前言:中文期刊网精心挑选了变频器论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
变频器论文范文1
动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。
变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。当前竞争的焦点在于高压变频器的研究开发生产方面。
随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。
在变频器主电路的拓扑结构方面。变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。
脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。
交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。微处理器的进步使数字控制成为现代控制器的发展方向。运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。
近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低、体积缩小、结构紧凑、使用便捷、可靠性提高。
在DSP出现之前数字信号处理只能依靠MPU(微处理器)来完成。但MPU较低的处理速度无法满足高速实时的要求。随着大规模集成电路技术的发展,1982年世界上首枚DSP芯片诞生了。这种DSP器件采用微米工艺NMOS技术制作,虽功耗和尺寸稍大,但运算速度却比MPU快了几十倍,尤其在语音合成和编码解码器中得到了广泛应用。DSP芯片的问世标志着DSP应用系统由大型系统向小型化迈进了一大步。随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度成倍提高,成为语音处理、图像硬件处理技术的基础。80年代后期,第三代DSP芯片问世,运算速度进一步提高,其应用于范围逐步扩大到通信、计算机领域。
90年代DSP发展最快,相继出现了第四代和第五代DSP器件。现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP芯核及组件综合集成在单一芯片上。这种集成度极高的DSP芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。
DSP和普通的单片机相比,处理数字运算能力增强10—15倍,可确保系统有更优越的控制性能。数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断、加强保护和监视功能,使系统智能化。
交流同步电动机已成为交流可调转动中的一颗新星,特别是永磁同步电动机,电机获得无刷结构,功率因数高,效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类,自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交—直—交变压变频器时叫做“直流无换向器电机”或称“无刷直流电动机”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。
变频器论文范文2
【论文摘要】:文章对变频器常见干扰故障进行了分析总结,并提出了相应的解决对策。
1.引言
变频器作为一种高效节能的电机调速装置,因其较高的性能价格比,在工厂得到了越来越广泛的应用。众所周知,变频器是由整流电路、滤波电路、逆变电路组成。其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。同时由于变频器的使用,电网电源电压中会产生高次谐波的成分,电网电源内有晶闸管整流设备工作时,会引导电源波形产生畸形。另外,由于遭受雷击或电源变压器的开闭,电功率用电器的开闭等,产生的浪涌电压,也将使电源波形畸变,这种波形畸变的电网电源给变频器供电时,又将对变频器产生不良影响。文章对于上述现象进行了分析并提出了降低这些不良影响的措施。
2.外界对变频器的干扰
供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。变频器的供电电源受到来自被污染的交流电网的谐波干扰后若不加处理,电网噪声就会通过电网的电源电路干扰变频器。变频器的输入电路侧,是将交流电压变成直流电压。这就是常称为"电网污染"的整流电路。由于这个直流电压是在被滤波电容平滑之后输出给后续电路的,电源供给变频器的实际上是滤波电容的充电电流,这就使输入电压波形产生畸变。
(1)电网中存在各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等大量谐波源
电源网络内有这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。例如:当供电网络内有较大容量的晶闸管换流设备时,因晶闸管总是在每相半周期内的部分时间内导通,故容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
(2)电力补偿电容对变频器的干扰
电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
(3)电源辐射传播的干扰信号
电磁干扰(EMI),是外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的[2]即以电磁波方式向空中幅射,其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。
对于(1)、(2)两项产生的干扰抑制可以在变频器输入电路中,串入交流电抗器,它对于基波频率下的阻抗是微不足道的。但对于频率较高的高频干扰信号来说,呈现很高的阻抗,能有效地抑制干扰的作用。对于(3)项的干扰信号主要通过吸收方式来削弱。变频器电源输入端,通常都加有吸收电容。也可以再加上专用的"无线电干扰滤器",来进一步削弱干扰信号。
3.变频器对周边设备的干扰及对策
上面已经讲过变频器能使输入电源电压产生高次谐波。同时,变频器的输出电压和电流除了基波之外,还含有许多高次谐波的成分,它们将以各种方式把自己的能量传播出去,这些高次谐波对周围设备带来不良的影响。其中,供电电源的畸变,使处于同一供电电源的其他设备出现误动作,过热、噪声和振动;产生的无线干扰电波给变频器周围的电视机、收音机、手机等无线电接收装置带来干扰,严重时不能正常工作;对变频器的外部控制信号产生干扰,这些控制信号受干扰后,就不能准确、正常地控制变频器运行,使被变频器驱动的电动机产生噪音,振动和发热现象。
(1)对接在同一电源设备带来的干扰
当变频器的容量较大时,将使网络电压产生畸变,通过阻抗耦合或接地回路耦合将干扰传入其它电路。消除或削弱对接在同一电源的设备带来的干扰,可以将变频器的输入端串入交流电抗器,在变频器的整流侧插入直流电抗器。也可以在变频器电源输入端插入滤波器,如下图1所示:
LC滤波器是被动滤波器,它由电抗和电容组成对高次谐波的共振回路,从而达到吸收高次谐波的目的。有源滤波器的工作原理是:通过对电流中高次谐波进行检测,并根据检测结果,输入与高次谐波成分相位相反的电流来削弱高次谐波的目的。
(2)对于产生的无线电干扰波
目前,变频器绝大部分是采用PWM控制方法。变频器输出信号是高频的开关信号,在变频器的输出电压、输出电流中含有高次谐波,通过静电感应和电磁感应,产生无线电干扰波。这些干扰波有的通过电线传导,有些辐射至空中的电磁波和电场直接辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。
电线传导的无线电干扰波的抑制,可以采用噪声滤波变压器,对高次谐波形成绝缘;插入电抗器,以提高对高次谐波成分的阻抗,在变频器的输入端插入滤波器。
辐射无线电干扰波的抑制,较传导无线电干扰波要困难一些。这种无线电干扰的大小,决定于安装变频器设备本身的结构,和电动机电缆线长短等许多因素有关。可以尽量缩短电动机电线,电线采用双绞措施,减少阻抗;变频器输入、输出线装入铁管屏蔽;将变频器机壳良好地接;变频器输入、输出端串接电抗器,插入滤波器。
(3)对于产生的噪声干扰
由于变频器采用了PWM控制方式,变频器的输出电压波形不是正弦波,通过电动机的电流也难免含有许多谐波。变频器输出的谐波频率与转子固有频率的共振,在转子固有频率附近的噪声增大,变频器输出的谐波分量使铁心、机壳、轴架等谐波在其固有频率附近的噪声增大。因此,利用变频器对电动机进行调速控制时,电动机绕组和铁芯由于谐波的成分而产生噪声。
下图2是电动机采用变频器驱动和采用电网电源直接驱动时的噪音比较。通常,采用变频器对电动机进行驱动时,电动机产生的噪音要比电网电源直接驱动产生的噪音高出5~10dB。
对于噪音的抑制可以采取的措施为:
①选用以IGBT等为逆变模块的载波频率较高的低噪音变频器。选用变频器专用电动机,在变频器与电动机之间串入电抗器,以减少PWM控制方式产生的高次谐波。
②在变频器与电动机之间插入可以将输出波形转换成正弦波的滤波器。
③选用低噪音的电抗器。
(4)对于产生的振动干扰
采用变频器对电动机进行调速控制时,同噪音相同的原因,会使电动机产生振动。特别是较低阶的高次谐波所产生的脉动转矩,给电动机的转矩输出带来较大的振动。若机械系统与这种振动发生共振时,其振动就更为严重。
通常可以采取以下措施减小振动:
①强化机械结构的刚性,将刚性连接改为强性连接。
②在变频器与电动机之间串入电抗器
③降低变频器的输出压频比。
④改变变频器的载波频率。
在变频器对电动机进行调速过程中,如果调速范围较大时,应先测到机械系统的共振频率,然后利用变频器的频率跳跃功能,避开这些共振频率。如果转距有余量,可以将U/f给定小些。
(5)对于导致控制部件电动机过热的干扰
采用变频器对电动机进行调速控制,由于高次谐波的原因,即使是对同一电动机,在同一频率下运行,电动机也将增加5%~10%的电流。电动机温度自然会提高。此外,普通电动机的冷却风扇安装在电动机轴上的,在连续进行低速运行时,由于自身的冷却风扇的冷却能力不足,而出现电动机过热现象。
电动机过热的对策有以下几种:
①为电动机另配冷却风扇,改自冷式为他冷式。增加低速运行时的冷却能力。
②选用较大容量的电动机。
③改用变频器专用电动机。
④改变调速方案,避免电动机连续低速运行。
随着工厂电气自动化程度的提高,各种干扰也日益增多,只有对变频器的干扰问题有深入的认识,并采取相应的处理措施,才能够减少彼此之间的相互危害,更大程度的确保生产的正常进行和设备的稳定。
参考文献
变频器论文范文3
关键词:变频器供水行业应用
引言
一般城市管网的水压无法完全满足所有用水居民的用水需求,绝大部分用户须通过提升水压才能满足用水要求。以前大多采用传统的水塔,高位水箱等等增压设备,它们都必须由水泵以高出实际用水高度的压力提升水量,其结果大大增加了能量损耗。
一、新、旧泵的测试
例如,我公司对6sh-655kw成套机电设备做如下测试:
75KW三垦变频器直拖旧泵测试数据表:
75KW三垦变频器直拖新泵测试数据表
由上述测试结果可得老式供水方式被全新变频供水方式取代具有多项优点:
1.1变频供水能灵活控制供水压力。
1.2采用变频供水节电效果明显。
1.3当异步电机在全压启动时从静止状态加速到额定转速所需时间小于0.5秒,这意味着在不足0.5秒的时间里,水的流量从零猛增到额定流量,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,压力过高会爆管而过低导致管子的瘪塌。直接停机同样会引起压力冲击。从上表测试结果可见使用变频器调速后,可通过对加减速时间的合理预置来延长启动和停止过程,合理控制供水压力减少管道冲击,最大限度保护管网,管件,同时也提高电机水泵的使用寿命。从上述测试还可以看出泵老化时严重影响出水量供水压力,维护维修不及时泵效率会大幅降低。
二、变频器的节能效果
变频器节能效果实际工作中更可观。例如,我公司有一水厂,水厂原供水方案为280KW机电系统一工一变两套系统向市区管网以0.18Mpa压力供水,工频供水系统为控制供水压力要采用勒阀门的方法。去年经技术改造改为两套供水系统均用变频器供水,严禁勒阀门通过变频器调频来控制供水压力。改变供水方法后该水厂当月电费较前月少近五万元,当年公司电费较上年减少近六十万元,可见使用变频器供水节能效果很明显,长期使用变频器经济效益可观。
变频调速恒压供水系统,经历了逐步完善的过程。综合早期的单泵恒压供水系统与近几年来被行业内人士普遍使用的多泵恒压调速供水系统诸多供水方式来看,我认为最优的恒压供水系统应为单泵直拖恒压供水系统。
三、各种供水方式比较
例如,我单位现使用以下几种供水方式(以富士变频器为例):
3.1变频器直拖电机变压(变流量)供水:优点:接线简单,使用电器件少,完全启用变频器自身功能运行稳定,节电效果较明显,维修率较低。缺点:只能变压(流量)运行,节能空间有剩余。
3.2多泵运行方式:控制回路用PLC(可编程控制器)设计以三泵为例:优点:可控制实现恒压(恒流量)供水。缺点:只有一台泵变频调速运行,其余各泵均工频运行,节能一般,部分能量未被挖掘出来。维修工作量较大,运行稳定性较好。:
变频器论文范文4
关键词:变频器干扰抑制
Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand
moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe
applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.
Keywords:InverterInterfaceRestrain
1引言
变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。
2变频调速系统的主要电磁干扰源及途径
2.1主要电磁干扰源
电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。
2.2电磁干扰的途径
变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。
(1)电磁辐射
变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。
当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。
(2)传导
上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。
(3)感应耦合
感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。
3抗电磁干扰的措施
据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
(1)隔离
所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
(2)滤波
设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。
(3)屏蔽
屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。
(4)接地
实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。
单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。
以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。
(5)正确安装
由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:
①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。
②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。
③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。
④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。
⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。
⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。
4变频控制系统设计中应注意的其他问题
除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。
(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。
(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。
(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。
(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。
(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。
(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。
(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。
(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。
5结束语
以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。
参考文献
[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000
[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995
[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995
[4]电磁兼容性术语(GB/T43651995)[S].北京:中国标准出版社,1996
变频器论文范文5
我国加入WTO后,由于纺织品配额壁垒的取消,中国的传统产业“棉纺织品”凭其独特的优势全方位进军国际市场,其出口量几十倍,甚至成百倍地增长。给国际,尤其是欧美市场带来了新一轮的冲击波。随之而来的国际竞争也趋于白热化,其竞争焦点也突出在质量、品种和价格三大焦点。
如何提高和稳定质量?如何降低成本?如何适应多品种小批量?这些问题已成为棉纺厂老总日夜思考的主旋律。
以上三大问题解决的迫切性,给交流变频在棉纺行业的使用带来了前所未有迅速发展的前景。
2宽范围的调速及软启动能稳定可靠地保证棉纱质量
(1)目前不少棉纺老厂50%~60%以上的设备都是五十年代以前的,甚至解放前的设备还在使用。棉纱质量竞争档次的不断提高已对这些设备构成了严重的威胁,要么淘汰,要么改造,别无他法。可是原棉纺设备中的A字头梳棉机道夫传动都采用双速电机及摩擦离合器形式,因此,从慢速生头到快速运行时产生的意外牵伸及变速箱齿轮磨损产生的“打顿”使棉条重不匀及cv%严重超标,往往使成纱等级大幅下降甚至成为不合格品。
目前新开发的梳棉机道夫传动已采用交流变频加普通异步电动机,由于变频的升降速范围很宽,可达0.1~3600秒,且取消变速箱,离合器,直接采用同步齿形带传动道夫,升降速非常平稳,传动精度高,且无噪声,它的使用从根本上克服了原A字头梳棉机弊病,从而可确实可靠地保证棉条质量。
(2)原粗纱机一直采用锥形(铁炮)变速机构,但锥形变速皮带打滑导致变速不准,影响绕纱张力和成形不好的质量问题。现采用交流变频调速,去掉了锥形变速机构,使以上难题迎刃而解,从根本上把好了粗纱的质量关。而对于细纱机来说,由于新型机采用变频调速器去掉了成行机构中的成型凸轮,进而克服了由于成行凸轮所造成的桃底有停顿,桃顶有冲击的难题,使细纱卷绕成形质量大为提高。主电机采用变频调速后,使得细纱在大、中、小纱时的转速在变化,大大减少了细纱的断头率,使成纱质量得到了可靠保证。
3充分利用变频的“节能”功能,可最大限度的降低产品成本
(1)由于变频器具有优越的软启动及恒扭矩功能,它可以在100%-150%扭矩下将异步电动机的启动电流限制在额定电流附近。启动冲击对电机容量及电网的限制条件已不存在。采用变频后可彻底消除以前的大马拉小车及电动机功率过剩问题。
以前由于不使用变频器,为保证启动时有足够的扭矩和减少对电网的冲击,送风及大惯量负载装机功率往往高出所需功率的40%~50%,变压器容量也高出实际很多。这样非但设备投资有很大一块浪费,而且电动机、变压器空载损耗(铜耗、铁耗)的一块电费也相当惊人。
(2)风机、空调变频调速节能相当可观
由流体力学可知,风量Q与转速一次方成正比,压力H与转速的平方成正比;
Q/Qe=n/ne
H/He=(n/ne)2
P/Pe=(n/ne)3
式中:Qe—风机的额定风(流)量;
He—风机的额定压力;
Pe—风机的额定功率;
ne—风机的额定转速;
由式中可知,若风机效率一定,当要求调节风量下降时,转速可成比例下降,此时风机的输出功率是成立方关系下降。
风机在棉纺设备中应用量大、面广,其传动绝大部分为大功率交流电机,耗电量在棉纺设备中是大户。以前风机都采用电机恒速传动,调节风门的办法调节风量。这种调节方式虽然简单,但它是以增加管网损失,耗费大量能源为代价的。如采用“风机专用变频”来自动调速,就可以从根本上防止电能浪费,单从公式p/pe=(n/ne)3来算,其节约的电费就可想而知了。空调是棉纺厂离不开的首选设备,据某大公司提供的数据,今年12台空调使用变频后节电24余万元,空调用电年耗平均下降了7个百分点。
(3)变频器的使用,使原有的传动机构发生了一个质的飞跃,它变得既简单,又可靠。拿梳棉机道夫传动来讲,使用变频取消了减速箱,惯性飞轮,带电刷的电磁离合器及双速电机后,以前维修工最头痛、最繁忙的变速箱漏油问题、齿轮磨损调换问题、离合器失灵损坏问题,工艺变化调换“变产”齿轮问题已全不存在。变频器的使用,使维修工工作量急剧下降;维修备件仓库急剧萎缩;梳棉机的停台率直线下降;而产量、质量却直线上升。反之,产品的成本亦将成倍下降!
4变频器的通讯方式
变频器强大的通讯及软件功能几乎可与所有品牌的PLC、工业式触摸屏及工控机组成、灵活多变的数控系统(见图1)。
通过触摸屏或键盘对软件中的某些数据稍加改动就可适应新的棉纺工艺。例如在梳棉机上只要改变其“总牵伸比”,“刺棍速度”、“盖板速度”、“棉条重量”等参数,就可进行新产品试制。使用这种模式后,产品更新快,批量形成早,产品在国际市场上的高速反应能力大大提高,形成你有我有,你无我有的大好局面。
5交流变频调速方案的选择
设备的不同,电动机种类的不同,会出现多种不同的变频调速方案。这里只讨论三相鼠笼异步电动机的调速方案。
(1)开环控制的通用变频器调速系统控制框图见图2。图2中VVVF—通用变频器;M—异步电动机。
该方案结构简单,调速范围较宽,可靠性高,价格低廉。它基本能满足一般调速精度不十分高的场合。是目前棉纺行业较普遍使用的经济实惠型品种。其缺点是调速精度较低,一般为2%左右,且低速性能不够理想,转速会随负荷力矩而变动。目前广泛应用在风机、水泵、空调等一般要求不高的纺机上。
(2)无速度传感器的矢量控制变频调速系统控制框图如图3所示,图3中VVVF—矢量变频器。
由于矢量变频器可以分别对电动机的磁通和转距电流进行检测、控制,自动改变电压和频率,使指令值和检测实际值达到一致,从而实现了矢量控制。虽然它是开环控制系统,但是大大提升了静态精度和动态品质,转速精度可达5%。转速响应也较快。
在设备要求不是十分高的情况下,采用该方案是非常合适的,它可达到控制结构简单,可靠性又高的实效,该方案目前已在FA系列梳棉机上开始使用并获得比较理想的效果。
(3)带速度传感器矢量控制变频调速系统控制框图如图4所示。
矢量闭环变频调速是一种最为理想的控制方式,他类同于伺服、直流闭环调速,但性价比又大大优于两者。我厂已在FA218C梳棉机前后比例跟踪上成功使用该方案,效果非常理想。该方案具有以下优点:
(a)可以从零转速起进行速度控制,即甚低速亦能运行,调速范围可达100:1或1000:1。
(b)动态响应快,转速精度高。
(c)加速度特性好,抗负载突变能力强。
其缺点是:价格较贵,按装速度传感器必须与电机同轴,且增加了反馈环节,这些都给安装维护增加了一定技术难度。
因此对于转速精度要求不是特别高,负载变化不是十分剧烈的场合,建议选用开环矢量变频调速系统为好。
6对付变频干扰的对策
变频器内部由于存在IGBT等高速工作开关,故在电路中会出现分布电感和分布电容,他们之间的能量转换产生振荡现象,形成发射电磁波,从而产生高频(1GHZ左右)电磁噪声或电磁干扰,干扰严重时将会导致弱电设备如PLC、电子计数器、工控机等无法正常工作。为此必须采用相应措施:
(1)布线时,变频器主回路必须与信号回路垂直或离开20-30公分。
(2)信号线采用屏蔽线或者塑料绞合线,导线绞合后噪声信号的大部分会相互抵消。
(3)变频必须使用单独接地极,不能与其它动力设备接地相连。且两者相距最小为5米,更不能将变频接地连在零线上。
(4)频率参数设置应尽量小于5KHZ。
(5)时在变频器的输入、输出端安装变频专用滤波器。
7结论
随着变频技术的不断发展和价格的大幅跳水,其性价比和使用的方便性已在各种电机调速方案中独占鳌头。现在它已成为棉纺设备改造和新机设计的首选产品,其广阔前景将与日俱增。
参考文献
[1]变频器调速手册.兵器工业出版社
[2]变频器世界.京纺国际有限公司
变频器论文范文6
传输系统被广泛地应用在粮油加工机械当中,生产前粮油产品一定要烘烤,由传送带进行送料,匀速按照工艺流程通过烤箱,这期间有两个传送设备在进行作业,即送料输送带与烘烤线输送带,要求二者一定要相互匹配并且可以同时升降。以往同样的输送设备需要人工进行调试,使用了变频调试,就将原来的有级变速拓展为无级变速,将调速的范围进行了延伸。粮油加工机械设备中传送设备的荷载属于恒转矩负载,而且它一般由较大的静阻力负载与惯性负载,使用的变频器有脉冲突跳或者提升功能,使输送设备成功启动。进行启动时,电机定子会在瞬间施加突跳电压或者上升为转矩电压,设备自身会输出相当大的启动转矩,有利于攻克较大静阻力。变频器在启动过程当中,输出电压比例逐渐升高,随着电动机加速变频开始输出,当输出50Hz时,电压达到最大值,就开始运转在额定的机械特性上了。
2交流变频器在搅拌装置中的应用
在所有粮油加工设备中混合搅拌机是使用最广泛的,并且所有的混合搅拌机几乎都是恒转矩负载,混合搅拌机的变频速度调节范围特别大,有着抵抗超载的能力。混合搅拌机在运转过程中可以根据材料的不同改变运转速度,方便创造最适合的搅拌条件。在设计搅拌机过程中,一般都设定一定的余量,可是在实际生产过程中并不一定都是满负荷生产,设备也就不需要承载满负荷的压力;这样情况在过去就不会进行调节或者采取措施改变速度;传统的调节方式一般都会加大搅拌机的损耗,促使搅拌机的工作状态不稳定,与此同时搅拌机在大多数情况下空转,造成大量能源浪费。可以通过泵类设备电动机在变频调速状态下运转的速度与频率可以看出:变频器所有的调速装置都节能,变频器是为数不多的在最多时间段取得最大效益的设备装置。因为泵类设备负载与液体搅拌机负载情况十分相同,在全新的搅拌机设备上,安装变频调节装置改善传统的搅拌设备无法达到的效益,这样可以使机械设备的性能提高,还节省开支节约成本。在现有的搅拌机加工设备中根据搅拌机运行的特殊情况和机器实际的运行荷载情况,对搅拌机加设变频设备,通常情况下对搅拌设备加设一套变频调速装置,同时结合机械设备的原工频系统,使得粮油加工设备在运行的过程中,根据实际运行需要在工频和变频系统之间自由的调换,以便更好地适应设备运行的实际需要。由于搅拌系统在运行的过程中会遇到粉状的物料,致使搅拌的阻力加大,这时,可以通过变频调节系统,在工频和变频之间进行调试,在保证机械设备运行良好的情况下,达到顺利开机启动搅拌设备进行正常的生产。
3交流变频器在离心设备中的应用
在粮油产品制造过程中,固液分离或者液液分离是重要环节,保证各种物料的脱水、澄清、分类和过滤。根据离心机转动惯性大的特点,选用该类变频器时必须考虑到留有一定裕度,如高选一档。而且食品工艺一般都要求变频器的功能曲线能按离心机性能设定,如多级式变速控制方案。卧式螺旋卸料沉降离心机是粮油产品分离机械的重要装备。由于这种离心机具有单机处理能力大、操作方便、能连续自动操作、劳动强度低、占地面积少以及维护费用低等优点,所以一直以来,螺旋离心机在粮油产品分离中得到广泛应用。典型的卧螺离心机中有两个传动轴:一个轴带动筒体转动(主机)、另一轴带动筒轴转动(辅机),两者的转速需要精确的配合。在正常运行情况下,辅机都是处在发电状态,主电机则是在电动状态,辅机发电导致母线电压泵升,然后通过母线互联,将泵升电压消耗在主机上,从而减少了从电网吸纳的电能,起到了节能的作用。由于辅机传动电机需要的无功率磁电流和副电机偶尔作为电动机运行时有功电流都要由主变频器提供,因此,选取主变频器的功率时应予以考虑进线整流桥的容量,必须保证通过电流为两电机电动电流之和。
4结语