前言:中文期刊网精心挑选了凝聚态物理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
凝聚态物理范文1
1 凝聚态物理的基本理论
同步辐射是粒子加速器中从几百MeV到10GeV以上的高能带电粒子(通常为电子)发射的电磁辐射。在同步源所提供的强辐射的波长范围内,还没有适用的激光源或者可调谐的激光源。由于同步辐射具有很多我们所要的性能,比如高度大,可调范围宽、准直性强、线性极化好、稳定性高,另外这种辐射常常以0.1-1ns脉冲的形式出现,在过去的10年中,粒子物理学的这一废弃的副产品已经越来越多地应用到低能物理学的广阔领域之中,凝聚态物理学中,业已采用同步辐射从实验上确定Cu或Ni之类元素或GaAs的CdS之类半导体材料中电子的能量—动量关系E(k);通过实验确定交换分裂同温度的依赖关系,证明用纯能带模型去解释Nir的铁磁性是不恰当的。纵观凝聚态物理学的基本理论,如固体能带理论、点阵动力学理论、对称破缺的相变理论、缺陷理论等,都非常有效。它们解释和指导了材料的生产,如:说明了铜、铝等金属的导电性;锗、硅及砷化镓等材料的半导体性质;铁、钴、镍及一些稀土金属的铁磁性;锡、铌等金属与合金的超导电性;钛酸钡、铌酸锂、磷酸二氘钾等晶体的铁电性。
2 SR在凝聚态物理中的应用
2.1 同步辐射的内涵
同步辐射是一种用途广泛的强光源。在电子同步加速器中,同步辐射强度与电子能量的四次方成正比,并与加速器半径的平方成反比。就可以借着同步光源连续拍下间隔百分之一秒的图像。(1)绕射同步辐射是很强而且极狭窄的光束,这两点特性,可用于蛋白质晶体的绕射研究,以了解蛋白质的结构。蛋白质不容易生成晶体,故样品本身的生成不是一个纯技术的问题。一般来说,生成的蛋白质晶体都很小,用同步辐射从事其绕射结构的研究已显示比传统的高强度x光绕射结果清晰得多。另外,同步辐射具有连续而光度强的特性,已开始被用于能量散布绕射的实验,照射时间短,因而可研究晶体粉末受压、加温时的相变化。(2)漫散射X光漫散射指的是高序的布喇格绕射,强度很弱,但是它对晶体结构或非晶体结构都能提供重要的资料,所以在以传统的强x光为光源的实验中,已有不少应用。同步辐射具有强的连续光谱及狭窄的光束,在这方面的研究应有很好的前途。
2.2 应用领域
凝聚态物理研究固体、液体、液晶和无序物质的结构及其物理性质和规律,是物理学中内容最丰富、应用最广泛的一门分支学科.SR的出现也是首先应用到凝聚态物理范畴,凝聚态物理涉及的范围十分广泛,本文只介绍SR在凝聚态物理若干领域的应用。
同步辐射加速器可以说是应用范围最广泛的加速器。人类利用加速器的历史已经有很长一段时间了,从汤姆生(J.J.Thomson)发明阴极射线管而发现了电子以来,已经有一百多年的历史。在这期间加速器也越做越大,而且跟核物理和粒子物理的跃进息息相关,粒子加速器可以说是推动这两门学科前进的助推器。历经一个世纪的衍生与改良,今天的粒子加速器几乎在物理的各个分支(从基本粒子到固态物理)都可以找到广泛的应用实例,即使在其他学科中(例如研究物质的化学结构、生物分子的排列,甚至进行微量元素的追踪分析)都少不了各式各样的加速器。不过,加速器的应用范围在同步辐射加速器发明以后,又大为扩充到前所未有的领域。
同步辐射不同于其他的光源,其方向性很强,并且其是一个天然的“窄束光”,能够沿着电子轨道的切弦进行发射,并以切线方向作为其轴线,在该面积较窄的椎体中集中。从时间分布上来看,同步辐射形式为脉冲式,其中,每一个光脉冲能够维持0.2ns左右的时间。决定脉冲周期的因素主要是电子团速间距其最短为2ns,最长为780ns,在跟光源有很远距离的样品中,其能够接受很高的光强度,且光斑的面积很小,在这种情况下,有利于光刻、光的,也能够在高压的情况下进行工作。因此,脉冲光源其重复性很好,且其同步辐射,为瞬态过程研究提供一定条件。对于一些需要时间分辨的试验,例如在对荧光物质发光寿命进行测量时,可以充分利用该条件。
3 应用实例——在高压研究中同步辐射的应用
物理性质的基础建立在物质结构上,而物质结构研究可以采用X射线衍射作为一种有效的研究方法。在高压时的X射线衍射不同于普通衍射,其主要区别主要有以下几个方面:首先,在高压情况下,样品的体积比较小,且射线会经过高压腔体而被吸收,同时,因为压力腔材料的强度会对其产生限制,为了保持其压力,应降低高压腔体中所具有的样品的体积。采用普通的X射线,其试验时间及分辨率不能满足要求,压力比较低的情况下,采用普通的光源也不能进行任何动态反应研究,因此,当压力大大升高时,就更不可能实现了。采用这种光源,为高压研究提供了理想的光源。
同步辐射具有亮度高、发散度低等优点,其能够产生很大的能量,从很久以前,人们就对同步辐射进行了研究,并采用其来进行高压试验,在高压情况下,结构研究紧密联系同步辐射。研究压力范围也不断拓展,目前,其压力已经达到了很高,从而为高压中物质结构动态变化过程提供研究的可能性。并且在高压结构下,采用同步辐射光源,具有更精确的测量效果。高压研究的发展是依赖于实验手段的开发和压力范围的扩大而不断深入的。
一个第三代同步辐射光源不仅可用于高压下多晶的衍射、拓宽研究压力范围,而且可用于高压高温动态过程的研究、高压下单晶衍射、X光吸收边(EXAFS和XANES)、X光荧光等实验方法的研究。
凝聚态物理范文2
本书是由两位在此领域中有颇多成果的意大利著名专家根据这方面的最新进展所写的一本新的教科书性质的专著,它包括了热动力学,统计力学和多体问题的经典课题和这方面的最新进展。
19世纪末,开尔文公爵发表著名的演说,其中提到以经典力学、经典热力学和经典电磁理论为基础的物理学大厦已经建成,后人只需要做些小修小补的工作。然而在明亮的物理学天空中飘着两朵乌云,其中之一便是黑体辐射问题。实验发现黑体辐射无法用连续能量的观点来处理,这对经典的物理学提出了巨大的挑战。为解决这一问题,一个崭新的学科――量子力学应运而生。它是由普朗克最先提出,由爱因斯坦、波尔、薛定谔、狄拉克等天才的物理学家们发展完善,是公认的20世纪物理学最伟大的突破之一。本书回顾了量子力学的发展历史,介绍了量子力学的基本知识,是一本优秀的量子力学教材。
全书共12章,分4个部分。第一部分 量子力学的提出与建立,包括第1章。分析了经典物理学对处理黑体辐射、光电效应和康普顿散射的困难,介绍海森堡不确定性原理、波尔对应原理、含时的与定态的薛定谔方程、物理实际对薛定谔方程解的限制、本征波函数与本征值、波函数的完备性与正交性、叠加原理、互补原理以及相位的概念。最后明_了量子力学的几个基本假设,强调了薛定谔方程本质上是一种假设。第二部分 使用薛定谔波动方程处理量子力学问题,包括2-7章:2.求解一维无限深势阱;3.自由粒子;4.线性谐振子;5.一维半无限有限高势垒;6.势垒隧穿处理α粒子衰变;7.一维有限深势阱等模型的薛定谔方程的解。介绍球坐标空间,引入分离变量法,求解了氢原子的薛定谔方程。第三部分 使用海森堡矩阵力学处理量子力学问题,包括第8-10章:8.介绍角动量理论和自旋算符理论;9.介绍微扰理论;10.定态一级微扰和二级微扰,并成功应用于解释Stark效应。最后介绍含时微扰,给出了费米黄金规则公式。第四部分 弹性散射理论,含第11-12章:11.并以刚球散射和方势阱散射模型为例,求解散射振幅与微分截面;12.介绍狄拉克发展的酉算子和酉变换。
本书内容简单,利于理解,适合作为物理系本科生的专业教材。与常见的量子力学教材相比,本书有两个优势,一是求解的数学过程完整且准确,可以帮助读者建立坚实的数学基础;二是在每一章的前言部分,都有对量子力学发展历史的介绍,其中对当时的物理学家们的言行描写尤为生动,妙趣横生。如果读者阅读英文有困难,也可以参考北大曾谨言教授编写的《量子力学》,两本书内容相近,可以互为辅助。
本书内容涉及2个领域:热力学和经典统计力学,其中包括平均场近似,波动和对于临界现象的重整化群方法。作者将上述理论应用于量子统计力学方面的主要课题,如正规的Feimi和Luttinger液体,超流和超导。最后,他们探索了经典的动力学和量子动力学,Anderson局部化,量子干涉和无序的Feimi液体。
全书共包括21章和14个附录,每章后都附有习题,内容为:1.热动力学:简要概述;2.动力学;3.从Boltzmann到BoltzmannGibbs;4.更多的系统;5.热动力极限及其稳定性;6.密度矩阵和量子统计力学;7.量子气体;8.平均场理论和临界现象;9.第二量子化和HartreeFock逼近;10. 量子系统中的线性反应和波动耗散定理:平衡态和小扰动;11.无序系统中的布朗运动和迁移;12.Feimi液体;13.二阶相变的Landau理论;14.临界现象的LandauWilson模型;15.超流和超导;16.尺度理论;17.重整化群方法;18.热Dreen函数;19.Feini液体的微观基础;20.Luttinger液体;21.无序的电子系统中的量子干涉;附录A.中心极限定理;附录B.Euler 伽马函数的一些有用的性质;附录C.Yang和Lee的第二定理的证明;附录D.量子气体的最可能的分布;附录E.FeimiDirac和BoseEinstein积分;附录F.均匀磁场中的Feimi气体:Landau抗磁性;附录G.Ising模型和气体-格子模型;附录H.离散的Matsubara频率的和;附录I.两种液流的流体动力学:一些提示;附录J.超导理论中的Cooper问题;附录K..超导波动现象;附录L.TomonagaLuttinger模型确切解的抗磁性方面;附录M.无序的Fermi液体理论的细节;附录N.习题解答。
本书适于理工科大学物理系的大学生、研究生、教师和理论物理、材料物理、超流和超导以及相变问题的研究者参考。
凝聚态物理范文3
关键词 物理学 分析 前景
中图分类号:G642.0文献标识码:A
Physics Professional Analysis
ZENG Daimin[1], LI Yong[2]
([1]Physics Department, Physics College, Chongqing University, Chongqing 400040;
[2]State Intellectual Property Bureau Patent Examination Coordination Center, Beijing 100190)
AbstractThis paper combine with the cultivation of students in Physics professional, takes a professional analysis on Physics major, including Physics professional direction settings, course setting, and cultivating specification as well as employment prospects of the students.
Key wordsPhysics; analyse; prospects
物理学是研究物质运动和相互作用的规律的科学,是除数学外最基本的一门学科。物理运动是自然界最普遍的一种现象,因此物理学研究的对象和内容就是宇宙间各种物质的性质、存在状态、各种物理运动形式及其转化现象、物质的内部结构及这些内部结构的组成部分,物理领域的各种基本相互作用及其规律。由于一切物理现象都在时间、空间中表现出来和发生运动和转化,所以物理学也要研究时间和空间的性质、联系等。 进行物理学研究,首先是观察各种客观物理现象,再从许多表象性的现象中,揭示基本规律,建立较为系统的理论。物理学研究除了要依靠好的科学方法外,还要取决于认知工具。工具越先进,研究效率越高,成果越显著。 物理学在发展过程中形成了一套完整的科学方法,它对其他学科的研究,乃至哲学发展,都有重要意义。①重庆大学物理学专业从2008年开始正式招生,到现在,第一届学生即将进入大四。通过这几年对物理学专业学生的培养,我们有一些体会,与同行共勉。
1 专业方向设置
1.1 理论物理方向
理论物理学从各类物理现象的普遍规律出发,运用数学理论和方法,系统深入的阐述有关概念,现象及其应用。理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。理论物理的研究领域涉及物理学所有分支的基本理论问题。理论物理是在实验现象的基础上,以理论的方法和模型研究基本粒子、原子核、原子、分子等物质运动的基本规律,从而解决学科本身和在高科技探索中提出的基本理论问题。重庆大学物理学院理论物理方向目前包括:高能物理、引力波、天体物理、量子信息与量子通信等几个分支。
1.2 凝聚态物理方向
凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是上世纪八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许 多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一。由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。
2 主干课程设置
重庆大学物理学专业的主干课程有力学:使学生比较系统地掌握力学基础知识,且能比较灵活加以应用。培养学生独立分析问题与解决问题能力,初步培养学生的唯物主义世界观。主要内容有质点运动学、牛顿运动定律、动量守恒定律和动量定理、功和能与碰撞问题、角动量、刚体力学、振动和波。热学:使学生掌握物质热运动形态的规律性和热运动与机械运动,电磁运动等其它基本运动形式之间转化的规律性。掌握统计规律性和统计的方法以及物性方面的知识,培养学生分析问题和解决问题的能力。主要内容有热力学第零、第一、第二定律和熵、分子运动论、输运过程、固体和液体及相变。电磁学:使学生全面地、系统地了解和掌握电磁运动的基本现象、基本概念和基本规律,具有一定的分析和解决电磁问题的能力,为后继课程奠定必要的基础。主要内容有静电场、静电场中导体和电介质。稳恒电流、稳恒磁场、电磁感应、磁介质、交流电初步、麦克斯韦电磁理论和电磁波、电磁单位制。光学:使学生比较系统地掌握光学的基本知识,主要讲授几何光学、波动光学、量子光学初步和光学应用。原子物理学:使学生掌握原子结构的性质和一般规律,掌握和了解核的性质与核能利用,了解粒子的基本性质。讲授卢瑟福模型、氢原子的玻尔理论、量子力学初步、原子的精细结构、多电子原子、X射线、原子核物理概论。理论力学:使学生掌握力学的基本理论,培养学生理性思维能力。讲授质点力学、质点组力学、刚体力学、非惯性系动力学与分析力学等基本理论。热力学与统计物理:使学生掌握物质的热运动规律及热运动对物质宏观性质的影响。讲授热力学的基本定律,热力学函数、平衡及稳定条件,相平衡及化学平衡,不可逆过程热力学,最可几统计法――玻尔兹曼分布、费米分布、玻色分布,气体和固体的热容量理论,金属中的电子气体、平衡辐射,系统理论,热力学的统计表达式,非理想气体态式,涨落理论,非平衡态统计物理简介。电动力学:使学生掌握电磁场的基本属性及运动规律以及它和带电物质之间的相互作用。讲授电磁现象的普遍规律,静电场和稳定电流磁场,电磁波的传播,电磁波的辐射,狭义相对论及带电粒子和电磁场的相互作用。量子力学:了解微观客体运动特点,初步掌握量子力学的基本原理和方法。课程内容包括波函数、薛定鄂方程,量子力学中的力学量,态和表象理论,微扰理论等。固体物理:初步掌握固体物理的基本原理和特点。课程内容包括晶体、晶体的缺陷和扩散、晶体振动、相图、能带论、金属和半导体电子论、固体的磁性和介电性等。数学物理方法:掌握有关复变函数、复变函数的积分、幂级数展开、留数定理、傅里叶级数、积分变换、数学物理方程定解问题、分离变数法、二阶常微分方程的级数解法、本征值问题、球函数、柱函数、格林函数、积分变换法等数学物理方法的基本知识。
3 培养规格及要求
通过四年的物理学专业学习,要求学生掌握数学的基本理论和基本方法,具有较高的数学修养;掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力;了解相近专业的一般原理和知识;了解物理学发展的前沿和科学发展的总体趋势;了解国家科学技术、知识产权等有关政策和法规;掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。具有计算机应用的基本技能。较熟练地掌握一门外国语言,具有良好的听、读、写作和会话能力,能够较顺利地阅读本专业的外文资料。
4 学生就业前景分析
重庆大学物理学专业的培养目标是:培养具有宽厚扎实的物理学基础、综合素质优秀,并且具有良好数学基础和实验技能,能在物理学或相关科学技术领域中从事科研、教学、技术和相关管理工作的高素质专门人才;培养良好的创新意识和科学的思维方式,以及分析和解决实际问题的能力以适应学科交叉和社会的各种需要。
物理学专业学生毕业后主要从事以下一些行业:(1)继续物理方向的深造,成为一名物理学家、物理教师。(2)从事与物理相关的一些工作,如技术工程师、发明家、研究助理等。(3)与物理关系不大的一些行业,如公务员、管理人员等。就业领域主要是:科研院所、高等院校、企事业单位、政府机关等。
总之,重庆大学成立物理学专业的主要目的是发现与培养真正热爱物理的好苗子,让他们打好基础,再继续深造,为物理学的发展做出贡献。在学习的过程中,有部分同学发现自己并不是很适合学物理,可以申请转专业,找到适合自己发展的方向。最后留下来的绝大部分同学都会继续读研深造,向着他们心中神圣的物理殿堂继续努力。实践表明,物理学专业的学生物理基础打得非常坚实,为将来的继续深造做好了准备,即将毕业的学生将有部分保送到中国科学院及各大高校,其余的同学也成为了本校硕士生导师争抢的对象。物理学专业的培养是成功的,并且也已经成为重庆大学的一个优势特色专业,它将为全国培养和输送更多、更好的物理方面人才。
基金项目:重庆大学人才引进科研启动基金(0903005104675)资助
凝聚态物理范文4
人物=P
文小刚=W
P:2016年10月,你因为拓扑序理论及应用获巴克利奖,而你最早提出这一概念是在1989年。27年过去,你的研究有了哪些突破,为什么拓扑物态逐渐成为凝聚态物理研究的热点?
W:世界上有很多物质态,像液态,气态,各种晶格,各种各样的铁磁、泛铁磁态,做凝聚态物理就是研究各种物质状态的。怎么用一个理论描写所有的物质状态呢?朗道(列夫・达维多维奇・朗道,因凝聚态特别是液氦的先驱性理论,被授予1962年诺贝尔物理学奖)就提出,物质的状态之所以不同是因为对称性不同,物质从一个相变到另一个相的相变,是一个对称性的变化。这就是很有名的朗道对称性破缺理论。长期以来,大家觉得郎道理论能描写所有的物态和所有的相变。所以很多人觉得凝聚态物理做到头了。因为有一个理论把所有的物质态都包括了,下来也没有什么好做的了。正是在这个背景下,我提出了拓扑序的理论。
当时我是在做高温超导,自旋液体,这个自旋液体呢,就是一个没有对称破缺、没有任何自旋排列结构,这样一个无序的状态。后来,我在理论研究中发现,有好几种不同的无序态,它们的对称性都完全一样。没法用对称性理论来区分。我就觉得,这里面有玩意,应该是以前没有发现的一个超出对称性的一个物质结构。我发现,这种类型的物质态,虽然不能够用对称性来区别它们,但是可以用其不同的拓扑性质来区别它们。所以我就把这种新状态叫做拓扑序。后来又花了差不多十几年的时间才明白,原来这个拓扑序就是多体量子纠缠的构形。量子计算、量子纠缠只有到1995年之后,才变得非常热门。但是早期拓扑序这个名字就留下来了,没有把它重新叫做量子纠缠序。
拓扑序这个概念的重要性,就在于它指出我们有一个未发现的新大陆新世界。而这一新世界中的主角,不是对称性,而是量子纠缠。这一新的世界观,甚至把物质材料理论跟基本粒子理论联系起来了。我们的真空本身可能就是一个物质,是由很多很多量子比特所组成的,量子比特中间有很多纠缠。如果这个量子纠缠合适的话,那么这一量子比特海就可以产生所有的基本粒子。这就回到150年前的以太的说法,麦克斯韦(詹姆斯・克拉克・麦克斯韦,经典电动力学的创始人)发现他的方程之后呢,他总觉得电磁波是某种媒介的波动。这种媒介被叫做以太。可是以太一直没有发现,大家就放弃了。现在以太又回归了,它就是高度纠缠的量子比特海。这一量子比特海不仅能给出光子,还能给出其它所有基本粒子。所以拓扑序量子纠缠,除了新的物质态之外,还能够对基本粒子起源提出一个新的看法。
P:每次物理革命都伴随着新数学的发展,你现在的研究又需要怎样的数学工具?
W:因为拓扑序所对应的多体量子纠缠是一个新现象,这时候就有意思了。新现象总是要用新语言来描写,而新的语言数学家有没有发明,就看你的运气了。这种新现象需要新数学,在历史上,发生过很多次。
第一次物理革命我们叫做机械革命。当时牛顿研究他的牛顿力学的时候,描写牛顿力学的工具还没有发明。牛顿很了不起,他既发明了牛顿力学,又发明了数学工具微积分。所以当时数学和物理是齐头并进的。
第二次麦克斯韦电磁革命,就运气一些。因为电磁革命所需要的数学语言,偏微分方程之类的,当时已经发明了。所以麦克斯韦不用发明新数学,只要拿来用就好了,用已知的数学就能描写电磁波现象。这一理论统一了电,磁,和光学现象。
第三次革命是爱因斯坦发明他的广义相对论。当时需要用到黎曼几何,爱因斯坦不太懂黎曼几何,所以他写他的理论时比较困难。但是黎曼几何已经被发明了,所以他学一学就可以把他的理论写出来。
量子力学呢,是第四次物理大革命,要用到的线性代数早就被发明了,所以不用再发明。量子力学是一个非常深刻的革命,它统一了波和粒子的概念,统一了频率和能量。
这次由拓扑序多体量子纠缠所导致的新的世界观,我把它叫做第二次量子革命。它不仅揭示了很多新的物质态的存在,还能用量子信息,来统一所有的相互作用,和所有的基本粒子。甚至连空间几何和其中的引力,也可能来源于纠缠的量子信息。多体量子纠缠是新的物理现象,其需要新的数学语言来描写。在这第二次量子革命中,物理跟数学是齐头并进的。它所用到的数学可能是所谓的张量范畴学,这也是现在数学家正在发展的一个理论。所以物理和数学会有很大的互动。物理学家研究的东西会告诉数学家,什么方向会最有意思,可能会有物理意义;那数学家可以告诉物理学家,可能有这个结构,这个性质,也许可以用到你的物理理论中。所以最近我也花很多时间来学数学,什么张量范畴学啊,代数拓扑学啊,很多这种东西。
P:大部分高能物理学家都持有还原论的观点,觉得基本粒子可以无限分到最小,将万物还原为简单基本定律。但是在凝聚态领域,更多学者支持演生论,不同层次的物质可以演生出全新的基本规律。你怎么看两种观点的分歧?
W:还原论基本上就是想找我们世界的基本构件,觉得几个基本的构件可以构造出世界的所有东西。还原论可以说是科学的主流,但是我们走到现在这个地步,已经发现电子、光子、夸克这些基本粒子。要要更深刻地理解世界,就需要把它们分成更小的粒子。这时候就有问题了:我们一直没有找到这些粒子的更小组成部分。也许到了现在这个阶段,寻找更小的基本构件,根本就是一个错误的方向。演生论的观点就是认为这些基本粒子根本没有更小的部分,进一步用分解的思路理解电子光子是错误的。错在它认为空间是一个空的舞台,而物质是这个空的舞台上的演员。这一分解的思路,还原论的思路,把空间和物质分隔开了。但是现在我们发现,空间和物质本身是一体的,空间本身不是空的舞台。空的空间是最复杂最丰富的东西。这是个很有哲理的观念。所以,我们认为真空本身是一个媒介,那这个媒介是由什么组成的呢?最简单的东西是量子比特。真空可以是一个量子比特的海洋,然后量子比特海洋的波动和缺陷就给出了所有的基本粒子。
某种意义上讲,演生论也有点还原论的哲理,但是它不是把物质分成越来越小的构件,它是把空间分成最小的构件,没有比量子比特更小更基本的东西了。基本构件本身不是用来构造物质,而是用来构造空间的。演生论跟还原论的不同之处在于演生论强调结构,强调纠缠,而通过纠缠的扰动形变来产生不同基本粒子。演生论不把基本粒子,看作构成宇宙的基本构件。
P:你说过“创新的生命力在小科学中”,为什么以高能物理、天体物理为代表的“大科学”在21世纪面临危机,而凝聚态领域的研究层出不穷?
W:我自己并不反对大科学,我也是很支持大科学的。像高能粒子物理的实验,它的条件是很苛刻的,只有通过建大型的设备才能探索新的基本粒子。天体物理也类似,需要大型的天体望远镜,卫星等等,才能看得更远更清楚。为什么大家觉得大仪器值得做?这是因为大仪器能探索新的参数空间,探索未知的世界。在这些从来没有被探索过的地方,有时就能看到新的东西。
目前呢,中国做大型加速器实际上是分两步走,第一个是正负电子对撞机,这个第一步能量并没有提高多少,但是电子数的强度提高了很多,所以能做细致的实验,也许能发现一些新东西。第二步呢,需要的一些新技术还有待解决,这个新技术就能增加很多能量。这里就有一个问题,对撞机的设计观念并没有太新,只是给它加大一号。可以说这种做法太暴力了。我更希望能有一个新的设计,一个从来没有的东西,像探测引力波的设计就是。
其实,大科学小科学都很重要,只是大科学需要更多的支持,需要说服别人,说能看到新的东西。但是一旦你说服的理由成立,那看的这个东西就不是真正的新东西,因为它已经有了名字,常常是理论上已经预言的东西。其实最好的理由应该是:我不知道能看到什么,我就是想去看看。做探索的思路跟做工程是不一样的,做工程是有预期的,做科学探索,没有预期的预期,是最好的预期。如果你看到预期的东西,其实是代表失败。所以现在的LHC看到了Higgs,大家说是成功了,但是这个成功是失败的成功。没有新发现。
所以说,当你要钱的时候呢,最科学的理由就是,我不知道能看到能发现什么东西,我也不能告诉你能发现什么东西,因为这些东西在发现之前连名字都没有。但这就可能要不来钱。小科学的话花钱没有那么多,可能就没有这个问题,你就可以随意地去探索,可能看到没想到的东西。有时你太为了某个目的设计实验的时候,为了看到已经知道的东西,反而可能看不到旁边一些没有想到的东西,会丧失发现新东西的机会。总的来说,科学探索是为了发现连名字都没有的未知,而不是发现有了名字的已知。
P:杨振宁先生在《美与物理学》中说,狄拉克(保罗・狄拉克,量子力学奠基者之一)给人感觉是“秋水文章不染尘”,而海森堡(沃纳・海森堡,量子力学主要创始人)的文章则朦胧、有渣滓。你做研究的风格是怎样的?
W:这个很难讲,你很难说一个艺术家他的审美观念是什么东西,但是每个艺术家都有自己的审美观念。很重要的是,我觉得每个人一定要有自己的审美,以自己的审美观点来发展自己的科学研究,这才有科学研究的多样性,才会有创新。现在国内的训练太标准化了,就是把每个人的审美都训练成一样,这样不是太有利。
凝聚态物理范文5
Correlated Electrons in
Quantum Matter
2012,550 p
Hardcover
ISBN9789814390910
P.Fulde著
长期以来凝聚态物理都是基于固体中的基本现象可以借助单粒子描述来理解,近20年这种认识发生了相当大的变化。人们发现电子关联起着越来越大的作用。从技术角度看,许多新材料(如在各种存储器和专用芯片中有着广泛应用的过渡金属氧化物以及具有高转换温度的超导材料等),都具有非常强的电子关联。关于强关联电子系统的研究已经成为一个活跃的前沿领域。本书的目的旨在以本科生能接受的水平描述最新的进展,尽管重点是强调关联电子的理论问题,同时也包括了大量涉及实验的实例。
20年前,作者曾撰写了 “在分子与固体中的电子关联”一书,其第3版也是最后一版于1995年出版。该书的主要目的是以统一的形式阐述电子关联问题,建立一种能够同时处理强、弱两种电子关联系统的框架,它不依赖该体系是一个固体还是一个分子。本书原来的计划是写一部上一版的简化版本,以便帮助缺少凝聚态物理和场论知识的学生更容易使用。但考虑到该领域近年来有了如此多的新进展,作者放弃了原来的想法,代之以压缩了原著的很多内容,删去了对于分子的讨论,为补充新的进展留出足够的余地,并改变了书的标题,成为一部新书,使其成为一部教科书而不只是一部评述。从目前的发展来看,量子系统中电子关联效应的理解已经成为固体物理学中最具挑战性的问题之一,然而还几乎没有任何一本试图给出覆盖绝缘体、半导体以及金属领域的全面概述的相关书籍存在。本书试图填补这一空白。
全书内容共分15章:1.导言; 2.独立电子; 3.均匀电子气; 4.密度泛函理论; 5.波函数为基的方法; 6.关联基态波函数; 7.准粒子激发; 8.非相干激发;9.相干势近似; 10.强关联电子; 11.过渡金属; 12.过渡金属氧化物; 13.重的准粒子; 14.带有分数电荷的激发; 15.超导。书末附有10个附录,分别简要补充了书中一些章节用到的数学细节。
本书作者非常注重教学技巧,相关领域的专家以及研究生都会对此书感兴趣。本书对于固体物理学的一个新的分支——无法用密度泛函理论处理的强关联系统进行了自成一体的描述。就这个方面而言,它可以作为固体物理的这一新分支的大学课程的一部很好的教科书。
丁亦兵,教授
(中国科学院大学)
凝聚态物理范文6
本书首先介绍背景知识,接着给出一些应用实例,再挑选一些前沿领域的高等论题,给予详细的论述。书中介绍的一些方法是作者与其合作者在科研实践中发展起来的。每一章的末尾都编写了一些习题,旨在给读者掌握书中介绍的概念和技巧。通过学习本书,读者应当能够读懂凝聚态物理中有关多粒子相互作用效应的文章。
全书内容分两大部分共17章。第一部分低维量子系统的线性响应,含第1-13章:1. 引言;2. KuboGreenwood 线性响应理论;3. 费曼图展开;4. 介观结构中的等离体振子激发;5. 表面响应函数、能量损耗和等离子体不稳定性;6. 二维电子气(2DEG)中Rashba 自旋-轨道相互作用;7. 电导:Kubo 和LanauerBüttiker公式; 8. 自旋-自旋二维电子液体的非局域电导; 9. 整数量子Hall效应;10.分数量子Hall效应;11. 二维电子系统和纳米管中量子化绝热电荷输运;12. 石墨烯;13. 电子线性输运的半经典理论。第二部分低维量子系统的非线性响应,含第14-17章:14. 非线性电子输运理论;15. 多激子的自发和受激非线性波混合;16. 用相干光学谱在耦合量子点(QD)中探测激子和双激子; 17. 热电子的非热分布。
本书作者来自知名的研究所、具有研究和教学经验,在开设的研究生课程讲义基础上撰写本书。要求读者具有大学生水平的基础量子力学、统计力学和固体物理的知识基础。对于那些从事半导体结、纳米结构和薄膜系统等相关领域教学与研究工作的读者,特别是研究生,本书既可以当作专题课的辅助教材,也可以作为高等凝聚态物理课的教科书或重要的参考书。
丁亦兵,教授
(中国科学院研究生院)