电压不稳范例6篇

前言:中文期刊网精心挑选了电压不稳范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

电压不稳范文1

【关键词】稳定性;电压;破坏;措施

随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。

1.电压稳定性破坏的原因

研究认为,电压崩溃日趋严重的主要原因有以下几点:一是由于经济上及其它方面(如环保)的考虑,发、输电设备使用的强度日益接近其极限值;二是并联电容无功补偿大量增加,因而当电压下降时,向电网提供的无功功率按电压平方下降;三是线路或设备的投切,引起电压失稳的可能性往往比功角稳定研究中所考虑的三相短路情况要大得多,然而人们长期以来只注意功角稳定的研究。

电力系统稳定问题的物理本质是系统中功率平衡问题,电力系统运行的前提是必须存在一个平衡点。电力系统的稳定问题,直观的讲也就是负荷母线上的节点功率平衡问题。当节点提供的无功功率与负荷消耗的无功功率之间能够达成此种平衡,且平衡点具有抑制扰动而维持负荷母线电压的能力,电力系统即是电压稳定的,反之倘若系统无法维持这种平衡,就会引起系统电压的不断下降,并最终导致电压崩溃。当有扰动发生的时候,会造成节点功率的不平衡,任何一个节点的功率不平衡将导致节点电压的相位和幅值发生改变。各节点电压和相位运动的结果若是能稳定在一个系统可以接受的新的状态,则系统是稳定的,若节点的电压和相角在扰动过后无法控制的发生不断的改变,则系统进入失稳状态。电力系统的电压稳定和系统的无功功率平衡有关,电压崩溃的根本原因是由于无功缺额造成的,扰动发生后,系统电压无法控制的持续下降,电力系统进入电压失稳状态。无论是来自动态元件的扰动还是来自网络部分的扰动,所破坏的平衡均归结为动态元件的物理平衡。电力系统的动力学行为仅受其动态元件的动力学行为及其相互关系的制约。

2.电压不稳定的危害

在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。

3.电压不稳定的类型

电压不稳定主要表现在电压偏差和电压波动两个方面。电压偏差是在某一时段内,实际电压幅值“缓慢”变化而偏离了额定电压,偏差是稳态的,就是我们常说的电压偏高或偏低。电压偏差的大小,主要取决与电力系统的运行方式、线路阻抗及有功负荷和无功负荷的变化。电压偏差主要是用电设备所处的位置及运行的时间,如线路末端电压偏低,后夜电压偏高等。

为改善电压偏差,可采取以下措施:一是正确选择变压器的变压比和电压分接头;二是合理减少线路阻抗;三是提高功率因数,进行合理的无功补偿,并根据电压与负荷变化自动接切无功补偿设备容量;四是按照电力系统潮流分布,及时调整运行方式;五是采取用载调压手段,如选用有载调压变压器等。

电压波动是在某一时段内,实际电压幅值急剧变化而偏离了额定电压,偏差是动态的,就是我们所说的电压忽高忽低。电压波动主要是由大型用电设备负荷快速变化引起的冲击性负荷造成的,如轧钢机咬钢、起重机提升启动、电弧炉熔化期发生工作短路、电弧焊机引弧、电气机车启动或爬坡等都有冲击负荷产生。电压波动的大小,主要取决于电压波动的频度、波动量的大小及工作场所对电压质量的要求等。抑制电压波动的措施一是增加供电系统容量,即更换大容量的变压器,或由大的电网来承担供电任务;二是提高供电电压等级;三是采用专用变压器和专线供电;四是改进生产工艺及操作水平;五是采用专用稳压设备等。

4.电压不稳定的解决办法

按供电系统节点来看,电压波动可分为高压侧电压波动和低压侧电压波动。高压侧电压波动又可分为进线电源处电压不稳定和高压母线上电压不稳定。进线电源处电压不稳定原因之一是上一级电源质量不高。解决方法是更换电源或在上一级负荷处重新架设一条供电线路。原因之二是传输过程中(进线电缆)存在问题。解决方法是检查是否存在电缆破损、电缆质量、电缆选型不正确的情况,有针对性地加以改善。高压母线上电压不稳定原因之一是变压器三相空载导致高压侧母线电压不稳定。解决方法是重新计算变压器的负载率,更换更大一级容量的变压器。原因之二是在变压器负载时,大功率设备冲击电网造成高压侧母线电压不稳定。解决方法一是对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。二是大功率设备尽量采用高压电机,以优化电能质量。三是对个别大功率设备,采用单独无功补偿装置稳定电压。

低压侧电压波动可分为电缆出线端电压不稳定、设备入线端电压不稳定和低压母线上电压不稳定。电缆出线端和设备入线端电压不稳定原因分析。原因之一是外接负载功率较大导致的启动电流冲击。解决方法是优化设备启动方式。对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。大功率设备尽量采用高压电机,以优化电能质量。对个别设备采用单独无功补偿装置稳定电压。原因之二是传输过程中存在问题。解决方法是检查电缆是否存在电缆破损等质量问题,如有则更换电缆,如非质量问题则存在电缆选型问题,应重新计算电缆压降,从配电柜出线端到设备进线口的电缆压降,看是否超过了5%,如果超过了,要更换大一级的电缆来进行电能的传输。

低压侧母线电压不稳定原因是整个供电系统功率因数的问题。解决方法是提高整个供电系统的功率因数,增大无功功率,使功率因数提高到90%以上。按交流与直流来分,低压侧母线电压不稳定可分为交流电压波动和直流电压不稳定。交流电主要承担煤矿除工艺集中控制外的所有负荷;直流电主要负责供给工艺集中控制信号的电源。直流电压不稳定原因有三:一是电源、二是负载、三是接触不良。解决方法一是更换电源或改善传输路径、二是提高负载供电等级、三是检查接触装置按设备负载。按设备负载来分,低压侧母线电压不稳定可分为带冲击负载的电动机引起电压波动、由反复短时工作负载引起电压波动、大型电动机启动时引起电压波动和供电系统短路电流引起的电压波动。

由反复短时工作负载引起电压波动。这类负载的特点是呈现周期替的增减变化。但其交替的周期是不定值,且交替的幅值也是不定值,如吊运工件的吊车,手工交直流电焊机等。当前企业为节能降耗在交直流电焊机上都装设了自动断电装置,因此在节电的同时电动机的启动电流和焊接变压器的涌流却加剧了所在电网的电压波动。)供电系统短路电流引起的电压波动。由于各种原因,企业的许多高、低压配电线路及电气设备可能发生不同性质的短路。在这种情况下,如继电保护装置或断路器失灵就会使故障持续存在也会造成越级跳闸,轻则损坏配电装置,重则造成大面积停电,延长整个电网的电压波动时间,并扩大波动范围。解决方法是合理选择变压器的分接头,保证用电设备的电压水平。设置电容器进行人工补偿。配电变压器并列运行。采用电抗值最小的高低压配电线路方案、线路出口加装限流电抗器、大型感应电动机带电容器补偿、采用电力稳压器稳压等。

【参考文献】

[1]张黎阳.电网运行状态实时稳定评估预想事故管理研究[D].福州:福州大学.2006.

电压不稳范文2

(河北工程技术高等专科学校,河北 沧州 061001)

【摘要】大量的分布式电源接在中压或低压配电网上运行,将彻底改变传统配电系统单向潮流的特点,势必要求系统使用新的保护配置方案、监控系统和仪表。通过高级自动化系统把这些分布式电源集成到现有电网中来,将为社会带来巨大的效益。

关键词 电源;调整;调节

1电压调节装置

电力系统需要利用多种装置调节电压,譬如负载分支变换变压器,自动电压调节器,电容器等。这些调节装置在假设电流从变电站到负载单向流动的基础上进行调整和操作。分布式电源的引入会导致配电电路不同部分的电流速度减慢,甚至反向流动。电流方向的翻转会扰乱电压调节器控制电路,导致调节器不能将馈电线电压控制在需要的范围里。

2电压调节器的使用

(1)电压调节器常常使用线电压降补偿器电路调节电压调节器下级的馈电线的电压。线电压降补偿器(LDC)是一个小型的电子电路,它是调节器控制的一部分,可以模拟电路压降,预测距调节器几英里之外的电压。线电压降补偿器能够在没有测量较远处的电压的情况下保持较远处的电压稳定。它通过测量调节器的线电流和电压,然后将这些阻抗传回折合阻抗。折合阻抗是小型线性模型的一部分,这模型允许调节器预测稍远处的电压。遗撼的是,LDC控制工作只适用于没有下级电源连接的线性电路。一台分布式发电机会使线电压降补偿器误认为线电流反向或低于实际值,从而严重扰乱线电压降补偿器,这样就会导致配电线路尾部的电压降低。

(2)在配电线外安装有小型辅助电压调节器,而且在小型辅助电压调节器下级安装有大容量分布式电源的情况时最有可能出现这种情况(见图1)。以前也曾报到过这样的事件,当分布式电源成为整个负载的一大部分,在相对较长,不耐用的配电电路上就会出现这种情况。当很大的分布式电源(1MW或更大)连接在相距很近的变电站的时候也会发生这种情况。

上述所述情况中,分布式电源的安装使得调节器误认为在自己所服务的部分存在无功负载。这会使得调节器降低电压导致超出ANSI标准。

3使用中应注意的问题

(1)通常来说,在任何时候分布式电源的输出都是可以测量的。如果电压调节器在分布式电源的上级,会出现严重的电压控制问题。这个问题的一个不彻底的解决方法是仅仅避免在电压调节器的较近的下级处放置分布式电源。如果能将分布式电源放置在上级较远处或下级,在许多情况下系统的表现会得到重大改善,也能够通过调整电压调整器来限制功率反向分支变换器的扰动,从而防止过低压出现。但是这些措施也不能保证不出现问题。一些新型的基于微机的电压调节器允许反向电流,而且人类完全可以对其进行正确的设置。

(2)如果分布式发电机没有对应的过压保护装置,在系统电压升高的时候去关闭发电机或进行限压,会导致系统电压超出ANSI C84.1-1995限制。分布式发电机的位置,容量和保护控制决定这是否会产生问题。10kW左右的分布式电源可能在为多个用户服务的较长二次线路产生高压。相反的,如果一个5MW的分布式电源接近一个很大的变电站,可能不会导致任何问题。每种情况都必须在发电机的容量,电压调节器的相对位置和稳定性(故障等级/分布式电源的输出比率)基础上进行评估。最终,第三方分布式电源运营商和电力公司都需要保证配电一次线和二次线能够承受在没有电压问题下电流的输入。这就是为什么在分布式电源中好的电压控制是很重要的。分布式电源需要时间延迟电压继电器,从而保证连接处的电压不超过ANSI C84.1-1995(或特定的)的电压限制。如果超过这些限制,该单元应该和系统隔离,因为对于大多数小系统来说,只能影响二次侧系统,专用变压器会将分布式电源和系统隔离,所以也将专用的变压器作为防止持续过压的保护装置。

4结束语

近年来不断增加的分布式电源应用加快了对互联实践指导理论的需求。分布式电源或者储能和电力系统的互联的关键在于其安全性和效果,在连接中必须考虑的问题。

参考文献

[1]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.

电压不稳范文3

关键词:电力 无功功率  电压控制

电压是衡量电能质量的一个重要指标。电力系统中各种用电设备只有在电压为额定值时才有最好的技术和经济指标。但是在电力系统的正常运行中,用电负荷和系统运行方式是经常变化的,由此引起电压发生变化,不可避免地出现电压偏移。而电力系统的运行电压水平取决于无功功率的平衡,系统中各种无功电源的无功功率输出应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则就会偏离额定值。

电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

一、无功功率就地补偿的概念

(1)无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。

(2)无功功率不足的危害:交流电力系统需要电源供给两部分能量:一部分将用于做功而被消耗掉,这部分称为“有功功率”;另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有做功,称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立磁场,电动机,变压器等设备就不能运转。其物理意义是:电路中电感元件与电容元件正常工作所需要的功率交换。无功功率不足,无功电源和无功负荷将处于低电压的平衡状态,将给电力系统带来诸如出力不足,电力系统损耗增加,设备损坏等一系列的损害,甚至可能引起电压崩溃事故,造成电网大面积停电。

(3)无功补偿原理:在交流电路中,纯电阻元件中负载电流与电压同相位,纯电感负载中电流之后电压九十度,纯电容负载中电流超前电压九十度,也就是说纯电容中电流和纯电感中的电流相位差为180度,可以互相抵消,即当电源向外供电时,感性负荷向外释放的能量由荣幸负荷储存起来;当感性负载需要能量时,再由荣幸负荷向外释放的能量来提供。能量在两种负荷间相互交换,感性负荷所需要的无功功率就可由容性负荷输出的无功功率中得到补偿,实现了无功功率就地解决,达到补偿的目的。

二.无功功率的补偿的方式

(1)集中补偿

集中补偿就是把电容器组集中安装在变电所的二次侧的母线上或配电变压器低压母线上,这种补偿方式,安装简便,运行可靠,利用率高,但当电气设备不连续运转或轻负荷时,又无自动控制装置时,会造成过补偿,使运行电压升高,电压质量变坏。季节性用电较强,空载运行较长又无人值守的配电变压器不宜采用。

(2)分散补偿

分散补偿是将电容器组分组安装在车间配电室或变电所个分路的出线上,形成抵押电网内部的多组分散补偿方式,它能与工厂部分负荷的变动同时投切,适合负荷比较分散的补偿场合,这种补偿方式效果较好,且补偿方式灵活,易于控制。

(3)个别补偿

个别补偿是对单台用电设备所需无功就近补偿的方法,把电容器直接接到单台用电设备的同一电气回路,用同一台开关控制,同时投运或断开,俗称随机补偿。这种补偿方法的效果最好,它能实现就地平衡无功电流,又能避免无负荷时的过补偿,是农网中对异步电动机进行补偿的常用方法。

三、无功功率的平衡

在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。电压与无功功率也和频率与有功功率一样,是一对对立的统一体。当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多。

四、无功功率的产生和吸收

同步发电机可以产生或吸收无功功率,这取决于其励磁情况。当过励时产生无功功率,当欠励时吸收无功功率。

架空线路产生或吸收无功功率取决于负荷电流。当负荷低于自然负荷(波阻抗),线路产生纯无功功率;当高于自然负荷时,线路吸收无功功率。

地下电缆,由于它们对地电容较大,因此具有较高的自然负荷。它们通常工作在低于自然负荷情形下,因此在所有运行条件下总发生无功功率。

变压器不管其负载如何,总是吸收无功功率。空载时,起主要作用的是并联激励电抗;满载时,起主要作用的是串联漏抗。

负荷通常吸收无功功率。由电力系统的供电的典型负荷节点由许多装置所组成。这种组成随日期、随季节和气候的变化而不同。通常负荷节点的负荷特性是吸收无功功率的,复合负荷的有功功率和无功功率都是电压幅值的函数。具有低的滞后功率因数的负荷使传输网络有大的电压降落,因而供电也不经济,对于工业用户,无功功率通常和有功功率一样要计费,这就鼓励企业通过使用并联电容器来提高负荷功率因数。在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。

五.无功补偿设备的不同

(1)同步调相机

同步调相机实质上是一种不带机械负载的同步电动机,它是最早采用的一种无功补偿设备,在并联电容器得到大量采用后,它退居次要地位。其主要缺点是投资大,运行维护复杂。因此,许多国家不再新增同步调相机作为无功补偿设备。

调相机可以安装强行励磁装置,当电网发生故障时,电压剧烈降低,调相机可以强行励磁,保持电网电压稳定,因而提高了系统运行的稳定性。电容器输出无功功率与运行电压的平方成正比,电压降低,输出的无功将急剧下降,比如,当电压下降10%,变为0.9Ue时,电容器输出的无功功率变为0.81Q,即其输出的无功功率将下降19%,所以,电容器此时不能起到稳定系统电压的作用。

(2)并联电容器

作为无功补偿设备,电容器有以下显著优点:电容器的损耗低,效率高。现代电容器的损耗只有本身容量的0.02%左右。调相机除了本身的损耗外,其附属设备还需用一定的所用电,损耗2%~30%,大大高于电容器;电容器是静止设备,运行维护简单,没有噪音。调相机为旋转电机,运行维护很复杂;并联电容器是电网中用得最多的一种无功功率补偿设备,目前国内外电力系统中90%的无功补偿设备是并联电容器。

(3)并联电抗器

并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。为了防止超高压线路空载或轻负荷运行时,线路的充电功率造成线路电压升高,一般装设并联电抗器吸收线路的充电功率,同时,并联电抗器也用来限制由于突然甩负荷或接地故障引起的过电压从而危及系统的绝缘。

电压不稳范文4

[关键词]低压电网;存在问题;无功补偿

中图分类号:TM714.3 文献标识码:A 文章编号:1009-914X(2016)09-0154-01

1 关于低压电网无功补偿含义及其相关模块的分析

1.1 通过对低压电网无功补偿方式的分析可以得知,当下低压电网面临着严峻的调整。为了适应当下低压电网的工作需要,为了更好满足当下工作的需要,进行供电变压器及其输送线路损耗的控制是必要的,从而进行供电效率的提升,保证低压电网供电环境的优化,实现电网中无功补偿合理补偿方法及其装置的选择,保证电网的损耗程度的最大化控制,实现电网综合质量的提升,实现电压比东及其谐波的有效控制,进而保证电压稳定性的提升。

通过对无功补偿定义的深层次探讨,得知通过对无功补偿设备的积极应用,可以进行无功功率的控制,保证系统的整体功率因数的优化,保证能耗的控制,实现电压整体电压质量的提升,这需要进行一系列的无功补偿配置原则的应用,保证总体平衡模块及其局部平衡模块的有效开展,保证局部平衡体系的健全。这也需要进行电力部门补偿环节及其用户补偿环节的结合,进行配电网络,用户消耗无功率的控制,实现配电网的无功功率消耗的控制。为了保证网络模块中的无功功率的有效工作,进行就地补偿模块的应用是必要的。

1.2 在就地工作模块中,为了提升无功功率的输送效率,进行就地补偿是必要的模块,这需要电力部门及其用户展开补偿的合作,进行集中补偿模块及其分散补偿模块的有效结合,进行分散模式的应用。所谓的集中补偿就是进行变电所补偿电容器的装设。所谓的集中补偿,就是进行主变压器的无功损耗的应用,进行变电所输电线路的无功电力的优化,保证供电网络的无功损耗模块的有效开展,保证配电网络无功损耗模块的循序渐进。这需要进行变电所的配电线路负荷端输送模块的应用,进行线损的积极控制,进行无功功率的优化。在中低配电网应用中,进行分散补偿模块的应用是必要的,进行降损及其调压模块的应用,保证降损模块的积极工作。

2 关于低压电网中的无功补偿原理及其应用模式的分析

2.1 为了满足现阶段低压电网的工作需要,进行无补偿原理的分析是必要的,从而进行应用模式的开拓,这对于电压的稳定性提升非常必要的,从而保证其电压质量的提高,保证电力传输过程中的功率损耗模块及其电能损耗模块的优化,保证供配电设备的供电能力的提升。这需要引起相关工矿企业的重视,进行内部供配电系统的应用,保证无功补偿装置的应用,进行无功补偿效益的提升,切实提升低压电网的电压质量,保证配电设备的利用率的提升。这对于企业的整体节能效率的提升都是非常必要的。企业的功率因数直接关系到企业的电价,企业若想降低电力费用,不但要在电力设备的节能保养上下功夫,还要提高企业用电的功率因数,而无功补偿正是企业提高功率因数,实现节能低碳的有效手段之一。

通过对无功补偿模块的应用,更有利于进行电力系统能耗的控制,这需要进行计算公式的应用,进行无功补偿模块的应用,实现电力系统能耗作用情况的分析,保证线损的控制,提升功率的应用率。从而进行有功损耗及其无功损耗模块的分析。这需要按照我国的供用电规定,进行相关工作模块的优化。高压供电用户,其功率因数不应低于0.9,其他电力用户的功率因数不应低于0.85,功率因数低于0.7时,不予供电。若达不到以上要求,应装设必要的无功补偿装置,否则要加收电费。因此,低压电网中的无功无论是对低压电网还是对于用电企业和供电企业都具有十分重要的意义。

2.2 为了满足当下配电网工作的需要,进行用电设备的感性负荷模块的控制是必要的,这需要进行感性无功功率电流相位的控制,保证电压相位的工作状况的满足。在该模块中需要明确到容性无功功率进行感性无功功率的补偿是必要的,以满足当下工作的需要。以减少电网无功负荷,由于超前电流与滞后电流的互补作用,也就是电容性负荷的无功功率补偿了电感性负荷的无功功率。当电网容量一定时,使无功功率减少,从而达到了提高功率因数的目的。

2.3 为了提升电磁感应的无功功率的补偿效率,进行随机补偿模块的应用是必要的,这需要进行电动机的无功补偿方案的应用。一般来说,随机补偿的应用会随着电动机的开关变化而产生变化,进行补偿或者消费。为了保证无功功率的补偿,进行补偿调整的应用是必要的,从而提升其灵活性、简便性,保证随器补偿模块的有效开展。随机补偿主要是将低压容量通过低压保险接在配电变压器上,用来对配电变压器空载无功功率的补偿。此种补偿方法能够有效地平衡配电变压器的空载无功功率,从而提高变压器的利用率,有效降低电网的无功损耗,因此,随器补偿具有较高的经济性价比,是目前最常采用也最有效的无功补偿。

为了更好的进行无距离低压电网线路的工作,进行中间同步补偿方法的应用是必要的,这也需要进行静止补偿模式的配合。保证静止补偿装置及其同步调相机模块的正常开展,实现现阶段无功补偿方案的更新,这种方法适合在线路输电方案中应用。此种方法在线路输电过程中,能够稳定电压,同时对多条输电线路进行降耗补损,并具有较强的调节性能。终端分散补偿。用户终端分散补偿能够在低压电网终端进行有效的补偿,提高用户电器设备的安全性,还能提高电压利用率。

在低压电网无功补偿模块中,进行网损微增率补偿法的应用是重中之重,这需要进行低压集中补偿法、无功经济当量补偿法及其相关方法的应用,保证低压电网的无功补偿环节的正常开展,进一步的提升电压的稳定性,保证其整体利用率的提升。这需要进行静态补偿装置体系的健全,进行其内部装置模块的优化。静态补偿装置一般为机械式接触器投切电容器组,适用于负载变化较小的场合。动态补偿装置。动态补偿以晶闸管作为执行元件,通过跟踪监测负荷的无功电流或无功功率,对多级电容器组进行分组投切,适用于负载变化大,情况复杂的低压电网。

2.4 在低压电网无功补偿装置设置中,要明确到无功补偿实施的必要性,从而提升低压电网无功补偿的效益,进一步的提升高无功功率因数的效益,进行耗损情况的控制,保证稳定电压的优化,这就需要进行电网运作中无功补偿装置的优化,针对不同的应用情况,进行多种补偿装置的配合,比如在随机补偿模块中,进行就地无功补偿装置的应用。实现最方便的无功自动补偿。而对于需要在多条线路节点上实现自动投切要求,并减少变压器无功负载时,就要应用集中无功补偿装置。目前在农网中应用的还有静止无功发生器,这些无功装置的应用,大大提高了低压电网的性能。

3 结束语

在电网系统优化过程中,通过对无功补偿模块的应用,更有利于进行电压质量的提升,实现对电能利用率的提升,保证不同模块的无功功率的控制,这需要针对无功功率的应用原理,进行多种无功补偿方法及其装置的优化。选择不同的无功补偿方法和装置,能够有效提高无功功率因数,降低线路损耗和配电变压器以及用户端的损耗。因此,低压电网中的无功补偿对于社会发展具有重要意义。

参考文献

电压不稳范文5

[论文摘要]低压电网如何有效保持良好的工作状态,降低电能损失,与电网稳定工作、电力设备安全运行、工农业安全生产及人民生活用电都有直接影响。分析无功补偿的作用和主要措施。

无功补偿是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低电能的损耗,改善电网电压质量。

从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤其是以低压配电网所占比重最大。为了最大限度的减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配

置,应按照“分级补偿,就地平衡”的原则,合理布局。

一、低压配电网无功补偿的方法

随机补偿:随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。

随器补偿:随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。

跟踪补偿:跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

二、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

(一)单负荷就地补偿容量的选择的几种方法

1.美国:Qc=(1/3)Pe

2.日本:Qc=(1/4~1/2)Pe

3.瑞典:Qc≤√3UeIo×10-3(kvar)Io-空载电流=2Ie(1-COSφe)

若电动机带额定负载运行,即负载率β=1,则:Qo根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。

4.按电动机额定数据计算:

Q=k(1-cos2φe)3UeIe×10-3(kvar)

K为与电动机极数有关的一个系数

极数:246810

K值:0.70.750.80.850.9

考虑负载率及极对数等因素,按式(4)选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。

(二)多负荷补偿容量的选择

多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

1.对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:

Qc=KmKj(tgφ1-tgφ2)/Tm

式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2是指负载阻抗角的正切,tgφ1=Q1/P,tgφ2=Q2/P;tgφ(UI)可由有功和无功电能表读数求得。

2.对处于设计阶段的企业,无功补偿容量Qc按下式选择:

Qc=KnPn(tgφ1-tgφ2)

式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。

多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。三、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。减少了电网无功功率的输入,会给用电企业带来效益。

(一)节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。

(二)降低系统的能耗。补偿前后线路传送的有功功率不变,P=IUCOSφ,由于COSφ提高,补偿后的电压U2稍大于补偿前电压U1,为分析问题方便,可认为U2≈U1从而导出I1COSφ1=I2COSφ2。即I1/I2=COSφ2/COSφ1,这样线损P减少的百分数为:

ΔP%=(1-I2/I1)×100%=(1-COSφ1/COSφ2)×100%

当功率因数从0.70~0.85提高到0.95时,由上式可求得有功损耗将降低20%~45%。

(三)改善电压质量。以线路末端只有一个集中负荷为例,假设线路电阻和电抗为R、X,有功和无功为P、Q,则电压损失ΔU为:

U=(PR+QX)/Ue×10-3(KV)两部分损失:PR/Ue输送有功负荷P产生的;QX/Ue输送无功负荷Q产生的;

配电线路:X=(2~4)R,U大部分为输送无功负荷Q产生的

变压器:X=(5~10)RQX/Ue=(5~10)PR/Ue变压器U几乎全为输送无功负荷Q产生的。

可以看出,若减少无功功率Q,则有利于线路末端电压的稳定,有利于大电动机的起动。

(四)三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量,计算公式如下:

S=P/COSφ1×[(COSφ2/COSφ1)-1]

如一台额定功率为155KW水泵的电机,补前功率因数为0.857,补偿后功率因数为0.967,根据上面公式计算其增容量为:(155÷0.857)×[(0.967÷0.857)-1]=24KVA

四、结束语

在配电网中进行无功补偿、提高功率因数和做好无功优化,是一项建设性的节能措施。本文简要分析了三种无功补偿的方法和两种无功功率补偿容量的选择方法以及无功补偿后的良性影响。在实际设计中,要具体问题具体分析,使无功补偿应用获得最大的效益。

参考文献:

电压不稳范文6

关键词:压力传感器;温度漂移补偿;控制电路;设计

1压力传感出现温度漂移的原因

温度因素是影响压力传感器可靠性温度漂移基本,为了完成对压力传感器温度漂的控制,需要合对具体的压力传感器的温度漂移因素进行解读,具体内容如下。零位温度漂移因素:具体的零位温度漂移,结合上述公式的基本情况,可以完成对造成零位温度漂移因素的分析。残余气体因素的影响,残余气体的影响,主要体现在一类存在密封参考压力腔的压力传感器中,。对于简单的压力传感器,则不需要考虑气体的影响[1]。对于零位温度的漂移因素,还需要的对桥臂电阻的差异性引起的温度漂移进行分析,这类温度漂移的主要是由于四个电阻值的差异引起的温度漂移或是由电阻所处于的位置膜厚度不均匀引起温度漂移。灵敏度漂移原因:灵敏度漂移是影响压力传感器测量精度和可靠性的重要因素,造成压力传感器灵敏度漂移的因素较多。通过查阅相关文献资料,可得到压力传感器的灵敏度与压阻系数之间是存在明显联系,且二者之间呈现正相关的联系,而压阻是温度的函数。通过上述结论,展开分析可以得到电阻系数会受到的温度变化的影响,导致压力传感器出灵敏度漂移。

2压力传感器温度漂移的现有补偿方法分析

压力传感器温度漂移是影响压力传感器测量禁锢的关键,故此,针对的压力传感器的温度漂移,需结合具体原因,选取适宜的补偿方式实现对温度漂移的控制。现阶段,常见温度漂移补偿方式可以分为内部补偿和外部补偿两种方式,具体补偿方式为。(1)内部补偿。这类补偿方式较为适用于零位温度漂移的情况,可以实现对零位温度漂移的控制。以硅桥式压阻压力传感器为例,具体的内部补偿方式主要是控制扩散电阻阻值和扩散电阻温度系数不一致,促使其在不加压情况下,可以满足输出不为零,并随着温度变化。故此,针对内部补偿,主要是通过改善内部结构的方式,达到增加扩散电阻的对称性的目的。并借助控制材料特性的方式,可以选择掺杂的方式,促使压力传感器在温度变化的环境下,可以始终保持稳定的状态。另外,灵敏度漂移的公司分析中,可以得到扩散系数和结深也会造成敏感度变化,故此需要综合对其进行控制,达到降低漂移产生的目的[2]。(2)外部补偿。具有较多的补偿方式,主要可以分为软件补偿和硬件补偿的方式,其中软件补偿,主要是运用适宜的算法结合软件完成对传感器输出信号的处理,进而满足温度补偿的目的,在具体补偿算法分析中,可以选择BP神经网络算法和回归分析法等。对于硬件补偿,主要通过控制电路设计的方式,完成对温度漂移补偿,进而降低温度漂移对传感器造成的不利影响。

3压力传感器温度漂移补偿的控制电路设计

压力传感器温度漂移补偿控制电路属于外部补偿方式,且具有较好的控制效果,可以完成对温度漂移进行控制,达到降低压力传感器测量误差的目的。基于此,详细的对压力传感器温度漂移补偿控制电路的设计进行分析。(1)电源电路。以压阻式的电源电路设计进行分析,根据电源供电的方式,可以将电源分为恒流源和恒压源两种形式,为保障电源电路设计质量,需展开对两部分的比较分。现假设4个扩散电阻的初始值相同,并运用字母R表示。当传感器受到压力作用后,存在两个扩散电阻的阻值上升,具体量为ΔR,对于另外两个电阻发生减少,且得到具体减少的值为ΔR,在温度的作用下,每个扩散电阻均存在ΔR的变化值。从而分别对恒流供电和恒压供电展开分析,并得到具体的输出信号。在比较分析中,可以得到恒压电源供电,对消除温度影响的作用不理想。故此,对于电源电路的设计选择恒流供电。(2)差动放大电路。为保障压力传感器的信号的有效性,则需要展开放电电路的设计,由其实输出电阻很大时,则需要具备良好的放大效果。选择输入差动放大电路的方式,且可以实现对共膜信号的控制,并保障运用调整可变电阻的方式,完成对放大倍数的控制。(3)A/D转换电路的设计。A/D转换是保障控制电路功能的基础,在具体选择时,可运用单通道串行输入的14位的逼近A/D转换芯片。由于这类芯片具有较高的效率和精度,且能耗少,可完成对误差的纠正,无需外部调整。(4)温度传感器信号的提取。对于外部温度环境,可选择数字化温度传感器,实现对温度信号的值的输出。选择适宜的温度传感器,对温度变化分析结果具有重要的作用。

4仿真实践

为实现对压力传感器温度漂移补偿控制电路设计的分析,选取硅桥式压阻压力传感器,运用Hspice作为仿真软件,结合TSMC0.35CMOS工艺,展开仿真模拟。先展开对SPICE模型的构建,在模型构建之前需要对如下表1的参数进行分析。表1压力传感器的基本参数激励电压(V)激励电流(mA)输出电阻(kΩ)输入电阻(kΩ)输出量程(mV)工作温度(℃)温度漂移系数(ppm/℃)3~51.5~34.64.6100±30-20~100±800结合上述基本参数,展开对SPICE模型的构建,并完成对补偿前后补偿后的温度特性曲线情况分析。由此可见,输出电压与温度之间城下负相关的联系,且具有的良好的线性度,综合比较可以得到具体的温度系数为-2099.8ppm/℃。且得到温度特性与传感器的温度使一致。另外,对温度环境-20~100℃的补偿效果展开仿真,温度系数补偿由-2099.8ppm/℃转变为24.9ppm/℃。由此可见,本文设计压力传感器温度漂移补偿的控制电路满足压力传感器的应用需求。

5结语

分析压力传感器温度漂移的原因,在明确造成压力传感器温度漂移的原因的基础上,分析温度漂移的补偿方式,并通过对补偿方式的比较分析,选择控制电路设计的方式完成对温度补偿控制电路的具体设计,实现对压力传感器温度漂移的补偿,保障压力传感器的功能。

参考文献:

[1]徐鹏,孙玲.压力传感器温度漂移补偿的应用分析[J].中国水运月刊,2012,12(1):105-106.