数字逻辑电路范例6篇

前言:中文期刊网精心挑选了数字逻辑电路范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数字逻辑电路

数字逻辑电路范文1

关键词:教学改革;实验;数字逻辑电路;计算机专业

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2013)29-6570-02

数字逻辑电路实验课程是电气、电子信息类和部分非电类专业本科生在电子技术方面入门性质的技术课。它在电类专业中深受青睐,但在非电类专业中的教学没引起足够的重视。长期以来,在我校计算机专业类数字逻辑电路实验的实验教学中,出现实验教师难教学生厌学的现象。我们从学生学习该课程的现状着手,通过对该课程的先导课程及后续课程进行调查分析,了解相关理论课学习的状态,并据此提出了相应的实验教学改革措施,分三个阶段对学生的学习能力及动手能力进行培养,我们称之为数字逻辑电路实验课程“过三关”[1]。

1 数字逻辑电路实验的教学改革思路

数字逻辑电路实验在计算机类专业都把它作为一门主干必修课程,但相比专业课来说,非电类专业对该课程地位认识和重视程度是不一样的,普遍存在的一种现象是“重软件轻硬件”[2]。我校计科专业、网工专业的“数字逻辑电路实验”课,安排在第三学期,并具有第二学期的“模拟电子技术”课程的基础。而软工专业的“数电”课安排在第二学期,并没有提前开设“模电”课程,缺乏电路知识的先导。在总课时数压缩的情况下,由于理论课和实验课安排在同一学期,并在第一周同时开课,实验课严重滞后于理论课的进度,造成学生想要学好又觉得心有余而力不足[3]。

第一关:克服对数字电路实验课的心理恐惧关

对计算机专业的学生来说,模拟电子技术和数字逻辑电路都很难学,更难于精。适合计算机专业的专用教材很少,更没有比较适合的实验教材。不得已沿用电类专业的教材,理论偏多偏深。单纯的数字逻辑分析抽象、枯燥、乏味,遇到复杂的逻辑现象更容易让人感到无从下手,产生畏难情绪。例如:教材[4][5]的第二章逻辑门电路,是学生们共同认为最难于理解、头疼困难的内容。在讲解TTL(Transistor-Transistor Logic)基本逻辑门涉及到很多的电路基础知识、基本电路元件(电阻、二极管、三极管等元件)、电路及结构、半导体工艺、以及它们的电流、电压、元件参数等内部电气参数的计算等。对电路原理的理解和对电子元器件认识存在困难。然而,计算机专业学习的重点并不在这些电路的内部原理和前端设计,实验所必需的电路基础知识在课程中的应用暂时不用十分深入,可以不用刻意去理解逻辑器件的内部结构。重点应放在:一是掌握器件输入和输出之间的逻辑功能;二是外部的电气特性其主要参数。相应的基本门电路实验,目的包括掌握TTL基本逻辑门的逻辑功能验证与参数测试;掌握TTL器件的使用规则;进一步熟悉数字逻辑电路实验装置的结构、基本功能和使用方法。“轻里重外”,将集成电路视为“黑匣子”,这样电路基础知识不再构成计算机专业的学生学习的障碍。

在实验教学中,改善实验条件,增强实验教学的趣味性。让生活走进实验、贴近生活。理论实验化,实验生活化。例如: 逻辑门实验是认识数字电路的基本实验,电子门铃的原理就是利用与非门构成振荡器,使输出端的铃声信号输出,从而驱动喇叭发出闹铃声的。除此之外,实验还能进行趣味游戏如乒乓球游戏机等的设计。通过增加实验内容、改变实验方法,多做实验来改变学生怕做实验的恐惧心理。

根据现在的理论课学时、教学计划和实验设备,改编有关内容。以“与非门”逻辑为例说明改革实验教学方法。采用先理论讲解,以逻辑代数为基本数学工具,从基本逻辑门电路入手。实验使用传统标准数字逻辑器件四2输入与非门74LS00,,用它构成传统的与非门验证实验。再用硬件描述语言VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)[6]和复杂可编程逻辑器件CPLD(Complex Programmable Logic Device) [7]实验实现“与非门”逻辑。这样就建立了同一实际逻辑问题用多种不同层次方法进行实验的模式:数字逻辑单元理论设计,以门电路为基本单元电路构成各种组合逻辑电路和时序逻辑电路,使用标准数字逻辑器件中的中(MSI)、小规模(SSI)的TTL集成电路验证;利用通用集成电路模块产品,主要是用中(MSI)大规模(LSI)集成电路模块,构成预定功能的逻辑电路;再用VHDL和CPLD构成复杂的电路系统,步步推进,穿行融合。

第二关:培养动手能力关

从数字逻辑电路实验课程的知识结构和特点分析,数字逻辑电路实验主要由基本逻辑门电路,由门电路组成的基本组合逻辑电路和时序逻辑电路及通用集成电路模块构成。

在第一阶段为数字逻辑电路基础实验(芯片级实验)。由“一门而入”,选用传统典型标准数字逻辑器件与非门,进行基本门电路逻辑功能测试与验证,通过实验使学生熟练掌握数字电路实验箱的结构和使用方法,使用示波器记录描述逻辑功能的波形图,实验基本仪器测试集成电路外部电气特性参数。掌握用与非门组成其它逻辑门及逻辑门之间的互换、解决不同门电路之间相互连接匹配问题。对集成门电路外形建立感性认识,熟悉芯片的外形封装、芯片的引脚数量和分布情况。通过基础实验,训练了学生的数字逻辑设计的基本功,为综合设计性实验打下良好的基础。

第二阶段为综合设计实验(单元级实验)。主要有基本技能测试性综合实验、组合电路设计性综合实验、时序电路设计性综合实验、存储器和D/A或A/D转换电路的综合实验。

综合设计性实验主要是小系统逻辑设计实验[8],每一个实验系统可以由多片标准数字逻辑器件MSI、MSI的门电路组成。也可以用通用集成电路中的MSI、LSI的TTL集成电路芯片组成。实验者可根据自己的设计做出不同种类的电路,培养对单元功能电路的理解和灵活运用能力。例在传统数字逻辑电路实验中,最为经典的例子是“三人表决器实验电路的设计” [9]。其中SSI门电路设计最为灵活,可以选择一种与非门构成“与非-与非式”、一种或非门构成“或非-或非式”、与非门+或非门构成“与或非式”。也可以采用通用集成电路模块译码器、数据选择器和加法器分别设计多种三人表决器实验电路。

第三关:VHDL及CPLD实验提高复杂电路设计能力关

从第一、第二阶段实验的效果来看,这些实验是在掌握SSI、MSI电路分析和设计的基础上进行,达到预定的逻辑功能。这种方法设计的逻辑系统规模不宜太大,否则,系统需要很多芯片,连接线和接点复杂,导致可靠性下降、功耗增加,系统占用空间扩大。为此,可以采用大规模集成和超大规模集成技术,把完成复杂功能的众多芯片集成到一个芯片内。可以克服上述问题。这种能够完成特定功能的集成电路芯片称之为专用集成电路。用VHDL语言设计后,在CPLD中实现,这已经成为数字系统设计的主流。

将新技术和新型电路设计的方法充实到教学中去,以体现实验与时俱进的先进性。第三阶段的可编程器件的应用与可编程电路的EDA设计实验(系统级实验),要求学生用CPLD芯片重现第一阶段的基础实验和第二阶段综合设计性实验中的电路设计。训练学生通过阅读资料掌握可编程器件的功能及规范的使用方法。掌握EDA软件的使用方法和设计语言。最终达到“了解一种器件,熟练使用一种设计工具,掌握一门设计语言,能够设计较复杂的数字系统”的目的。

通过三个不同阶段的实验过程,将一种数字逻辑器件的基础理论,用传统器件实验验证或实现,再用VHDL及CPLD实验复现,三者融合循环,螺旋式上升。实现数字逻辑电路实验的教学改革,帮助学生突破在学习道路上的三道难关。

2 结论

侯建军教授提出了“厚理博术,知行相成”的教育理念。通过数字逻辑电路实验,既要加强知识的学习,又要践行所学的知识,提高实践动手能力和创新能力。根据学生的特点确定教学目标,组织教学内容,制定教学方法,以学生为主体,“教法”适应“学法”培养学生的学习兴趣。倡导以启发、探索和创新性实验为核心的研究式学习方式,鼓励学生参与国家级和校级的大学生创新创业项目,并参加各种国家电子技能大赛,取得很好的效果。

参考文献:

[1] .“模拟电子线路”的“过三关”——谈“模拟电子线路”教与学[J].电气电子教学学报,2002(11).

[2] 杨汉祥.数字电路课程交叉知识的教学研讨与实践[J].赣南师范学院学报,2005(6).

[3] 管冰蕾,胡家芬.计算机专业《数字逻辑》课程教学改革的研究[J].时代教育:教育教学版,2009(3).

[4] 侯建军.数字电子技术基础[M].2版.北京:高等教育出版社,2009.

[5] 侯建军.电子技术基础实验综合设计实验与课程设计[M].北京:高等教育出版社,2009.

[6] Volnei A Pedroni.VHDL数字电路设计教程[M].北京:电子工业出版社,2013.

[7] 王诚,赵延宾,梁成志.Lattice FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社,2011.

数字逻辑电路范文2

[关键词] 项目教学法;逻辑思维;实践;研究

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2016. 23. 122

[中图分类号] F301.2;F321.42 [文献标识码] A [文章编号] 1673 - 0194(2016)23- 0226- 02

1 课程改进研究

项目教学一般在数字电路实验室进行,需具备一定的硬件设施,如黑板、投影仪等。项目教学过程可以将学生学习的主动性及积极性充分调动起来,还可以挖掘学生的潜能,培养起创新能力。将传统教学与现代教学有机融合于一体。在教学活动中,教师将需要解决的问题或需要完成的任务以项目的形式交给学生,通过一定的指导,以个人或小组为单位,由学生自己按照实际工作的完整程序,共同制订计划、共同或分工完成整个项目。此种教学方法使得每一名学生都得以参加实践过程,并在此过程种对所学的基本理论进一步掌握与理解,体验出创新的艰辛及乐趣,培养分析问题和解决问题的能力及团队合作精神等。

2 教学实例过程

2.1 项目的确定

以教学大纲要求为基础,所选择的项目具备一定的趣味性,所涉及的内容具有一定的熟知度,并在项目进行的过程中,能有效培养出学生的情感态度教育。下面以随机数生成器作为教学案例。

2.2 分析与设计

以设计随机数生成器作为一个项目,并对学生分派了四个教学任务作为项目参考。

任务一:掌握时序逻辑电路的设计方法;

任务二:领会555定时器芯片的功能及应用方法;

任务三:掌握常见集成计数器芯片的功能和应用方法;

任务四:掌握基准脉冲发生器的设计方法。

实验要求:本随机数生成器通过7个LED实现随机数字1-6的显示,当按下键后,7个LED循环点亮,之后循环速度越来越慢,并最终随机停止在某个点上,这时LED点亮的个数就是当前的数值。

图1为经由学生共同商讨合作以后随机数发生器的电路设计图。

2.3 随机发生器的主要相关设计

本电路由555组成的多谐振荡器和CD4017十进制计数器/脉冲分配器组成。7颗发光二极管模拟骰子的点数,当按下启动键1秒以上时,发光二极管骰子的不同点数高速循环点亮,几秒钟后循环速度越来越慢并最终随机停止于某个点上、C1的数值决定延迟时间,C2的数值决定循环速度。电源供电电压为直流5V,也可采用3节1.5 V电池供电。

(1)LED布局。按照电路设计图中LED布局,依次将其摆放,当开关按下一定时间再复原时,往返每一次LED灯均会显示不同的数字,比如,显示数字1时,则LED4亮。显示数字2时,则LED2与LED6亮。显示数字3时,则LED2、LED4、LED6亮。显示数字5时,则LED1、LED2、LED4、LED6、LED7量。显示数字6时,则其它的灯均会亮。

(2)555芯片功能。555定时器是一种模拟和数字功能相结合的中规模集成器件。其成本较低,性能可靠。只需外界几个电阻、电容,就可以实现多谐振荡器、单稳态触发器等脉冲产生与变换电路。

实验中使用的NE555集成电路芯片组建一个多谐振荡器,它的作用是用来产生脉冲信号。

(3)CD4017C芯片功能。实验中使用CD4017C芯片主要用来实现计算功能,当有脉冲信号进入CD4017的CLK端时,CD4017进行计数,当脉冲计数单元停止输出时,CD4017的输出也得以稳定下来。

(4)三极管的功能。实验中用到的三极管分别是9012/9013。其中9012为PNP型三极管,9013为NPN型三极管。它们在电路中主要起到放大电路的作用。

3 结 语

项目教学法是在建构主义学习理论的影响下,通过选取“工程项目”来创设“情景”,通过“协作学习”的方式开展学习,通过完成“工程项目”来达到“意义建构”,是一种比较有效的教学方法。项目时实践是在对课本知识予以巩固和加强的同时,增强了学生实践操作和动手应用的能力,提高了独立思考的能力,一定程度上培养了学生的创新精神。

主要参考文献

数字逻辑电路范文3

关键词:数字电路,Matlab/Simulink仿真,同步RS触发器

中图分类号:TN702 文献标识码:B

1. 引言

数字电路与逻辑设计课程[1]是工科电子信息类与电气工程类专业的专业基础课,对学习后续相关专业课起着不可替代的作用。该门课程的教学一般包含理论教学、实验教学和课程设计等教学环节。通常情况下,完成一定内容的理论教学后,再安排相关实验课程,在实验板上搭建具体的硬件电路或专用的数字电路实验仪器进行测试、修改和完善。但是,这些方法往往面临连线多、易于出现错误或需要反复调试,难以排查错误等问题,这种教学方式会导致学生对所学内容的感性认知较差,从而较低对课堂理论教学的积极性。因此,引入虚拟仿真软件势在必行。

Matlab[2]集算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink[3]两大部分,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等诸多领域。

针对目前课堂教学的问题,采用Matlab/ Simulink仿真工具进行数字电路的调试、仿真与验证,可以有效避免传统方法的容易出现的各种缺点,同时还能在省时、省力的条件下使课堂的讲解更加生动,更易被学生理解。因此,本文通过同步RS触发器为例介绍Matlab软件实现数字电路仿真的方法。

2. 电路设计与仿真

数字电路按照功能划分,可以分为组合逻辑电路和时序逻辑电路。二者之间最重要的区别是时序电路中通常还需要对数据进行存储,这一功能通常是由触发器来实现的。触发器是时序逻辑电路的基本逻辑部件,它有两个稳定的逻辑状态,即状态0和状态1。根据输入端信号的不同,触发器可具有置0、置1、状态保持等功能。当输入信号消失后,触发器的状态能够保持不变。因此,触发器具有实现1位二值信号的记忆的功能。

触发器可以按照逻辑功能的不同,分为同步RS触发器、JK触发器、D触发器和T触发器等。其中同步RS触发器是学习其它触发器的基础,因此,下面将介绍如何用Matlab/Simulink仿真工具实现同步RS触发器的相关功能。

2.1 基本原理

由与非门组成的同步RS触发器的电路图如图1所示,其真值表如表1所示。

其中, 是约束条件,表示 和 不能同时为0。

2.2 仿真实现

由于同步RS触发器的功能和组合逻辑电路的学习相比差异较大,不易于学生的理解,因此,在课堂学习的过程中通过Simulink软件模拟同步RS触发器,从而强化学生对同步RS触发器功能的理解。同步RS触发器的仿真步骤如下:

首先,添加模块。在Matlab软件中运行Simulink模块,再打开模块浏览器,再采用Simulink模块库中的标准模块来构建同步RS触发器模型。鉴于激活模块需要放到Subsystem中的设计区域中,因此先将Connections模块库中的Subsystem功能模块复制到设计区域内,再进入Subsystem的设计区域进行设计。

具体而言,通过4个与非逻辑(NAND模块)组成。同时,还需要在反馈的位置加上两个加法器产生初始值。从而避免产生代数环的错误。另外,还在同步RS触发器的前端添加一个功能激活(enable)模块,使其成为具有时能端的同步RS触发器。

选用Simulink中的logical operator模块和pulse generator模块,并设置各个模块的参数,再将不同的模块通过信号线连接起来,建立同步RS触发器的Simulink仿真模型,其内部结构如图2所示。

输入端R和S接Constant模块,enable接pulse generator,输出数据被导入到Matlab的workspace空间,然后方便调用Matlab的函数显示相应的结果,时序仿真结果如图3所示。

在图3中,其中‘R input’和‘S input’分别表示R和S端的信号输入。‘enable’表示时钟脉冲,‘Q output’和‘Q-inverse output’分别表示输出信号 和 。

3. 结束语

综上所述,随着电子技术的高速发展,数字电路的形式日趋复杂化,仅依靠传统的课堂教学模式已经逐渐不能满足新技术人才的发展要求。故应利用多种新技术和传统的课堂教学方式相结合,本文采用Matlab/Simulink软件进行仿真:一方面可以弥补课堂教学的不足,加深学生对课堂所讲的概念与工作原理等理论知识的理解;另一方面,也可以克服通过电路元件搭建实验电路带来的不便,如实验室元器件品种、规模、数量的不足,仪器的陈旧老化,实验板电路的单调等问题,电路出现故障后难以调试等问题,不利于学生的创新设计。因此,利用Matlab/Simulink软件进行仿真在日常数字电路与逻辑设计课堂教学中发挥着越来越重要的作用。

参考文献

[1] 王毓银,沈明山. 数字电路逻辑设计[M]. 高等教育出版社, 2006.

[2] 张德丰,丁伟雄,雷晓平. MATLAB 程序设计与综合应用[M]. 清华大学出版社, 2012.

数字逻辑电路范文4

关键字:数字电路;组合逻辑电路;时序逻辑电路

中图分类号:TN79文献标识码:A 文章编号:1673-0992(2010)06A-0042-01

众所周知,近年,科学技术的不断进步带动许多行业发生了翻天覆地的变化,电子信息行业走在了科学发展的前列,表现尤为突出的是数字电子技术,科学进步的浪潮中它迅速前进,已成为当前发展最快的学科之一,数字逻辑器件已从60年代的小规模集成电路(SSI)发展到目前的中、大规模集成电路(MSI、LSI)及超大规模集成电路(VLSI)。那么,逻辑器件的变化也会影响整个数字逻辑电路的发展。

一、数字电路的状态

数字电路顾名思义就是对数字信号进行算术运算和逻辑运算的电路,它只有两个状态就是0和1。在数字电路中,低电平用0表示,高电平用1表示,有时低电位也用字母L(Light)表示,而高电位用字母H(High)表示。另外在对0和1理解时,还会有时间限制,因为数字0、1表示电路状态,结合时间看电路时,要明白电路工作时序。

二、数字逻辑电路的基本定律

数字电路的设计在生活中使用非常广泛,但是怎样设计出符合要求的电路,这就是一门技术活了。因此理解数字电路设计,重点在基本概念和基本方法上。数字设计中逻辑代数基本定律、组合逻辑和时序逻辑的概念是分析和设计数字系统的基础,也是设计大规模集成芯片的基础,所以我们在说数字电路设计之前就要先了解逻辑代数的基本知识定律。逻辑代数是英国数学家乔治.布尔(Geroge . Boole)于1847年首先进行系统论述的,也称布尔代数。 所研究的是两值变量的运算规律,即0,1表示两种不同的逻辑状态,称这种只有两种对立逻辑状态的逻辑关系为二值逻辑。在逻辑代数中我们最先了解的就是进制的转换,计算机系统中一般二进制、八进制、十进制、十六进制是了解最多的,转换这些进制也是最容易的,掌握其中的计算方法就能得到。

三、数字电路设计―组合逻辑和时序逻辑

在做数字电路设计时主要就是组合逻辑电路设计和时序逻辑电路设计。从一方面说,这两种电路的设计是数字电路中的一个最基本的也是最重要的部分,只有会做这两种电路的设计才算是对数字电路入门了。所以我们先对这两种设计作下简单的介绍。

如果说逻辑电路设计是数字电路的最基础的组成部分,那么门电路就是带动这些部分运转的重要元素,就像是一部机器,门电路就是机器中的零件,大家都知道零件在机器的运转中起着不容小觑的作用,如果在某个部位因为一个小零件的出错,可能会导致整个机器出故障。逻辑电路中最基本的门电路通常是与门、或门、非门。与门是逻辑与运算的单元电路;或门是逻辑或运算的单元电路;非门,也叫反相器,是实现逻辑非运算的电路。在实际的应用中并不是把它们直接使用,而是将它们组合成复合逻辑运算与非、或非、与或非、异或、同或等常用的门来实现其功能。我们在日常生活中见得最多的就是交通灯的控制,就是用组合逻辑电路设计成的。在组合逻辑电路的设计中,利用门电路的组合完成的很多电路的设计,编码器、译码器就是组合逻辑电路中的器件,组成的液晶显示器LCD,数码显示器LED。

时序逻辑电路中,主要的零件就是集成触发器,在各种复杂的数字电路中不但需要对二值信号进行算术运算和逻辑运算,还经常需要将这些信号和运算结果保存起来,因此需要使用记忆功能的基本逻辑单元,而这种能储存信号的基本单元电路就是触发器。迄今为止,人们已经研制出了很多种触发器电路,根据电路结构形式的不同,可以分为基本RS触发器、同步RS触发器、主从触发器、边沿触发器等。这些触发器的研制都是在前一种触发器的基础上改进而来的,通俗的说是后人在前人的研究发明中不断提炼出的新器件。因此同步触发器是建立在基本RS触发器的基础上的,基本RS触发器输入信号可以直接控制触发器的状态翻转,而在实际应用中往往要求在约定脉冲信号到来时,触发器才能翻转,所以才有同步RS触发器的出现。但是同步RS触发器有空翻现象,不能正常计数,因此人们又研制了主从触发器,同样为了克服主从触发器的一次性变化,就有了边沿触发器的产生。

四、数字集成电路

在很多人看来,数字集成电路是非常空洞的东西,因为只是一块芯片,却能实现如此多的功能。那在数字集成电路中主要有哪些电路呢?常用的数字集成电路一般有CMOS电路和TTL电路两种。CMOS电路有消耗功率低,工作电压范围广和噪声容限大的特点,虽然在CMOS电路的输入端已经设置了保护电路,但由于保护二极管和限流电阻的几何尺寸有限,它们所能承受的静电电压和脉冲功率均有一定限度。CMOS集成电路在储存运输、组装和调试过程中难免会接触到某些带静电高压的物体,所以一般要对输入的静电进行保护,另外CMOS还会出现电路锁定效应,一般为了使用安全和方便,人们一直在研究从CMOS电路本身的设计和制造上克服锁定效应方法。当然,集成电路一般的要求都非常高,它需要预先对芯片进行设计,编制一定的程序,而我们往往使用现成的电路,对它只做了一定的分析。

通过对数字电路的基本知识的解读,当然这只是很浅的一方面。而数字电路涉及到的一些专用的集成电路。由于专用集成电路(ASIC)是近期迅速发展起来的新型逻辑器件,这些器件的灵活性和通用性使它们已成为研制和审计数字系统的最理想器件。因此数字电路的发展在今后还有很大的空间,但是在发展的同时,数字电路的基础的知识是不会改变的,只会在原来的基础上得到更大的改进,这需要新新的电子人来改进数字电路的不足地方,将它所存在的每一个缺点进行弥补,使各个部分它的作用发挥到最大。

数字电路在实际运用中将越来越广泛,现在在要求普及的数字电视已经进入了千家万户,数字化已经成了必然的趋势。但是任何技术知识,基础都是最根本,最主要的,数字电路的组成刚好是是基础。数字化的时代已经到来,打好基础知识是数字电路发展的前提条件。

数字逻辑电路范文5

【关键词】数字逻辑;下标计算法;趋势分析法;Proteus软件

《数字逻辑》是计算机科学与技术专业以及电气、电子信息类专业的一门专业基础课,主要介绍数字逻辑电路的分析和设计的方法[1],是微机原理与接口技术、单片机原理等专业课程的先导课程。该课程对学生要求起点较低,不需要过高的前序知识,但实践性较强,内容分散,不容易记忆。学生一开始接触的是基本概念、原理方法、数字逻辑运算等,内容抽象,与实际的逻辑电路联系不多,导致学生一开始就对这门课不感兴趣[2]。而在课程后半段讲解“中规模通用集成电路”时,单纯依靠板书或PPT,无法让学生对各种数字逻辑电路的结构和功能进行深入了解和分析,更加无法培养学生设计数字逻辑电路的能力。在这种情况下,教师如何在有限的时间内,精心设计教学方案,改革教学方法和教学手段,激发学生的学习热情,提高教学质量,是一个值得认真研究和深入讨论的问题[3]。下面将分别从教学方法和教学手段方面探讨如何改进数字逻辑课程的教学,从而降低课程讲解难度,提升学生的学习效率和效果,最终提升教学质量[4]。

1 教学方法改进

在涉及数字逻辑课程前面一部分内容,包括逻辑代数、组合逻辑电路和时序逻辑电路等章节的教学时,采用好的技巧或方法往往能使运算或分析更易懂、更方便且更不容易出错。下面针对数字逻辑课程中“逻辑函数表达式转换”内容提出“下标计算法”,针对“同步时序逻辑电路设计”的原始状态图构建环节提出“趋势分析法”,在避免教学过程中对教材内容原样照搬的同时,更加简化计算和降低分析难度,更大程度上避免错误的发生。

1.1 下标计算法

将一个任意逻辑函数表达式转换成标准与-或表达式是数字逻辑课程中的基础,包括卡诺图化简逻辑函数、二进制译码器或多路选择器实现逻辑函数等内容中均会用到。教材中主要采用的是代数转换法,分两步进行:

这种转换方法第一步不可或缺,但是第二步扩展最小项时会使逻辑函数变得更加复杂,运算过程中更加容易出错。针对这种缺陷,为简化计算和减少错误,在第二步运算过程中采用“下标计算法”。这种方法是把第一步得出的一般与-或表达式中的每个非最小项的与项通过表格的形式单列出来,然后计算出每个与项的全部最小项下标,并且找出所有出现且不重复的下标值,最后直接得出标准与-或表达式的简写形式。

第二步:采用“下标计算法”得出标准与-或表达式,运算过程如表1所示。

从表1中可找到出现的全部不重复下标分别是0、1、3、6、7,因而可直接得出标准与-或表达式的简写形式为

1.2 趋势分析法

在完全确定同步时序逻辑电路的设计过程中,形成正确的原始状态图是设计的第一步也是最关键的一步,否则设计出来的电路必然是错误的。而在同步计数器、序列检测器和代码检测器这三种同步时序逻辑电路的设计中,序列检测器的原始状态图的建立又是其中的重点和难点。教材中所采用的方法可行但是难以理解,学生在设计类似电路时很容易出错。针对这个问题,采用“趋势分析法”能够较好的解决。所谓“趋势分析法”,就是根据每个状态的存储功能和输入序列的变化趋势,分析现态在下一个输入信号出现时应该指向哪一个次态,这样逐步分析下去,最后得出正确的原始状态图的方法。下面以“0101”序列检测器为例来说明用“趋势分析法”建立原始状态图的过程。

例如,作出“0101”序列检测器的Mealy型状态图,典型输入/输出序列如下:

输入x 1 1 0 1 0 1 0 1 0 0 1 1

输出Z 0 0 0 0 0 1 0 1 0 0 0 0

首先分析需要使用的状态数目。按照一位输入的序列检测器的一般状态数规律,如果需要检测的序列有n位,则状态数需要n+1个。这是因为其中第一个状态为初态,其他n个状态用于存储n位序列的变化过程。此处待检测序列是“0101”共四位数,故而需要五个状态。其中A状态为初始状态,B状态用于存储输入信号“0”,C状态用于存储输入信号“01”,D状态用于存储输入信号“010”,E状态用于存储输入信号“0101”(即待测序列)。

接下来采用“趋势分析法”作出Mealy型原始状态图,分析过程如图1所示。

“趋势分析法”分析过程说明如下:

(1)从初态A开始,当x=0时,状态从A到B,因为状态B存信号“0”,输出Z=0;当x=1时,状态从A到A保持不变,输出Z=0。

(2)此时处于状态B。当x=0时,状态从B到B,输出Z=0;当x=1时,状态从B到C,因为状态C存信号“01”,输出Z=0。

(3)此时处于状态C。当x=0时,状态从C到D,因为状态D存信号“010”,输出Z=0;当x=1时,状态从C到A,因为信号“011”不能构成“0101”序列的任何一部分,所以只能回到初态A,输出Z=0。

(4)此时处于状态D。当x=0时,状态从D到B,因为状态B存信号“0”,输出Z=0;当x=1时,状态从D到E,因为已经构成“0101”序列,并且输出Z=1(只有检测到待测序列时输出Z=1,否则Z=0)。

(5)此时处于状态E。当x=0时,状态从E到D,因为状态D存信号“010”,输出Z=0;当x=1时,状态从E到A,因为信号“011”不能构成“0101”序列的任何一部分,输出Z=0。注意“当x=0时,状态从E到D”是学生分析时最容易出错的地方,错误原因在于认为“状态应该是从E到B”,这是没有考虑到当输入信号“0101……”重复出现时,前一个“0101”序列的后半段能够作为下一个“0101”序列的前半段这种情况。

2 教学手段改进

为了增强学生对数字电路的感性认识,加深学生对数字逻辑分析方法的理解,掌握常用集成器件的基本使用方法,提高学生学习兴趣[6],避免枯燥的集成芯片和数字逻辑电路功能讲解。将Proteus软件引入数字逻辑课程教学,可增强教学的生动性和直观性[7]。Proteus 软件具有多种元件库,其中的元器件大多均可直接用于实际电路的搭建,而且该软件提供了多种与实际仪器仪表用法相似的虚拟仪器设备,还有各种信号源,几乎可以完成各类数字逻辑电路的设计、测试和辅助分析工作[8]。

在讲解通用中规模时序逻辑电路章节的集成计数器相关内容时,用同步计数器构建任意进制计数器有多种方法,电路比较灵活,既可以利用计数器的清除端,也可以用预置功能。此时可利用Proteus仿真演示动态过程,节约大量的教师口头讲述时间,这样更具感染力和说服力,学生也更容易理解接受[9]。

例如,4位二进制同步可逆计数器74193构成模10加法计数器和模12减法计数器,要求用Proteus软件实现。其仿真结果如图2所示。

图中电路分成上下两个部分,上半部分电路是模10加法计数器,下半部分电路是模12减法计数器。两个计数器电路相同之处是均由信号发生器(发出频率为1Hz,电压为0-+5V的方波信号)、同步可逆计数器74193、七段显示译码器7448和七段共阴极数码管构成。不同之处在于加法计数器采用累加计数,当计数器输出由1001变成1010时,与门输出为1,该信号接至清除端MR,使计数器状态变成0000,因而其计数范围是0000-1001,从而构成模10加法计数器。而减法计数器采用累减计数,初始设置端平时为1,电路开始工作时置入初态1111,然后开始减1计数,当计数器输出由0100变为0011时,或门输出由1变为0,该信号送至预置端PL,使计数器立即置入1111,因而其计数范围是1111-0100,从而构成模12减法计数器。

3 结语

通过“下标计算法”能够让学生在进行逻辑函数表达式转换时更加简便快速、少犯错误。通过“趋势分析法”能够让学生在同步时序逻辑电路的设计过程中,走好关键的第一步,形成正确的原始状态图。通过Proteus软件仿真,能够让原本枯燥乏味的数字逻辑电路讲解变得更加形象、生动和直观。在教学过程中需要不断地研究和尝试新的教学方法和教学手段,以提高数字逻辑课程的教学效果,为学生学习后续专业课程以及为解决工程实践中所遇到的数字系统问题打下坚实的基础。

【参考文献】

[1]陶永明.《数字逻辑》课程教学方法研究及探讨[J].现代计算机:专业版,2010(5):98-102.

[2]董汉磊,吕治国.“数字逻辑设计”课程教学改革研究[J].中国电力教育,2011(28):122-123.

[3]徐健宁.《数字逻辑电路》课程的教改探索[J].职业时空,2011,7(9):109-110.

[4]施键兰,赵芮,黄文秀,等.《数字逻辑》课程教学改革的探索[J].现代计算机:专业版,2011(23):45-47.

[5]欧阳星明,于俊清,等.数字逻辑[M].4版.武汉:华中科技大学出版社,2009:32-34.

[6]庄立运,王晓辉.Proteus在数字电子技术课堂教学中的应用探讨[J].科技信息, 2011(13):84.

[7]陈坚祯,阳平,程鹏,等.Proteus仿真在计算机嵌入式方向系列课程中的应用[J]. 湖南科技学院学报,2012,33(8):63-65.

数字逻辑电路范文6

 

1.引言

 

《数字电子技术》是高等学校通信工程、电子信息工程、自动化、电气工程及自动化等专业的重要专业基础课程[1]。随着数字应用电子技术、数字系统的高速发展,以FPGA (Field Programmable Gate Array)和CPLD(Complex Programmable Logic Device)为代表的大规模可编程逻辑器件(Programmable Logic Device,PLD)的广泛应用,使传统“板上数字系统”被“片上数字系统”替代[2]。为适应数字电子技术的发展趋势,对传统《数字电子技术》教材内容进行了改革,在教材内容的安排和例题选用上,立足于应用型人才培养,以现代信息技术为依托,注重理论联系实际,取得较好的应用效果。

 

2.教材改革的基本思路

 

随着数字电子技术的快速发展,如何处理数字电子技术的经典内容与现代内容、传统分析设计方法与现代分析设计方法之间的关系,是教材内容改革的重点。教材以“基础知识器件原理器件应用器件仿真系统构建系统仿真”为主线,构建数字系统的知识框架。在教材内容组织上,将数字电子技术和数字系统有关知识融为一体,系统介绍数字电子技术与数字系统的基本分析方法和设计方法;在教材内容编写上,以培养学生的应用能力和实践能力为目的,采用案例式或项目式编写思路,将理论知识和实际应用相结合,把突出知识的应用性和实践性作为主要方向,做到理论和实践并重,既强调理论基础,又突出应用性。对于集成电路注重逻辑功能和使用方法介绍,增加EDA (Electronic Design Automation)技术基础知识[3],利用Multisim 软件对部分电路进行功能仿真,并介绍VHDL语言、QuartusⅡ软件的基本使用方法,利用VHDL语言设计部分数字电路,利用QuartusⅡ软件进行仿真分析,适应现代电子技术飞速发展和应用的需要。

 

3.教材的主要特点

 

3.1 教材内容组织

 

按照教育部高等学校电子信息科学与电气信息类基础课程教学指导委员会对《数字电子技术基础》课程教学的基本要求,对《数字电子技术》教材内容进行重新组织,将教材内容分为十章[4]。第一章介绍逻辑代数的基础知识,主要包括各种数制、常用的编码规则、逻辑代数的基本定理、逻辑函数的表示方法和化简方法等。第二章介绍EDA技术的基础知识,包括Multisim、VHDL语言、QuartusⅡ的基础知识。第三章介绍分立门电路、集成门电路和可编程逻辑器件的特点,并介绍利用VHDL语言设计门电路的方法。第四章首先介绍组合逻辑电路的基础知识,然后讲解组合逻辑电路的应用,最后利用Multisim对组合逻辑电路进行功能仿真和设计分析,并介绍组合逻辑电路的VHDL语言设计方法。第五章介绍各种触发器的功能和应用,并利用Multisim对触发器进行功能仿真,介绍触发器的VHDL语言设计方法。第六章介绍时序逻辑电路的分析方法和设计方法,介绍常用时序逻辑电路的功能和应用,并分别利用VHDL语言和Multisim进行功能描述和仿真。第七章介绍脉冲波形的产生与整形电路,重点介绍集成电路的应用。第八章介绍半导体存储器的特点和应用。第九章介绍A/D转换和D/A转换的工作原理和主要技术指标,对集成DAC和ADC的基础知识及应用进行简单介绍,并利用Multisim对基本转换电路进行功能仿真。第十章介绍数字系统设计的基本流程,通过3个实例介绍数字系统的不同设计方法。

 

3.2强调基础理论

 

随着数字电子技术的发展,数字电子技术已逐渐渗透到各个行业,《数字电子技术》课程作为高校电类专业的基础课程,是学生走向数字化时代的第一门课程,也是某些高校相关专业的考研课程,其重要性不言而喻。教材编写强调《数字电子技术》基础知识的系统性、完整性,将逻辑代数基础、组合逻辑电路分析与设计、时序逻辑电路的分析与设计等基础知识作为教材核心内容,并结合部分高校相关专业《数字电子技术》研究生考试大纲的要求,增加部分教学内容。例如,在第六章“时序逻辑电路”中增加利用观察法和隐含表法进行状态化简的内容,使学生能够更容易掌握时序逻辑电路的传统设计方法。

 

在教材内容编排上,反复训练基础理论知识,使学生更好地学习并掌握基础理论知识,为进一步学习打下坚实的基础。例如,第四章“组合逻辑电路”首先介绍组合逻辑电路的分析方法和设计方法,然后介绍常用集成组合逻辑电路的原理和应用,其中译码器、数值比较器按照组合逻辑电路的分析方法进行阐述,编码器、数据选择器、加法器按照组合逻辑电路的设计方法阐述,使教材内容循序渐进、深入浅出,适用于学生自学,有利于培养学生自主学习能力。

 

3.3突出实践应用

 

在教材编写过程中,注重学生对知识应用能力培养的需要,强调具体操作过程中学习理论基础,将知识应用能力培养贯穿整本教材,突出教材知识的实践应用性。在介绍集成电路时,删除集成电路内部电路的分析,强调集成电路的逻辑功能和使用方法[5],例如,介绍555定时器时,在简单介绍555定时器的电路结构和工作原理的基础上,以“触摸式定时控制开关电路”、“双音门铃电路”等应用电路介绍555定时器的使用方法。

 

在第九章“数/模和模/数转换器”中,以DAC0808、DAC 0832、AD7543为例介绍常用集成数/模转换器的工作原理和使用方法,并分别给出DAC0832、AD7543与单片机AT89C51的接口电路,既加强与后续课程单片机、微机原理等的联系[6],又突出教材内容的应用性。3.4增加EDA技术知识

 

EDA是电子设计自动化(Electronic Design Automation)的缩写,是从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。教材第二章EDA技术基础知识介绍了Multisim和QuartusⅡ两种EDA工具的操作界面和使用方法,并介绍了VHDL语言的基本结构、数据对象、数据结构、操作符和基本语句结构,使学生借助EDA工具进行电路分析和设计。教材给出了74LS138、74LS153、74LS194、74LS160等常用集成电路的Multisim仿真电路和VHDL描述方法,并在第十章“数字系统设计”中,以“计数报警器”、“简易交通灯控制器”、“函数信号发生器”为例,结合Multisim和QuartusⅡ软件,详细介绍简单数字系统的设计过程,丰富教材内容。

 

4.结语

 

《数字电子技术》教材改革是一项长期工程,随着数字电子技术的发展,必将对教材内容产生深刻影响。本教材于2012年10月由北京大学出版社作为“21世纪全国本科院校电气信息类创新型应用人才培养规划教材”出版,2013年12月被评为河南省“十二五”普通高等教育规划教材。教材经过3年多的使用,得到了广大师生的关注,收集了各方面建议和意见。为了更好地适应现代数字电子技术的发展和应用,需要对教材内容进行进一步改革。