监控系统设计论文范例6篇

前言:中文期刊网精心挑选了监控系统设计论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

监控系统设计论文

监控系统设计论文范文1

1.1远程监控需求分析

1)具有远程控制休眠、唤醒地震仪功能。地震仪在放炮之前唤醒,在停止施工期间休眠,地震仪可有选择的进行采集工作,这样大大节省了数据存储空间,降低了采集系统的功耗,延长了仪器的待机时间。

2)可查询如CF卡剩余空间,内置电池电量,位置经纬度,采集站状态等信息。对剩余空间、电池电量不足,采集站状态错误且不能远程修复的采集站及时安排工作人员更换。提高野外勘探作业的工作效率和灵活性,增强采集系统数据的可靠性。对读取回来的地震仪经纬度信息在上位机端进一步处理,可用于研发地震仪排列位置监测及远程防盗系统,保障野外勘探仪器的安全性。

3)远程控制地震仪自检功能,并能回收自检数据。地震仪系统自检内容包括检波器内阻、噪声、隔离度测试等,一次完整的自检过程通常需要2-5分钟,因此无缆存储式地震数据采集系统一般只在开机时自检一次,之后则无自检过程,因此采集站的部分工作状态,如检波器连接状态等仅仅反映了系统开机时的状态,不能作为现场质量监控的标准。法国UNITE系统由于没有远程监控功能,在自存储模式下通常是定时自检,自检时间为5分钟,在系统自检期间,地震仪停止其它一切工作,这样就减弱了地震仪野外勘探作业工作的灵活性。

4)有一定的远程修复及设置功能。如配置系统采样率、增益,系统复位等,出工前对地震仪的工作参数进行统一配置,布设到野外后,根据自检结果对有问题的地震仪进行参数设置和系统复位等操作,远程修复和解决问题,节省人力物力,提高无缆地震仪智能化控制程度。

1.2无线通信技术的选择

目前成熟的无线通信技术较多,如Wi-Fi、Zigbee、Bluetooth、GPRS、3G等,这些通信技术被广泛应用到生活及工业生产中,北斗短报文是近几年才发展起来的一种远距离通信技术,表1列出了应用以上几种通信技术典型模块的最大数据传输速率、传输距离、通信频带的参数值。

1.2.1Wi-Fi

Wi-Fi是IEEE802.11系列标准的统称,其传输速率快、安全性高,可集成到已有的宽带网络中,配合路由器组建有线、无线混合网络快捷方便。地震勘探仪器中Wi-Fi常用的组网模式有两种,即AP(无线访问接入点)模式和AdHoc(点对点)模式,在野外我们可以用架设AP基站的方式来拓扑无线局域网络的覆盖面积[3],而AP之间可以通过网桥设备连接,从而完成更大面积的网络覆盖范围,然而在实际勘探应用中AP基站和网桥设备架设困难,尤其应用于大道距的二维或者三维勘探工作中,需要更多的基站与网桥,较大的影响了施工进度。AdHoc是一种无中心、自组织、多跳移动通信网络,结点间通过分层的网络协议和分布式算法相互协调,实现了网络的自动组织和数据的相互交换,这种模式下地震仪可将其采集数据及工作状态信息接力式的传输回控制中心,美国WirelessSeismic公司的RT2无线遥测系统就是应用了这种多跳的数据传输方式,两个节点间通信距离的范围约为25~70m,然而这种工作模式会导致越靠近中央记录系统的节点积累的数据量越大,且在线性的网络拓扑结构中,数据传输的稳定性受通信距离与地形环境影响较大,数据通信的质量和速率难以得到有效的保证。

1.2.2GPRS、3G移动网络通信技术

移动网络通信技术已经成为人们工作生活中不可或缺的重要组成部分。该技术具有抗干扰能力强、传输速率高、网络覆盖面广、接入时间短、建设成本低等特点[10],在地震勘探中可被应用于移动网络信号覆盖范围内的地震台网远程监控,它提高了远程仪器维护的工作效率[11]。然而在地震勘探大道距(道距大于1km)地震深反射、折射探测作业中,由于其基站的信号覆盖范围有限,对于远程监控地震采集站工作存在一定的局限性。

1.2.3北斗短报文通信技术

北斗卫星作为北斗通信技术的中继,转发来自地面用户端的定位及通信请求,地面中心站控制端接收到请求后,解析消息后将解算出的位置信息传回用户端或将接收到的接收信息通过北斗卫星转发至另一地面用户端,达到卫星定位及通信的目的。北斗短报文通信技术在应用时具有信号覆盖范围广、安全、可靠性高和控制简单等特点,用户一次最大可以传送120个汉字的报文信息,而民用信息发送的频度通常为30-60s,接收信息则没有频度的要求,对于地震仪基本的控制命令收发及状态信息的传送,北斗短报文通信技术可以满足无缆地震仪基本状态监控数据传送的要求。

1.3系统结构设计

基于北斗的无缆存储式地震仪远程监控系统工作,系统由主控中心、北斗卫星、采集单元三部分组成,主控中心通过北斗指挥机完成对采集单元远程的控制及状态数据的回收工作,并对接收到的数据进行管理和存储。采集单元完成地震数据采集的同时,通过北斗通信模块可接收来自主控中心端的控制命令,并反馈执行结果信息。北斗卫星是控制命令及反馈信息传递的媒介。

2采集站单元设计

2.1硬件设计

地震检波器将地面振动信号转化为模拟电信号传输到FPGA数据采集单元,由FPGA完成数据的采集、缓存,并提供必要的测试、控制功能。AT91RM9200作为中央处理器,读取FPGA中存储的数据,并转存到CF存储卡中;通过SPI接口与Wi-Fi模块连接,实现近距离的无线数据传输功能;通过UART与GPS、北斗模块连接,为采集站提供高精度的授时、定位、远程通信功能,完成数据同步采集、位置信息获取、工作质量远程监控。采集站也可通过以太网接口与电脑终端连接,完成数据的回收及参数设置、检查工作。采集站在野外应用时采用太阳能和内置锂电池两种供电模式,电源智能管理系统会根据采集站当前工作的天气条件转换供电模式,保证仪器可靠、稳定的工作[12]。

2.2软件设计

采集单元的主控制器ARM9运行嵌入式Linux内核版本为2.6.31的操作系统,北斗通信进程完成对北斗模块接收信息的解析与执行,及执行结果的反馈。北斗短报文通信系统包括指挥机与用户机,指挥机是北斗短报文通信系统的中央控制器,它相当于一个服务器,负责接收来自多个用户机的报文,并可以控制多台用户机来完成相应的指令。用户机是北斗短报文通信系统的子节点,相当于一个客户端,负责将节点工作信息上传到指挥机,和接收来自指挥机的命令。北斗用户机在接收到指挥机传来的信息时,用户机会通过UART将信息内容上传给下位机系统,下位机会根据其数据传输的格式将信息进行解析,并根据信息包含的指令内容来执行相应的任务。

3上位机服务器软件设计及测试

主控中心由上位机、打印机、存储器、发电设备、北斗指挥机组成。上位机与北斗指挥机完成命令的选择与打包发送,及对采集站反馈信息的接收、显示、存储和打印处理。发电设备输出220V的交流电压,为上位机及其外设供电。此外上位机服务器软件通过对GoogleEarthAPI接口的调用,实现了对野外采集站排列位置的远程监测,为微动勘探实验中按两个嵌套式三角形方式排列的采集站传回的GPS位置信息在GoogleEarth中的显示。操作人员可根据地图显示软件中采集站的排列位置了解施工进度,获取采集站排列班报,完成布站人员调度等工作。为了了解远程监控系统的性能及数据传输丢包、误码情况,设计如下测试实验:将7台内置有北斗通信模块的采集站接好检波器放置在室外采集,由主控中心完成与各个采集站间的数据包收发,采用60s一次通讯频度,数据包长度为200字节,从500个样本数据中任选7个,分别用于七个站的通讯测试,主控中心将样本数据依次发给各个子站,并重复500次,子站收到数据包后向主控中心返回相同的样本数据。主控中心计算从开始发包到收包完成的时间间隔作为通信的延时,主控中心与采集站分别记录通信时丢包数,并根据与标准样本数据对比的结果记录错包数。

4结论

监控系统设计论文范文2

本县治安视频监控系统于2008年开始构建,09年正式投入使用,它主要由三大部分组成:一是县政府牵头建设的平安城市“天眼”工程;二是公安机关内部自建的监控系统,用于对枪弹库及局机关下属各部门的重点部位进行监控(红外定像监控头);三是社会单位自建自用的监控系统(正在建设属于第三期工程尚未投入使用),其中包括金融系统、公共娱乐场所、及厂矿企业安装的监控系统。

二、当前视频监控系统建设应用中存在的问题

1、我县“天眼”视频监控系统是一期工程建设的社会治安动态视频监控系统,共有35个视频探头,以单独立杆标准安装在县城各个重要路口及位置,该视频探头虽可360度旋转,并自动记录图像,但因建设模式采用的是“电信建设,公安租用”,所以在设备选型、配套设施等方面都存在有一定的局限性,首先目前电信采用的前端摄像机和编码器等设备型号较早,参数、性能等不能满足我县安全监控工作需要,有些监控录象机的参数、性能等在相关网站上查找不到。其次对监控点安装时没有考虑到辅助光源,造成白天图像效果尚可,夜间因光源不足或缺少光源、监控摄像头防护罩未及时清理灰尘,造成视频监控成像模糊,无法辨认,大大降低了实战效能。如所安装的35个视频探头在夜晚光源不足或缺少光源、监控摄像头防护罩未及时清理灰尘时,造成视频监控成像模糊,无法辨认。由于以上种种原因严重影响社会治安视频监控系统的实战效能,我们建设社会治安视频监控系统的目的不是为了看,现在连看都看不清的一个监控系统,更谈不上服务于实战、更深层次的应用了。

2、现有技防监控系统覆盖面虽高,但单位值班人员落实不够好。监控室内值班人员不足,无法保证夜晚值班质量,因值班人员严重不足,从而导致值班人员没有足够的时间去认真观察监控图像,不能及时发现犯罪,只能亡羊补牢。

3、对已建的技防监控系统使用及后期维护还存在一些问题。一是缺乏具有熟悉监控系统的专职人员对技防监控系统进行监控;二是日常线路的维护和保养工作没有及时得到落实,导致许多监控点出现图像不清及黑屏等问题无法及时得到解决。

4、视频功能本身不合理,虽可以360度人工旋转,但无法自动定时定角度旋转,实现全天候、全方位监控。

5、监控器的位置摆放不合理,观察不到关键位置和必经之路或摄像机易被破坏。主要体现在监控点施工不规范,安装质量大打折扣,施工中直接将摄像机安装在建筑物、路旁电杆或其它附属物上,既不安全,也不利于全方位监控,有的监控点安装时没有考虑辅助光源,造成白天图像效果尚可,夜间图像效果模糊,大大降低了实战效能。

6、多个新建住宅小区及重点部位未安装视频监控。从目前我县社会面监控系统使用情况看,视频监控系统建设虽然起步较早,但与经济快速发展、农村加快建设、动态治安控制的要求相比,与发达地区相比,建设速度仍然滞后,监控探头总量还不多、密度不大,部分重点单位、企事业机关、道路街面、公共复杂场所、居民住宅小区等还存在监控盲区,金融单位、加油站等内部监控设备安装还没有完全到位。特别是居民小区、企业事业等单位重点部位在主动落实技防措施上显得力度不够,仅靠公安机关一家“单打独斗”,导致社会面监控系统覆盖率不高,根本无法与当前日趋复杂的社会治安形势相适应。

三、对技防监控系统的建议

1、在建设过程中要注重图像存储质量、有效画面抓录、图像保存时间等,最大限度地满足实战需求

在技术层面上,要广泛应用无线传输、网络传输、移动监控、人像自动识别等高端技术,并积极协调电力部门配合支持,确保夜间监控区域光亮度达到要求,提高监控图像清晰度。在后续维护上,要建立一支设备维护队伍,在各个点确定一至二名维修人员,负责日常检查督导定期维修,以确保系统正常运转。要组织相关维修人员对监控设备的视频功能进行合理调整,使它们自动定时定角度旋转,达到全方位自动监控。对监控器的位置摆放不合理的地方,进行重新安装和调整,使关键位置和必经之路等都能得到有效防控。

2、统一规划,在建设布局上实现全覆盖

县委、县政府要结合我县实际,出台全县治安监控实施方案,限时、保质、保量完成任务。采取单位筹资、县奖励的办法解决投资经费,并严格落实奖惩制度,鼓励先进,鞭策后进,全面推进。在治安保卫重点单位、集镇街道、车站码头、公共复杂场所,治安卡口、治安复杂地区等,要突出重点,全面安装视频监控。在县道、省道要合理布建监控探头,要合理布局,并且定时抓拍。各监控系统、监控点之间要互为补充、有机衔接、联成网络,做到跟踪接力、连续拍录,不留空白和盲区,做到全面覆盖。

3、健全规章制度

进一步建立健全设备维护制度、值守人员工作制度、监控信息调阅复制制度、监控信息分析制度、业务培训制度等一整套监控系统管理工作制度,把设备运转、安全维护、服务运用、信息调阅等各个环节的工作纳入规范化管理轨道,用制度强管理,确保系统高效运转、发挥作用。对运用系统预防制止犯罪、发现重大线索证据破案或提供重要情报信息的要及时给予奖励,并坚持监控成效与奖金福利、评先评优、年度考评相结合,激发值班及维护人员的工作积极性;对因工作失职造成严重后果的,要落实责任倒查,严肃责任追究。

监控系统设计论文范文3

车速传感器可以发出一定占空比的方波信号,设计采用单片机的脉冲模块来捕捉可以用来测量信号的周期。车速采集的程序流程如图2所示。步进电机的转动不但代表汽车的行驶速度,还代表节气门的开度,每转动一定角度就相当于节气门的开度。因此,当输入的实际车速A等于目标车速B时,步进电机将不转动;当输入的实际车速A大于目标车速B时,步进电机会反转,减小节气门开度,从而使实际车速降低至目标车速;当输入的实际车速A小于目标车速B时,步进电机会正转,加大节气门开度,使实际车速升高至目标车速,汽车进入定速巡航控制。

2软件可靠性措施

为了提高软件系统的稳定性和可靠性,采取以下措施:(1)封锁。实际系统中最强的干扰来自自身,如被控的负载电机的通断、状态的变化等,在设计软件时应适当采取措施避开这些干扰。如:当系统要断开或接通大功率负载时应暂停数据采集,等到干扰过去后再继续进行;在适当的地方封锁一些中断源;几个通道互相封锁。这些都是避免或减少干扰的有效方法。(2)程序的失控保护措施。在控制系统中,一般情况下干扰都不会造成计算机系统硬件损坏,但会对软件的运行环境造成不良影响。表现在:数据码和指令码的一些位受到干扰而出现跳变,使程序出现错误,最典型的是程序计数器发生跳变,可能把数据当作指令码。这种程序盲目执行的结果,一方面造成RAM存储器的数据破坏,另一方面可能会进入死循环,使整个系统失效。因此,应采取有效措施避免程序失控。

3Proteus仿真验证

3.1定速巡航控制系统总体仿真电路设计

设计中定速巡航控制系统的主要参数是车速值及节气门开度,因为进行实物测试有设备要求,设备比较复杂,而且测试结果不够直观,所以设计最终结果通过Proteus仿真来实现。仿真电路如图3所示。Proteus软件的元件库中拥有AT89C52单片机、ULN2003驱动芯片、步进电机等元件,可满足设计研究仿真需要。Proteus软件中的车速采集信号可通过改变脉冲而改变车速,电动机的转速可直观地显示出来,还可体现节气门开度的大小。

3.2试验结果与分析

在Proteus仿真平台上分别对4种情况进行仿真,即实际车速A等于目标车速B、实际车速A大于目标车速B、实际车速A小于目标车速B及实际车速大于120km/h、小于40km/h,仿真结果分别如图4~7所示。从图4~7可看出:当输入的实际车速A等于目标车速B时,步进电机不转动;当实际车速A大于目标车速B时,步进电动机反转,节气门开度减小;当实际车速A小于目标车速B时,步进电动机正转,节气门开度加大;当实际车速A超过120km/h、低于40km/h(即脉冲频率低于100Hz、高于999Hz)时,巡航控制系统会自动退出,步进电机不转动。表明所设计的软件能实现简单的巡航控制系统指令,满足预定要求。

4结语

监控系统设计论文范文4

关键词:视频监控;嵌入式;摄像头;视频压缩;视频采集

中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)26-0201-02

The Design And Implement Of Video Monitoring System Based On Embedded Linux

HE Yi

(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)

Abstract: With the rapid development of Internet, embedded network video monitoring is hotspot that attracting extensive attention in the present, and have involved in all fields, so the research for the video monitoring system has a certain significance. So in the direction of video monitoring, this paper proposes a system design scheme, The system using the Linux as operating system, S3C2410 as development platform and Collecting video image data by USB camera, after compression coding, the video image data is transmitted to the video server and client through the network, achieve the basic monitoring function.

Key words: video monitoring; embedded; camera; video compression; video capture

1 概述

在当前科技迅速发展的环境下,视频监控系统已经在安防、交通监控和家居生活等重要领域得到了广泛的应用。视频监控系统经过了三个发展阶段,第一是基于模拟摄像机的模拟视频监控系统阶段,第二是基于PC 端的数字视频监控阶段,第三是基于嵌入式Linux的网络视频监控系统阶段[1-2]。传统的模拟视频监控系统存在传输距离和系统数据量有限、图像质量低和不易扩展等不足,数字监控系统虽慢慢取代了模拟视频监控系统,但其本身也存在视频前端采集复杂、系统稳定可靠性差等局限。网络视频监控系统在各类技术的不断发展的基础上也在不断发展中。在网络技术快速发展的趋势下,通过网络传输视频图像[3-5],是目前实现视频监控最好的方法。本文设计并实现一套以S3C2410为开发平台,以Linux为操作系统的基于嵌入式视频监控系统,客户端只要和监控终端在同一局域网内均可实时监控。

2 系统整体设计方案

该嵌入式视频监控系统以Linux系统和S3C2410开发板作为系统核心平台,由在前端的USB摄像头实时采集视频数据,经压缩编码后通过TCP网络传输到后台服务器,客户端可实现实时监控。此系统主要由视频服务器端和客户端组成;服务器端包括视频图像采集模块和TCP网络传输模块,它们的职责就是将视频数据进行压缩、编码后通过TCP网络传输到远程终端设备上。客户端主要实现远程终端设备的视频显示。

3 系统硬件设计

在该系统中,硬件结构包括视频图像采集模块、视频服务器模块和TCP网络传输模块。视频图像采集模块主要完成视频数据的实时采集,ARM开发板通过摄像头采集获取视频图像数据,然后进行压缩存储和处理,然后通过网络传输模块将视频数据传输到远程移动终端上显示。

4 系统软件设计

软件部分的设计主要包括:嵌入式Linux系统的裁剪和移植、视频图像的采集、视频的网络传输以及客户端网络连接程序。系统的裁剪和移植等技术本文不再作详细的论述。以下主要介绍视频图像采集模块和网络传输模块的设计。

进行视频采集[6]必须加入video4Linux模块,要从摄像头设备中采集视频图像帧,必须依靠此模块所提供的接口。video4Linux是摄像头设备的相关内核驱动,它为摄像头提供了编程所需的最基本的接口函数,比如ioctl()函数、打开函数、写函数和读函数等的实现。并把它们定义在file_operation中,当应用程序对设备文件进行打开读写等一系列系统调用的操作时,系统将通过此结构去访问内核驱动程序[7-9]所提供的一些基本函数。video4Linux中的数据结构为视频采集提供了各种视频图像的相关数据信息,其中包括有:

video_window :包含获取的视频图像区域的基本信息

video_capability:包含设备信息,比如设备的分辨率范围、设备的名称和信号的来源信息等

video_picture:包含了所获取图像属性;

video_channel:各个信号源的属性;

video_mmapf:用于内存映射;

video_mbuf:包含映射的帧的属性和信息,比如所支持的最多帧数、每一帧图像的大小和每一帧图像相对基址的偏移等属性;

video_buffer:最底层对缓冲区的描述。图3为整个的视频图像采集流程,视频图像的采集程序包括以下流程,一是初始化设备,二是打开设备,三是获取视频设备和视频图像信息,四是图像参数设定,五是视频图像采集。

视频数据网络传输模块本文采用B/S模式,以此模式来实现网络视频监控。本文采Boa来搭建Web服务器[10]。Boa 有它自己的特点,首先它支持CGI;其次它是单任务的,它与传统的web服务器不同,第一,对于每一个连接,它不会去重新启动一个新的进程,第二,对于二个或者多个连接,它也不会去启动多个对自身的复制;再次,对于所有在进行活动的连接,Boa只会在内部对它进行相应的处理,而且,对每一个CGI连接,它都会重新去开启一个进程。Boa支持的CGI公共网关接口适用于各种不同的平台,是用户应用程序与Web服务器最常用的通信接口。

5 系统仿真和测试

本文提出的构架方案和实现方案已经通过测试。客户端监控界面如图4所示。整个系统开发不仅简洁,而且高效,同时成本比较低,稳定性非常可靠,能够被移动设备应用,实现实时视频监控。

参考文献:

[1] 顾永建,高守乐.基于嵌入式系统的网络数字视频监控系统[J].计算机技术与应用, 2005(1):40-42.

[2] 杨建全, 梁华, 王成友. 视频监控技术的发展与现状[J]. 现代电子技术, 2006(21).

[3] 李保国. 基于嵌入式 ARM 的远程视频监控系统研究[D]. 南京: 南京理工大学, 2009.

[4] 张建. 基于 S3C2410 和嵌入式 Internet 的家庭视频监控系统设计[D].上海:上海交通大硕士学位论文,2007,1.

[5] 赵春媛,李萌,韩会山.基于ARM9的无线视频监控系统设计与实现[J].计算机工程与设计, 2012.

[6] 张蕾.基于嵌入式 Linux 的视频采集系统的研究设计[D].西安: 西安电子科技大学硕士学位论文,2010.

[7] 朱小远,谢龙汉.Linux 嵌入式系统开发[M].北京:电子工业出版社,2012.

[8] 韦东山. 嵌入式Linux应用开发完全手册[M] .北京: 人民邮电出版社, 2009.

监控系统设计论文范文5

关键词:可编程逻辑控制器(PLC),MODBUSPLUS,MODBUS协议,PLC串口通讯,逻辑梯形图

 

0 引言

计算机监控系统在莲花发电厂得到广泛的应用,用来保障发电厂安全可靠运行。随着设备的升级改造,新设备与监控系统的联系越发的密切,各种不同的通讯方式导致改造设备有时不能很好的与监控系统配合进行工作,发电厂励磁系统在设备改造后便出现了信息的采集和无功数据下送错误的情况。因此,我们可以通过更改Plc通讯方式和更改程序里配合时间的方法来解决这类问题。

1 莲花发电厂励磁系统概述

1.1 连接方式介绍

励磁系统利用现场总线技术针对各个部分进行控制和信息交换。装置本身提供多种对外接口,实现与电站控制系统连接。莲花发电厂励磁系统在改造初期是作为MODBUS PLUS网络上的一个节点采用MODBUS PLUS协议与机组监控系统PLC进行监视和控制通讯。论文写作,MODBUSPLUS。

1.2 MB+网络中励磁调节器与机组监控系统PLC的协议

1.2.1 厂商定义协议的读写操作:

读取数据:MBP网关将励磁系统状态保存于10个寄存器中,PLC用MSTR功能块读取即可。

写入数据:无功数值的写入分为几个部分:

a.无功值给定Address:1025 Dec,PLC将无功值写入网关,网关将其传给励磁系统。

b.预置值进入恒无功调节Address:1026Dec,PLC将FF00 Hex写入网关,网关再向励磁系统发进入恒无功调节。

c.退出恒无功调节Address:1026 Dec,PLC将0000 Hex写入网关,网关再向励磁系统发退出恒无功调节。

在向网关置无功值之前,先将1025 Dec寄存器清零。每一次进入恒无功运行状态时,都必须重新设置无功值,否则命令无效。论文写作,MODBUSPLUS。具体的无功值为给定的无功值除以视在功率乘以10000。

2 在MB+网通讯下出现的问题

整个程序理论上符合励磁厂商提出的要求,但在实验运行过程中却存在诸多问题。主要现象为实际多次发电过程中出现下上位机送无功数值后,励磁调节器不能进行调整。励磁网关硬件出现SUBNET ERR子网错误。重启励磁系统电源,MB+网关子网故障消失。论文写作,MODBUSPLUS。初步判断励磁子网设备出现了问题导致子网错误,接收不到下行数据,这种问题可能跟程序的编写顺序有关,莲花发电厂监控系统经过改造之后现已使用施耐德公司昆腾系列UNITY 65160 PLC,里面装载的是UNITY PRO编写的程序。随着CPU处理速度的不断提高每一次的扫描过程不断缩短,本文中莲花发电厂监控系统所使用的CPU完整扫描程序约为20MS。这就导致了几种情况的发生,首先在以上所更正的程序中虽然恒无功调节的时间为8秒,之后无功给定数值没有改变,励磁调节器进行判断后没有进行再次的读取网关中所提供数值,但MSTR功能块依旧在每隔20MS一个周期的情况下向MB+网络上的励磁调节器节点发送相同数据,励磁装置不会读取但会不断的进行判断;其次,与励磁系统通讯属于双工方式上下行通讯的情况,对于数据的实时上送,PLC中MSTR的读取也会给励磁系统造成很大的负担;第三,根据第一个情况所示我们根据设计在下达一个指令的时候保持0.5S,其实就已经向外部设备发出≥500/20次指令,这种情况对于MB+网络中本身支持的这种端口设备来说符合电气标准要求,但励磁系统通过MB+转485的转换装置后就会带来一些问题,那么每一条指令的时间怎么确定既要满足励磁调节器判断、接受和运算又要保证其设备不会导致停止响应。论文写作,MODBUSPLUS。

3 分析问题和解决问题的方法

经过实验分析认为,由于励磁装置通讯接口速率与PLC之间不协调导致。建议将原PLC与励磁通讯装置的MB+通讯,改为主-从方式的MB通讯,施耐德651 60系列PLC硬件本身支持对RS232和RS485串口通讯。适用于小到中等规模的数据量传送(<= 255 个字节)且带确认的数据传输,采用平衡发送和差分接收方式实现通信数据传输速率低简单可靠。针对上述情况对程序作相应调整,在PLC中采用MB通讯功能指令XXMIT。该指令用来与其它支持Modbus协议的从设备进行Modbus通讯。

因为RS485通讯属于半双工通讯,所以XXMIT功能块依据这一特点规定同一时间内只允许一个XXMIT功能块占用串口,保证在低速率指令先后执行保证励磁系统正确接受,程序设计过程中时间的配合问题至关重要。首先要考虑到当一个指令执行时所需要多少个周期来完成,其次要考虑到串口通讯时为了可靠的工作,在485总线状态切换时需要做适当的延时因素的影响。所以程序设计过程中将无功设值、恒无功调节状态码和退出恒无功标志位按照严格的时间要求对励磁系统进行发送,时间精确到0.01秒为单位。在改造过程中,设计了通过XXMIT功能块来测试外围设备相应速度的简单方法(只是用于本文所提情况,为专业人员提供思路)。论文写作,MODBUSPLUS。强制M1,用BITBOY等串口通讯软件监视所发数据,记录发送的请求和返回信息,整套系统串口通讯的响应速度=请求速度×PLC内部扫描周期。以上程序中所用到的0.1S的时间,就是用本方法计算得出的结果并达到预期效果。论文写作,MODBUSPLUS。

4 总结

通过改造从可靠性方面保证机组监控系统与励磁系统的通讯,使我们体会到运用先进设备的同时更要以安全、稳定为前提。同时反映了PLC在水电站控制方面的能力和灵活性,将工业领域中的可编程控制器PLC应用到水电站中,这对于水电站监控系统无论在技术上还是结构、性能等方面都是新的突破。对发电厂的安全稳定起着很大的作用。

参考文献:

[1]AEGSchneiderAutomation.ModiconModbusprotocolreferenceguide[Z].AEGSchneiderAutomation,1996.

[2]中华人民共和国电力工业部颁发.1997.水利发电厂计算机监控系统设计规定

[3]于恒春.ModbusPlus网及其应用[J].微计算机信息,1997,13(4):26-29

监控系统设计论文范文6

【关键词】智能家居 GSM模块 单片机

随着网络技术的发展,网络化智能家居系统可提供遥控、家电控制、照明控制、窗帘自控、防盗报警、可编程定时控制及计算机控制等多种功能和手段,使生活更加舒适、安全和便利。本文设计的基于GSM网络的智能家居监控系统由智能监控模块、数据采集系统和用户手机构成,通过GSM短信息的收发实现对家庭设备的远程监控。

1 总体设计方案

系统由中心控制模块和各分散控制模块组成。中心控制模块实现控制用户手机和各分散控制功能模块。选用AT89S52单片机作为该监控系统的核心控制元件。主控单片机模块接收用户手机发送的短信息,根据短消息的内容控制各子功能模块;同时主控单片机模块将家居系统的控制信息以短信形式发送到用户手机,由单片机构成各控制模块子系统。

1.1 系统硬件部分

根据任务需要,合理选择单片机、传感器、GSM模块和设备来构成系统。为使硬件设计尽可能合理,系统的电路设计遵循了以下几个方面:

(1)选择标准化、模块化的典型电路,提高设计的成功率和结构的灵活性。

(2)选用功能强、集成度高的电路或芯片。

(3)选择通用性强、市场货源充足的元器件。

(4)在对硬件系统总体结构考虑时,考虑通用性的问题,采用模块化的设计方式。

(5)系统的扩展及各功能模块的设计应适当留有余地,以备将来修改、扩展之需。

(6)在电路设计时,充分考虑应用系统各部分的驱动能力

最终确定采用AT89S52单片机作为处理芯片。西门子的TC35系列的TC35iGSM模块,TC35i与GSM2/2+兼容、双频(GSM900/GSMl800)、RS232数据口、符合ETSI标准GSM0707和GSM0705,且易于升级为GPRS模块。该模块集射频电路和基带于一体,向用户提供标准的AT命令接口,为数据、语音、短消息和传真提供快速、可靠安全的传输,方便用户的应用开发与设计。

1.2 系统软件部分

软件部分由以下几部分构成:数据采集单元、手机短信信令识别与分析单元、GSM模块TC35 modem接口程序部分、分析控制部分。其中数据采集部分和手机短信信令识别需要作实时处理;GSM模块TC35 modem接口程序部分和分析控制部分则是根据采集和手机短信信令进行分时操作有利于提高系统效率。

2 系统软件设计

软件设计部分主要有数据采集部分、手机短信信令识别、TC35Modem接口程序部分、分析控制部分。其中数据采集部分和手机短信信令识别需要作实时处理;GSM模块TC35Modem接口程序部分和分析控制部分则是根据采集和手机短信信令进行分时操作有利于提高系统效率。本智能家居监控系统软件设计的内容主要有主控模块程序、TC35Modem模块通信程序、串口通信初始化程序和短消息的编码解码程序。软件设计模块如图1所示。

2.1 单片机系统软件设计

为了实现单片机与TC35I模块的通信顺畅,必须使二者的串口波特率一致,如果单片机F=11.0590MHZ,设置串行口波特率为9600,工作方式为方式3,Tl定时器采用工作方式2。其中串行口和定时器的工作方式和初值可以根据具体情况加以更改。

本系统的软件设计是将整个短信处理模块放入单片机的中断服务子程序中。发送和接收串行口数据采用中断方式进行,这样可以大大节省CPU资源。当接收一帧数据进入一位寄存器,送入接收SBUF中,同时将Rl置1;当发送数据载入发送SBUF中开始向外发送,发送完毕后即将TI置1。无论Rl置1还是TI置1,均会激发串口中断,执行中断服务程序。响应中断时,首先判断中断是接收程序还是发送程序,若为接收中断则将SBUF中的数据存入接收队列缓冲区;若为发送中断便将待发送的数据帧发送到SBUF中。

2.2 短消息PDU模式编码解码程序

在GSM标准中,中文编码采用UTF-8的编码,不是目前国内常用的GB-2312编码,因此需要对中文编码进行转换才能与采用GB-2312汉字库相配合,方可正确显示出短消息中汉字字型。由于UTF-8和GB-2312编码之间不存在一一对应的线性关系,因此需要采用查表的方式进行转换。

2.3 短消息收发程序设计

发送短信息的主要工作是将发送的内容进行相应的编码,其次就是将发送所用的SMS服务中心号码、目标号、有效时间和短信内容按照PDU编码的格式发送出去。如果是接收短信息,其工作就是将接受到的短信息内容进行解码,发送和接收的PDU串的结构是不同的。接收程序流程图如图2所示。

3 运行结果

运行结果如图3所示。

4 结论

本文设计了一个基于GSM网络的无线传感智能家居监控系统。系统在运行中还有改进之处,还需进一步对程序结构进行优化。本设计只是智能家居控制中的一部分,目前国内很多公司都在致力于智能家居产品的开发,随着相关技术的进一步发展,我国将全面普及智能家庭网络系统和产品。

参考文献

[1]黄欣荣.基于GSM短信模块的家庭防盗报警系统的设计[J].中国新通信,2010(06),19-22.

[2]曾志永,凌振宝,王君.基于GSM技术的智能家居系统的设计[J].电子技术应用,2005(10),33-35.

[3]齐赵毅,陈杰浩,罗颖等.基于GSM的智能家居远程监控系统[J].科技信息,2013(04),19.

[4]申利民,刘冬香.基于GSM智能家居控制系统的设计[J].传感器世界,2011,17(1):32-36.

[5]王骐,何嘉斌.单片机控制GSM模块实现短信收发的软件设计[J].单片机与嵌入式系统的应用,2005.

[6]马忠梅.单片机的C语言应用程序设计[M].北京:北京航天航空大学出版社,2007.

[7]邱文静.基于GSM短信息的家居设施遥控监测系统设计[D].南京:南京理工大学硕士学位论文,2009.

[8]苏江福.基于GSM网络的智能家居监控系统设计与实现[D].哈尔滨工程大学硕士学位论文,2008.