直流电源范例6篇

前言:中文期刊网精心挑选了直流电源范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

直流电源

直流电源范文1

1电力通信直流电源的组成

通信直流电源是一个复杂的系统,目前电力通信直流电源均采用-48V的高频开关直流电源,电力系统中典型的电力通信直流电源结构组成如下图所示,从图中可知电力通信直流电源由交流部分、整流器、直流分配部分、蓄电池组和监控模块等按照要求组合而成。

①交流部分。交流部分的市电输入一般为2路380V三相四线交流输入,在电源容量较小时有时也使用2路220V单相交流输入,以保证电源可靠供电。为防止雷击和过电压破坏,在市电输入端应加装避雷器,常用的有普通氧化锌避雷器和OBO防雷模块等;由于此处的防雷主要是对非直击的感应雷击的浪涌电压的防护,因此避雷器的通流量一般选择在15-20KA,残压在1.5KV左右,就可有效的保护电源设备。为实现两路输入的交流电的通断互锁,自动切换,还需装设交流切换装置,采用机械互锁或电气互锁方式,但是应注意任何时候都不允许出现两路交流电源同时接通或者同时断开的现象。经过切换装置后,交流输入分为整流器模块输入和交流分路输出,交流分路输出为机房其他交流用电设备提供电源,如计算机、UPS等。

②整流器部分。整流器是通信直流电源的最重要的组成部分,通信直流电源的供电质量主要取决于整流器的电气指标,它完成AC-DC变换并以并联均流方式为通信设备供电,同时对蓄电池组进行恒流限压充电和监控模块的供电。现在所有的通信直流电源均采用模块化高频开关整流器,它具有其体积小、效率高、模块化、功率因素高、输入电压范围宽、噪声低、可靠性高以及可带电热插拔等优点;电力通信直流电源所使用的高频开关整流器模块一般为单相220V交流输入,功率因素可达0.99以上,模块容量一般为每块20A/-48V~50A/-48V;在实际使用中,如果输入的是380V三相四线交流电源,则应注意将所有整流模块平均分配到每一相;同时为了提高整流器工作的可靠性,在设计时应考虑多余备用容量,模块配置采用N+1冗余。高频开关整流器模块有内控式和外控式两种类型,内控式整流器内部设有独立的监控单元,可对整流器模块参数进行设置、检测和显示,与系统的监控模块采用RS-485总线相连;外控式整流器在内部不设独立的监控单元,完全由系统监控模块控制,若监控模块故障,整流器模块转为自主工作状态,其输出电压电流服从初始的设定值。

③直流分配部分。直流分配部分将整流器输出的直流电压进行分配,一路给蓄电池组充电,其它分配给通信设备和其它直流用户供电。直流分配部分决定了设备的最终分配容量,因此要求在设计时应充分考虑直流分路输出的用户数和容量,满足日后通信设备接入的需要。在给蓄电池组充电的分路开关之前应加装欠压保护继电器,当蓄电池组放电达到欠压告警值时发出告警,放电到欠压关断值时控制自动断开蓄电池组,保护蓄电池组不会因为过放电而导致损坏。现在直流分路输出开关多采用空气开关,应注意配置使用直流空气开关,因为直流空气开关的灭弧能力很强,而不应使用普通交流空气开关。

④蓄电池组。蓄电池组是通信直流电源的不可缺少的组成部分,蓄电池组一旦发生故障,在市电输入停电时,将造成所有使用该蓄电池组作后备电源的通信设备全部停止工作,造成通信中断。现在使用的蓄电池组都是阀控式密封铅酸蓄电池(简称VRLA),它完全取代了过去使用的普通开口铅酸蓄电池,采用密封结构,基本无酸气泄漏,可与设备同室安装,无需加电解液维护;可采用立式、卧式、单层、多层等各种组合安装方式,安装灵活;适用浮充工作制,使得供电系统电压更稳定;寿命、容量等受温度影响较大。蓄电池组的容量决定了市电停电后通信设备的运行时间,一般可根据负载大小和放电时间来选择蓄电池组的容量,计算方法为:负载容量(A)×放电时间(h)÷放电时间小时率放电容量系数。

⑤监控模块。监控模块对于通信直流电源来说具有智能控制中心的作用,主要有监测功能,包括监测交流输入电压、电流,整流器模块并联输出电压值和每个整流器模块的输出电流,负载电流,蓄电池组充放电电流和电压等;控制功能,包括电源系统的开关机,各整流器模块的开关机,直流输出电压、输出电流极限值的设定,蓄电池组浮充、均衡充电电压和充电电流的极限值设定,电池温度系数的补偿和蓄电池组欠压保护设定等;告警功能,当电源运行过程中某些参数达到或者超过告警的设定值,监控模式将发出声光告警,并显示故障部位和原因。此外,监控模块还应可通过RS232/RS485接口与上级监控中心联系,以实现集中监控。

2电力通信直流电源的维护

由于目前电力通信直流电源均使用了高频开关电源和阀控式密封铅酸蓄电池,这给电源系统的维护带来了许多便利,但是在维护方面还要注意按照使用维护要点做好维护工作,才能真正保证电力通信直流电源可靠、稳定、不间断地为通信设备供电。

①电源的交流输入所采用的避雷器的状态在进行电源的巡视维护时应注意检查,特别是雷雨天气时,更应该注意检查避雷器的状态,发现问题及时更换,如当发现OBO防雷模块的故障显示窗的颜色由绿色变成红色时,就要对防雷模块进行更换,确保发生雷击时能够发挥其防雷作用。这里应注意普通氧化锌避雷器存在有一定的漏电流,长期使用容易老化,造成使用性能下降,所以即使长时间没有雷击发生,也要定期进行更换,确保其防雷效果。

②高频开关电源在正常使用的情况下,整流器主机的维护工作量很少,主要是防尘和定期除尘,否则飞尘加上潮湿会引起主机工作紊乱,同时积尘也会影响器件的散热。一般每季度应对主机彻底清洁一次,在除尘时应检查各连接件和插接件有无松动和接触不牢的情况。

③通信高频开关电源中设置的参数在使用中不能随意改变。

④通信高频开关电源在使用时应注意避免随意增加大功率的额外设备,也不允许在满负载状态下长期运行。由于通信直流电源几乎是在不间断状态下运行的,增加大功率负载或者在基本满载下工作,都将可能造成整流器模块故障,严重时将损坏整个电源系统。⑤作为后备电源的蓄电池组维护工作载电力通信直流电源的维护工作中占有非常重要的地位,这也是电源维护工作的一个难点。由于现在使用的阀控式密封铅酸蓄电池实现了密封,免除了以往开口铅酸电池的测比、配比、添加蒸馏水等工作,大大减少了维护工作量,因此有些维护人员认为其是免维护电池,在使用中不去维护,听之任之,结果造成维护不当,发生问题。在对阀控式密封铅酸蓄电池的维护工作中,应重点注意以下问题:

定期检查整个蓄电池组的浮充电压,如果其浮充电压超出了蓄电池组的要求,应进行调整。浮充电压过高将增加水的损耗,加速电池正板栅的腐蚀,可能严重影响蓄电池的寿命;过低则可能不能使蓄电池充足电。对单只蓄电池每月应记录一次它的浮充电压,若电压超过厂家的指标,观察几个月后无向均一方向发展的趋势,应与厂家联系进行处理。

阀控式密封铅酸蓄电池的日常运行对温度要求较高,它要求的环境温度最好是20~25℃,如不然,应对浮充电压采取温度补偿,每升高1℃,浮充电压应降低3~4mv,但即使对浮充电压进行调整补偿,温度仍对蓄电池的寿命影响较大,如寿命为10年的蓄电池在30℃下运行,无温度补偿寿命仅为5年,有温度补偿寿命也缩短为8年。因此阀控式密封铅酸蓄电池应安装在有空调的房间,安装方式要有利于散热。在日常巡视维护中发现蓄电池有明显发热现象应立即与厂家联系进行处理。

阀控式密封铅酸蓄电池的自放电极低,而且电池内部不会形成电解液分层现象,因此无需定期进行高压均衡充电,定期均衡充电只能增加水的损耗,增大正板栅的腐蚀,在对蓄电池进行维护时应尽量减少或取消均衡充电。

应避免阀控式密封铅酸蓄电池的大电流充电和过放电。大电流充电可能使蓄电池极板膨胀变形,活性物质脱落,电池内阻增大且温度升高,造成电池报废。过放电将使蓄电池的循环寿命变短,放电后应立即充电,否则易引起蓄电池内部硫酸盐化现象,导致容量不能恢复。因此在进行容量试验或放电检修中,通常放电达到蓄电池组容量的30%~50%即可。

检查蓄电池连接部分有无大压降、腐蚀、松动等现象,如有应及时紧固,否则极有可能引起烧毁电池等事故。

当发现蓄电池组内有损坏且无法修复的蓄电池时应及时进行更换,更换时不得把不同容量、不同性能、不同厂家的蓄电池连在一起,否则将对整组蓄电池带来不利的影响。

阀控式密封铅酸蓄电池属于贫液电池,无法进行电解液比重测量,因此它的好坏和容量预测在业界也是一大难题,日常维护中可用电导仪测试电池内阻判断其好坏,但最可靠的方法还是放电法。

要注意阀控式密封铅酸蓄电池的寿命期限,对寿命已过期限的蓄电池组要及时进行更换,这样即保证供电后备电源的可靠,又可避免因蓄电池组影响到整个通信直流电源的运行。

⑥电源系统出现故障时,应先查明原因,分清是负载还是电源本身,是整流器还是蓄电池组。高频开关整流器模块的输入输出主回路由于有输入过压和输出限流保护,因此发生故障的可能性较小,其内部控制电路、显示电路、保护电路等发生的故障相对较多,而且这些电路中只要有一个元器件发生故障,就可能导致整流模块停止工作,处理这些故障时只需更换有故障的电路板便可排除故障。笔者在维护工作中就曾经遇到过高频开关整流器通电后显示正常,测量输出电压正常,就是不能带负载,后经检查发现就是内部控制电路电路板问题造成了该模块无法正常工作。

⑦当高频开关整流器模块出现保险管烧断等故障时,务必不得直接进行更换保险管后通电重新开机,否则会接连发生相同的故障,不但检查不出故障所在,还可能会在开机的瞬间导致故障范围更加扩大。在现场处理紧急故障时,可采取整流器整机更换的方式来排除通信直流电源供电的故障,但在更换整流器时,通信直流电源供电系统不得停止对通信设备的供电。

⑧通信设备在接入直流配电分路输出开关时,要注意通信设备上的电源总输入开关的容量不得大于其接入的直流配电分路输出的开关容量,否则将引起越级跳开关,可能造成通信直流电源系统故障。

直流电源范文2

论文摘要:论UPS、直流电源在线维护管理系统的组成及其功能,并提出建议。

UPS和直流电源是企业重要的供电保障设备,传统的维护管理包括:①日常巡检外观,定期更换电池、滤波电容、风机等易损件,大修时做电池活化等;②改造或采用换代设备,使用高级工具测试电池性能。这种管理方式企业投入成本高,维护人员工作量大,不易实时掌握设备运行状态和关键数据,设备事故预防能力低。实施在线维护管理可避免传统方式的不足之处,获得良好效益。下面介绍某企业实施实例及注意事项。

一、计算机在线维护管理系统

(一)系统组成

1、总控站(后台)。由监控站、工程维护站、系统接口等构成,运用管理分析软件处理接收的数据并通过Web。工程维护人员登录服务器可查看全厂所有在线设备的运行状态以及完善的历史、实时数据分析统计。

2、现场设备控制站(ES)。根据现场设备需要,可选择监控功能仪或设备运行状态信息彩集仪(EII)。EII通过RS-232/485端口与电能表、电池采集模块、直流屏、UPS等智能设备通信,将监测数据转换为符合通信协议的数据包,接入局域网,传送至主控室服务器。独立完整的ES包括以下部分。

(1)系统主机。由下行串口通道、数据处理器、显示器、上行串口通道组成。下行串口通道通过RS-485总线访问电池电压采集模块,采集数据,管理电压采集模块,数据处理器完成数据解压、数据计算、存储管理,将处理后的数据一部分送往显示器,另一部分由上行串口通道发送至协议处理器,或传给上一层管理系统。

(2)数据采集模块组。可根据用户需要确定采集数据要求及配置相应采集仪器,一般由电池电压采集模块、电流、温度、功率等组成,模块间隔离良好、绝缘性强,可靠性、安全性高。数据采集可分组,每个模块可对一定数量电池进行电压采集,可配备电流、温度传感器,模块间与系统主机一般采用RS-485连接。

(3)协议处理器。具有协议处理程序的接口板,处理各种通信协议。可实现:①将主机发送的电池电压、电流、温度等信息按约定协议编码、打包、发送至远程服务器;②将远程服务器发出的遥控、遥调指令经过解码发给主机,实时控制。

(4)放电模块。可快速测出电池直流内阻,瞬间测试电池性能,大功率放电模块可提供瞬间大电流冲击负荷。

(5)远程服务器。实现局域网内计算机数据通信,通过局域岗远程访问现场的蓄电池监测系统,接收、分析数据,通过Web服务器数据。

3、通信网络。联网现场设备各分站(采集监控站),采用光纤作为数据通信主干线,组成全厂UPS和直流电源在线监控的局域网。

(二)系统主要功能

1、台账管理。集成各站UPS、直流系统、蓄电池信息设备及查询功能。可查询每台UPS、直流设备的每节电池电压、平均电压、整组电压、充放电电流、环境温度等实时、历史数据,以曲线和柱状图方式显示,或生成报表打印。

2、实时分析。对选定时间段内的电池运行状态、历史数据进行分析,当某个蓄电池被放过电,满足一定电流范围和时间(大于设置值)时,系统将对蓄电池进行电池容量评价(容量估算)。

3、报警指示和查询。可对每台UPS、直流电源故障进行报警,提供报警查询,以便及时处理。

4、网络化。系统具有远端通信和遥测、遥信、遥控功能,使远程服务器通过以太网对各站UPS、直流电源、蓄电池监测系统进行实时监控与数据管理。还可根据企业需要,与其他系统联网,采集一些重要设备的信息,实现更多功能。

二、系统应用注意事项

认真查清企业内部UPS和直流电源现状以及企业现有网络规模,根据设备功能和重要性合理配置。

1、确定网络构架方案,即企业是否有必要建立完整网络系统或在现有网络基础上构建,对单个电池组也可实现完整、独立的在线维护管理。

2、以在线管理系统为核心,辅以必要人工测试,可降低管理成本,大站、关键设备直接采用完整系统,小站、单体UPS等经后台机处理形成整体维护管理系统。

3、有些UPS和直流电源已具备多种管理功能,如状态参数、状态记录、报警等,合理配置不仅降低开发成本,还可减少线路过多带来的故障隐患。

4、维护管理系统只进行监视,建议控制指令(如故障处理、切换、活化等)的发出由人工实施。

5、系统建立后,可在有人值守的地方设监视站,由操作人员实现全天候运行状态监视,维修人员要定期查阅管理。

6、要预留接口和协议以便兼容其他系统,系统上层管理也可建在企业已有网站上。

7、建议状态管理系统与过程控制或执行系统分开,注意相互间独立性,不要相互干扰。

直流电源范文3

1电源串联工作

1.1串联本机电压取样连接图5是两台电源串联本机电压取样连接图,在此模式下的电源可以进行串联以增大输出电压。该模式下将每台电源的电流限制设定为最大,使其能承受最大负载而不被损坏。图5中的二极管与每台电源的输出进行并联,防止在启动阶段或某台电源停机时出现反向电压,同时要求每个二极管的额定电压和电流值至少应等于电源的额定输出电压和输出电流。图6是两台电源串联遥测连接图。

1.2正/负输出电压的串联连接正/负输出电压的串联运行模式连接如图7所示,在此模式下一台电源配置为正输出,另一台电源配置为负输出,同时要求将每台电源的最大电流限值设置为在不损坏设备的情况下能承受的最大负载,图7中二极管的作用和要求与图5中的二极管相同。

2电源并联工作

具备相同额定电压和电流的最多6台电源可以并联连接在一起,其输出电流是单台电源的6倍。6台电源中仅有一台作为主电源,其它的均作为从电源。在该工作模式下,通过电源后面板J1接口和J2-S接口按图8和图9连接主电源和从电源。图8是多台电源并联电压取样连接图,图9是多台电源并联遥测连接图。

2.1设置主电源将主电源的输出电压设置为要求的电压值。在进行负载电流设置时,主电源应按总负载电流设置,并按系统中的电源数量分至各台电源。在运行时,主电源为恒压(CV)模式,可以按编程后的输出电压调节负载电压。主电源的具体设置过程是:按电源前面板“MENU”按钮,旋转Voltage编码器调至Voltage显示”PrLL”后,按Voltage编码器,旋转CURRENT编码器调至显示“HI”,直到闪动一次或返回到上一级止。

2.2设置从电源每台电源的电流限值都应设定为负载电流限值(按并联连接的电源台数均分);运行时,从电源作为受控的电流源,以主电源的输出电流为主。从电源的具体设置过程是:按电源前面板“MENU”按钮,旋转Voltage编码器调至Voltage显示”PrLL”后,按Voltage编码器,旋转CURRENT编码器调至显示“SL”,直到闪动一次或返回到上一级止。

2.3过电压保护设置主电源的过电压保护(OVP)应设置为所需的达到的OVP限值。从电源的OVP设定值应比主电源的高一些。在切断主电源后,从电源的输出电压为0。如果某一个从电源被关断(其OVP设定值低于主电源输出电压),那么只有该从电源被关断,其它的从电源则会继续提供所有负载电流。

3多输出电源系统

通过使用标配的USB和连接器为RJ-45外形的RS485通信接口以及每台电源提供的RS485连线,将Z+系列程控直流电源配置成一个多达31台的可编程电源系统。连接时将前一台电源连接器为RJ-45外形的RS485通信接口输出,与后一台电源的连接器为RJ-45外形的RS485通信接口输入连接在一起,其他依次类推,图10为多输出电源系统连接图。切记在设计程序时第一台电源通信接口必须设置为USB,第2~31台电源通信接口必须设置为RS485,并且要求他们彼此之间必须有唯一的地址,这些设置均需通过电源前面板手动设置实现。

4几点说明

4.1本机电压取样功能采用本机电压取样时,输出电压的调节在电源输出端子处。此功能不补偿负载线的电压降,因此他仅适用于负载电流小或负载调整率要求不高的情况下。图中的“+LS”表示正本机取样端子,“-LS”表示负本机取样端子。

4.2遥测功能当负载端的负载调整率要求比较高或至关重要时,必须使用其遥测功能。此功能将将补偿负载线上的电压降。电压降将从总输出电压中扣除。图中的“(+S)”正遥测端子,“(-S)”负遥测端子。

4.3噪音和阻抗的影响为减小噪音或辐射,负载线和遥测线应使用双绞线,且长度尽量最短。在高噪音环境中必须使用屏蔽遥测线。屏蔽部分通过后面板上的接地螺钉连接到机壳。即使噪音不大,负载线和遥测线也应使用双绞线以减少耦合,有助于电源的稳定性。遥测线与电源输入线必须隔开。双绞式负载线可减少电缆的寄生电感,防止因负载电流的变动而引起负载端和电源输出端的高频电压峰值。电源输出端和负载端之间的阻抗使得负载端的纹波噪声比电源后面板端子处的纹波噪声更大。在负载端需连接带有旁路电容的附加滤波回路,以限制高频负载电流。

4.4感性负载感性负载会产生对电源有害的电压尖峰值,因此在输出端需跨接一个二极管。二极管的额定电压和电流应大于电源最大额定输出电压和输出电流,二极管的负极连接至电源正输出端,正极至电源负输出端。因可能发生正的负载瞬变(譬如来自电机的反电动势),请在输出端跨接一个输出端浪涌电流抑制器以保护电源。浪涌电流抑制器的额定击穿电压必须比电源最大额定输出电压高出约10%。

5结束语

直流电源范文4

本文设计的直流电源方向显示器是利用三极管是否导通对外接的直流电源正负极进行方向判断,通过二进制可逆计数器计数、四-十六线译码器译码后,驱动发光二极管按不同的方向依次点亮。当电路中没有外接直流电源时,则发光二极管将不发光。

关键词:

直流电源;计数;译码;显示

电流的形成是由于导体中的自由电子在电场力的作用下,做有规则的定向运动,但是习惯上规定正电荷移动的方向为电流的方向。为了形象直观地表示出直流电源中电流的运动方向,本文设计了直流电源方向显示器,可以对电路中是否外接直流电源以及直流电源方向进行判断并显示。

1.电路框图

直流电源方向显示器电路是由电源电路、方向检测和逻辑控制电路、闸门电路、计数电路、译码电路、显示电路六部分组成。其原理框图如图1所示。

2.电路设计

2.1电源电路

电源电路由变压、整流、滤波、稳压电路组成。在此设计中变压电路采用220/18V的变压器;整流电路是采用整流桥实现,也可以采用四个整流二极管组成桥式整流(例如用1N4001);滤波采用电容滤波实现;稳压电路是采用LM317三端集成稳压器实现,本设计中可输出1.25~27V电压,将输出调节成5V直流电压给各芯片供电即可。具体原理图如图2所示。

2.2方向检测和逻辑控制电路

方向检测电路主要由两个NPN三极管9014组成,六反相器CD4069实现逻辑控制,原理图如图3所示。当输入模块外接上正下负3V电池时,三极管Q1导通,Q2截止。电流经Q1的发射结、R4电阻形成回路。Q1的集电结将低电平输入到CD4069的1脚,2脚输出高电平到CD4516芯片的第10脚,使=1;同时,2脚的高电平使二极管D1导通,CD4069的5脚输入高电平,6脚输出低电平到CD4516的5脚端,从而控制芯片CD4516进行加计数。反之,当输入模块外接上负下正的3V电池时,三极管Q2导通,Q1截止。电流经Q2的发射结、R5电阻形成回路。Q2的集电极输出低电平到CD4069的3脚,4脚输出的高电平使二极管D2导通,5脚输入为高电平,6脚输出低电平到CD4516的5脚端;同时,由于Q1截止,集电极输出高电平到CD4069的1脚,2脚输出低电平,使=0,从而控制芯片CD4516进行减计数。当输入模块没有外接直流电源时,三极管Q1、Q2均截止,方向检测电路不工作。

2.3闸门电路

闸门电路由晶体振荡器电路和分频器电路组成,原理图如图4所示。晶体振荡器电路采用32.768kHz石英晶体,通过CD4060内部振荡电路外加电阻构成。分频器由CD4060实现14分频后从3脚输出2Hz的脉冲信号。

2.4计数、译码和显示电路

计数由二进制可逆计数器CD4516芯片完成,译码采用四—十六线译码器CD4514完成,显示电路由发光二极管和电阻组成,原理图如图5所示。CD4516的功能表如表1所示,当CD4516的5脚端、1脚EN端、9脚RD端均为低电平时,在15脚CP脉冲的上升沿作用下,=1,进行加法计数,=0时,进行减法计数。译码器CD4514的功能表如表2所示,当CD4516为加计数时,即外接直流电源的方向为上正下负时,译码器能够从左向右依次驱动发光二极管发光。显示电路如图5所示,由发光二极管和电阻组成。当发光二极管的阳极加高电平时,二极管发光;相反,发光二极管的阳极加低电平时,发光二极管不发光。

3.结论

本文介绍的直流电源方向显示器的设计,可以巩固数字电路的基础知识及增强理论知识的应用能力,控制发光二极管依次发光的速度也可以用非门和电阻组成的闸门电路完成。计数和译码也可以采用其它的可逆计数器和译码器实现。

参考文献:

[1]卿太全,李萧,郭明琼.常用数字集成电路原理与应用[M].北京:人民邮电出版社,2006.

[2]秦曾煌.电工学(第六版)下册电子技术[M].北京:高等教育出版社,2004.

直流电源范文5

中图分类号:U665文献标识码: A引言

随着电力工业的迅速发展,为提高电网的供电质量,有许多常规的变电站被改成综自站,但是改造后原有直流设备的缺点如:发热量大、没有远方功能、功率因数低、体积较大等逐渐显现出来,而原来的直流设备均采取传统的相控电源,效率低、纹波系数大,在电磁辐射、热辐射、噪声等方面都不尽人意,所以必须引起足够的重视并加以改造,使电网安全、经济运行,并实现电力系统的自动化。1. 智能高频开关电源系统的性能特点 为了保证智能高频开关电源系统的质量,我们组织了多名技术人员对多个生产厂家进行了考察,了解厂家的生产工艺、规模和实验测试手段等情况,经过“货比三家”后,技术改造决定使用GZDW—200/220型操作电源。它是专为电力系统研制开发的新型“四遥”高频开关电源,采取高频软开关技术,模块化设计,输出标称电压为220V,配有标准RS-232接口,易于与自动化系统对接,适用于各类变电站、发电厂和水电站使用。此设备有下列性能特点: 1)模块化设计,N+1热备,可平滑扩容。 2)监控功能完善,高智能化,采取大屏幕液晶汉字显示,声光告警。 3)监控系统配有标准RS-232接口,方便接入自动化系统,实施“四遥”及无人值守。 4)对蓄电池自动管理及自动维护保养,实时监测蓄电池组的端电压,充、放电电流,自动控制均、浮充以及定期维护性均充。 2. 智能高频开关电源系统的组成及各部分作用 智能高频开关电源系统由交流配电,绝缘检测,监控模块、整流模块、调压模块,直流馈电等组成。 1)交流配电

为系统提供三相交流电源,监测三相电压、电流及接触器状态;判断交流输入是否满足系统要求,在交流输入出现过压、欠压、不平衡时自动切断有故障的一路,并切换到另一路供电,系统发出声光告警。装有每相通流量40kA、响应速度为25μs的三相避雷器,能有效地防止雷击对设备造成的损坏。 2)绝缘监测

采用进口非接触式直流微电流传感器,利用正负母线对地的接地电阻产生的漏电流,来测量母线对地的接地电阻大小,从而判断母线的接地故障。这一技术无须在母线上叠加任何信号,对直流母线供电不会有任何不良影响,彻底根除由直流母线对地电容所引起的误判和漏判,对于微机接地监测技术是一重要突破。 3)调压模块

无论合闸母线电压如何变化,输出电压都被稳定控制在220(1±0.5%)V,具有带电拔插技术、软开关技术和双向调压特性。 4)直流馈电   

设有控制输出、合闸输出、电池输入、闪光、事故照明、48V电源输出等。控制母线有三种途径供电,确保控制母线供电安全可靠。配有智能直流监控单元,可测量母线电压、电流及开关状态等。 5)电池巡检仪

对电池电压进行实时监测,将信息及时反馈到监控模块。 3. 直流系统设备改造中改进的问题 1)改进了新设备直流馈出线部分的不合理布置。为节省投资,我们利用原来直流系统的控制、信号及合闸电路的出线,但与新设备馈出线的位置及大小都不相适应,为此,我们对新设备直流馈出线部分按现场实际情况进行了改造,使安装更加容易,布线更为合理,运行更加可靠。 2)添加了蓄电池的放电电路。  4. 智能高频开关电源系统应用情况 改造后的直流系统设备经过两年来的运行,技术指标合理,各项参数显示正确,操作方便、直观,自动化程度高,维护工作量大幅度减少,设备保护功能齐全,能可靠动作。反映故障及时且准确无误,对电池能自动管理无须专人维护,设备运行稳定可靠,从未发生影响正常供电的现象。 改造后的直流系统与原来的直流系统相比较,性能稳定,精度高,安全、可靠,保证了油田的油气生产,居民生活及医院、道路等的用电,降低了噪音,改善了值班人员的工作环境,确保了变电设备安全可靠运行,产生了明显的经济效益和社会效益,主要体现在以下几个方面: 1)原来的相控电源纹波系数大,其输出含有的交流成份较大。尤其是赵村变电所最为明显,交流成份含量更高,对二次设备影响最大,造成二次设备误动、损坏、甚至有的设备无法正常工作。而改造后的智能高频开关电源纹波系数很小,输出特别稳定。 2)原来的相控电源采用硅堆调压,硅降压响应速度慢,反应时间为几十毫秒,输入电压突变时在输出上会产生很大的冲击,因冲击不稳定而易烧坏二次设备。而改造后的高频开关电源采用无级调压方式,响应速度快,输入电压突变时,模块在200μs内调整完成,过冲小于5%。 3)原来的相控电源充电机、浮充机等噪音较大,且无降温措施,有的变电站浮充机发热严重。而改造后的智能高频开关电源噪音小,模块采用优质风机降温,保证了模块元器件正常工作,使值班人员的工作环境大大改善。 4)原来用的是铅酸电池或镉镍电池,既需要专门设置蓄电池工进行维护、保养,还需要配备维护电池用的有关容器、仪表、原料、蒸馏锅、蒸馏水等。而改造后用的是美国“理士”免维护电池,平时不需要进行一系列的维护工作,减少了人力物力。 5)原来的相控电源功率因数低,一般在0.7以下,效率在60%左右,而改造后的智能高频开关电源功率因数达0.9以上,效率高达94%以上。 6)原来的相控电源经常出现故障,有时因无法操作送电而造成原油生产损失,如1997年9月23日某110kV变电所因直流系统故障造成越级跳闸,全站失电,烧毁35kV线路3公里,其经济损失高达400多万元;近几年直流系统经常出现各种故障给油气生产造成了很大的损失,同时也给居民用户生活带来不便、给工业用户带来巨大的经济损失。而改造成智能高频开关电源后,直流系统至今未发生任何事故,供电更加可靠。  7)改造后的智能高频开关电源具有48V电源出口,为变电站的通讯网络等提供了电源,不必另外购置专门的48V电源,减少了设备的投资和占用空间。 

直流电源范文6

    (1)阀控式铅酸免维护蓄电池阀控式铅酸免维护蓄电池密封程度高、体积较小,放电电流较大,使用寿命较长,因此在变电站直流电源中得到了较为广泛的应用。由于阀控式铅酸免维护蓄电池的正常运行要受到环境温度、充电电压等因素的影响,因此在对蓄电池组进行安全管理时要注意做好对这些因素的控制,例如温度宜保持在20~30摄氏度,最高不超过35摄氏度等等,并保证其他相关数据在规定范围之内,此外还应该做到定期对蓄电池进行打扫和检测维护,并做好相关记录,从而保证变电站直流电源运行的安全可靠。(2)镍铬碱性蓄电池镍铬碱性蓄电池具有成本较低、快速充电性能好以及循环寿命长等特点,虽然已经逐步被阀控式铅酸免维护蓄电池取代,但仍占有一定比重。在对镍铬碱性蓄电池进行安全管理时,应仔细进行,避免金属器具触碰正负极,同时还要对电压电流等情况进行监视,确保安全运行。

    2充电装置的安全管理

    做好变电站直流电源的安全管理工作,应该做好对充电装置的管理和维护。一是相关管理人员在巡视时应该对充电装置的相关运行数据进行监视,如交流输入电压值,直流输出电流值等,确保各数据都在合理范围内,整个充电装置工作状态良好;二是在进行交流电源的中断和接通时,应按照操作规定进行操作,保证正常工作;三是对充电装置应进行模块化设计,发生故障时立即换用备用模块,保证运行稳定。

    3微机监控器的应用

    微机监控器扮演着对变电站直流电源进行监控的作用,可以实时对变电站直流电源系统的各项数据进行监视,比如监视监视三相交流输入电压值和是否缺相,监视蓄电池充电进线是否正常等,并且当检测到电路故障或运行状态不正常时,能自动进行报警,并且自动对不正确的参数进行修改。微机监控器还可以自动控制充电装置进行恒流限压充电-恒压充电-浮充电-进入正常运行状态。通过微机监控器,可以大大减少巡视员的工作量,大大提高工作效率,促进变电站直流电源的稳定运行。在对微机监控器进行操作时,应该注意不可随意更改数据参数,当遇到黑屏等情况时,可进行重启操作,如问题不能解决,应该及时联系厂商进行维修后投入运行,保证变电站直流电源运行的可靠稳定。