、无功补偿的效益
在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。减少了电网无功功率的输入,会给用电企业带来效益。
(一)节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。
(二)降低系统的能耗。补偿前后线路传送的有功功率不变,P=IUCOSφ,由于COSφ提高,补偿后的电压U2稍大于补偿前电压U1,为分析问题方便,可认为U2≈U1从而导出I1COSφ1=I2COSφ2。即I1/I2=COSφ2/COSφ1,这样线损P减少的百分数为:
ΔP%=(1-I2/I1)×100%=(1-COSφ1/COSφ2)×100%
当功率因数从0.70~0.85提高到0.95时,由上式可求得有功损耗将降低20%~45%。
(三)改善电压质量。以线路末端只有一个集中负荷为例,假设线路电阻和电抗为R、X,有功和无功为P、Q,则电压损失ΔU为:
U=(PR+QX)/Ue×10-3(KV)两部分损失:PR/Ue输送有功负荷P产生的;QX/Ue输送无功负荷Q产生的;
配电线路:X=(2~4)R,U大部分为输送无功负荷Q产生的
变压器:X=(5~10)RQX/Ue=(5~10)PR/Ue变压器U几乎全为输送无功负荷Q产生的。
可以看出,若减少无功功率Q,则有利于线路末端电压的稳定,有利于大电动机的起动。
(四)三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量,计算公式如下:
S=P/COSφ1×[(COSφ2/COSφ1)-1]
如一台额定功率为155KW水泵的电机,补前功率因数为0.857,补偿后功率因数为0.967,根据上面公式计算其增容量为:(155÷0.857)×[(0.967÷0.857)-1]=24KVA
四、结束语
在配电网中进行无功补偿、提高功率因数和做好无功优化,是一项建设性的节能措施。本文简要分析了三种无功补偿的方法和两种无功功率补偿容量的选择方法以及无功补偿后的良性影响。在实际设计中,要具体问题具体分析,使无功补偿应用获得最大的效益。
参考文献:
电压不稳范文6
关键词:压力传感器;温度漂移补偿;控制电路;设计
1压力传感出现温度漂移的原因
温度因素是影响压力传感器可靠性温度漂移基本,为了完成对压力传感器温度漂的控制,需要合对具体的压力传感器的温度漂移因素进行解读,具体内容如下。零位温度漂移因素:具体的零位温度漂移,结合上述公式的基本情况,可以完成对造成零位温度漂移因素的分析。残余气体因素的影响,残余气体的影响,主要体现在一类存在密封参考压力腔的压力传感器中,。对于简单的压力传感器,则不需要考虑气体的影响[1]。对于零位温度的漂移因素,还需要的对桥臂电阻的差异性引起的温度漂移进行分析,这类温度漂移的主要是由于四个电阻值的差异引起的温度漂移或是由电阻所处于的位置膜厚度不均匀引起温度漂移。灵敏度漂移原因:灵敏度漂移是影响压力传感器测量精度和可靠性的重要因素,造成压力传感器灵敏度漂移的因素较多。通过查阅相关文献资料,可得到压力传感器的灵敏度与压阻系数之间是存在明显联系,且二者之间呈现正相关的联系,而压阻是温度的函数。通过上述结论,展开分析可以得到电阻系数会受到的温度变化的影响,导致压力传感器出灵敏度漂移。
2压力传感器温度漂移的现有补偿方法分析
压力传感器温度漂移是影响压力传感器测量禁锢的关键,故此,针对的压力传感器的温度漂移,需结合具体原因,选取适宜的补偿方式实现对温度漂移的控制。现阶段,常见温度漂移补偿方式可以分为内部补偿和外部补偿两种方式,具体补偿方式为。(1)内部补偿。这类补偿方式较为适用于零位温度漂移的情况,可以实现对零位温度漂移的控制。以硅桥式压阻压力传感器为例,具体的内部补偿方式主要是控制扩散电阻阻值和扩散电阻温度系数不一致,促使其在不加压情况下,可以满足输出不为零,并随着温度变化。故此,针对内部补偿,主要是通过改善内部结构的方式,达到增加扩散电阻的对称性的目的。并借助控制材料特性的方式,可以选择掺杂的方式,促使压力传感器在温度变化的环境下,可以始终保持稳定的状态。另外,灵敏度漂移的公司分析中,可以得到扩散系数和结深也会造成敏感度变化,故此需要综合对其进行控制,达到降低漂移产生的目的[2]。(2)外部补偿。具有较多的补偿方式,主要可以分为软件补偿和硬件补偿的方式,其中软件补偿,主要是运用适宜的算法结合软件完成对传感器输出信号的处理,进而满足温度补偿的目的,在具体补偿算法分析中,可以选择BP神经网络算法和回归分析法等。对于硬件补偿,主要通过控制电路设计的方式,完成对温度漂移补偿,进而降低温度漂移对传感器造成的不利影响。
3压力传感器温度漂移补偿的控制电路设计
压力传感器温度漂移补偿控制电路属于外部补偿方式,且具有较好的控制效果,可以完成对温度漂移进行控制,达到降低压力传感器测量误差的目的。基于此,详细的对压力传感器温度漂移补偿控制电路的设计进行分析。(1)电源电路。以压阻式的电源电路设计进行分析,根据电源供电的方式,可以将电源分为恒流源和恒压源两种形式,为保障电源电路设计质量,需展开对两部分的比较分。现假设4个扩散电阻的初始值相同,并运用字母R表示。当传感器受到压力作用后,存在两个扩散电阻的阻值上升,具体量为ΔR,对于另外两个电阻发生减少,且得到具体减少的值为ΔR,在温度的作用下,每个扩散电阻均存在ΔR的变化值。从而分别对恒流供电和恒压供电展开分析,并得到具体的输出信号。在比较分析中,可以得到恒压电源供电,对消除温度影响的作用不理想。故此,对于电源电路的设计选择恒流供电。(2)差动放大电路。为保障压力传感器的信号的有效性,则需要展开放电电路的设计,由其实输出电阻很大时,则需要具备良好的放大效果。选择输入差动放大电路的方式,且可以实现对共膜信号的控制,并保障运用调整可变电阻的方式,完成对放大倍数的控制。(3)A/D转换电路的设计。A/D转换是保障控制电路功能的基础,在具体选择时,可运用单通道串行输入的14位的逼近A/D转换芯片。由于这类芯片具有较高的效率和精度,且能耗少,可完成对误差的纠正,无需外部调整。(4)温度传感器信号的提取。对于外部温度环境,可选择数字化温度传感器,实现对温度信号的值的输出。选择适宜的温度传感器,对温度变化分析结果具有重要的作用。
4仿真实践
为实现对压力传感器温度漂移补偿控制电路设计的分析,选取硅桥式压阻压力传感器,运用Hspice作为仿真软件,结合TSMC0.35CMOS工艺,展开仿真模拟。先展开对SPICE模型的构建,在模型构建之前需要对如下表1的参数进行分析。表1压力传感器的基本参数激励电压(V)激励电流(mA)输出电阻(kΩ)输入电阻(kΩ)输出量程(mV)工作温度(℃)温度漂移系数(ppm/℃)3~51.5~34.64.6100±30-20~100±800结合上述基本参数,展开对SPICE模型的构建,并完成对补偿前后补偿后的温度特性曲线情况分析。由此可见,输出电压与温度之间城下负相关的联系,且具有的良好的线性度,综合比较可以得到具体的温度系数为-2099.8ppm/℃。且得到温度特性与传感器的温度使一致。另外,对温度环境-20~100℃的补偿效果展开仿真,温度系数补偿由-2099.8ppm/℃转变为24.9ppm/℃。由此可见,本文设计压力传感器温度漂移补偿的控制电路满足压力传感器的应用需求。
5结语
分析压力传感器温度漂移的原因,在明确造成压力传感器温度漂移的原因的基础上,分析温度漂移的补偿方式,并通过对补偿方式的比较分析,选择控制电路设计的方式完成对温度补偿控制电路的具体设计,实现对压力传感器温度漂移的补偿,保障压力传感器的功能。
参考文献:
[1]徐鹏,孙玲.压力传感器温度漂移补偿的应用分析[J].中国水运月刊,2012,12(1):105-106.