前言:中文期刊网精心挑选了生物技术应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
生物技术应用范文1
(一)实训基地建设是实现高职生物技术及应用专业培养目标的必要条件
生物技术及应用专业的培养目标,是培养具有从事生物技术应用必备的专业理论知识和较熟练的综合职业技能,适应食用菌、组培苗、发酵产品等生产、基地建设、经营管理、技术服务及相关专业第一线需要的高技能人才。实训基地是培养高技能人才的必要场所,实训基地建设是实现专业培养目标的必要条件。通过实训,培养学生的职业技能,提高学生的实际动手能力。
(二)实训基地建设有利于提升学生就业竞争力,提高就业率
高职院校要保证就业率,就必须提高毕业生的“含金量”,让其成为用人单位心目中的合适人选。建立实训基地,让学生亲身实践无疑是提高其自身“含金量”最有效的方法。在参与实践的过程中,学生能将平时所学的理论知识与实际联系,同时,在实践中体现自身的价值,使学生的学习动机和方向更加明确,从而不断提高自身职业素质,提升就业竞争力。
(三)实训基地建设有利于培养“双师型”教师,提高教学水平
实训基地建设有利于培养“双师型”教师,提高教学水平。教师通过到实训基地锻炼,来提高自身的技术水平和动手能力,同时,教师在生产、管理第一线有利于获取各种最新的技术方法和管理理念,将这些新知识应用于教学,既可以保证知识的更新,又能激发学生的兴趣。
二、高职生物技术及应用实训基地的建设与实践
(一)校内实训基地建设
1.加强实验室建设,改善实验室条件。生物技术及应用专业重视和改善实验条件,加强实验室基本设施的建设,形成完善的实验教学规章制度和科学的运行机制。在学院的大力支持下,投入大量资金,对生物基础实验室、生物类专业实训室,重新装修并添置了不少仪器设备,大大加强了实验室建设。有足够的实验室承担专业基础与专业课的实验实训项目,可用于该专业的教学实验设备数量(800元以上)共610件,总价值237万元,生均10031元。实验开出率达100%。生物类基础实验室2005年8月通过了广西教育厅基础实验室合格评估。
2.加强校内实训基地建设,走“产学研结合”发展之路。广西农业职业技术学院现有校内实训基地5个:生物技术中心、生物技术实训基地(园艺方向)、食品生物技术实训基地、食用菌生产实训场、广西现代农业技术展示中心。主干课程“植物细胞工程”“发酵工艺学”“食用菌栽培”均有实力雄厚的校内实训基地。生物技术实训基地、食品生物技术实训基地,被批准为自治区示范性高等职业教育实训基地。
生物技术中心是一个集科研、生产、教学、技术推广为一体的现代生物技术综合开发中心。该中心初步形成了布局合理化、教职工知识结构专业化、生产科研管理科学化、生产经营规模化和教学实践化的产学研基地,成功开发果树类、经济作物类、药用植物类、观赏植物类等数十个品种,享有较高声誉。由专业教师担任生物技术中心主任,教师在生物技术中心开展科学研究,承担“优质网纹甜瓜组织培养技术研究”等6项科研课题。生物技术中心按教学计划安排学生实习,使其在取得较好的经济效益的同时,提高了教师的业务素质和学生的实践操作技能。
3.加强能力本位实践教学,提高学生综合能力。为了培养学生的实践能力和综合能力,我们非常注重以能力为本位的教学,开展各种形式的实践教学。(1)加强课内实践活动。主干课程理论和实训的比例为1∶1,做到理论与实践的结合。模拟生产实践活动,如食用菌课教师带领学生栽培各种食用菌,由学生自行制种、栽培、销售,既掌握了技能,又获得一定的经济效益。(2)改验证性实验为探索性实验,提高学生动手能力。根据课程的特点,学生在教师指导下,进行探索性实验。例如,在植物组织培养中,培养基不同,植物生长效果也不同。教师在教学中并不直接将这些实验技巧或方法告诉学生,而是指导学生根据所学的理论知识进行探索性实验,最后通过实验和分析得出最佳的方案或结果。(3)利用科研资源丰富实践教学,培养学生创新能力。在生物中心承担的科研项目中,有丰富的实验材料供学生进行实践教学活动。例如,在植物脱毒培养和试管苗增殖培养实验中,让学生参与香蕉、生姜的脱毒与工厂化试管苗快繁培养等项目,对提高学生的知识应用能力和科研创新能力起到了很好的作用。
4.健全实践教学管理规章制度。建立了一整套完整的实验、实训大纲和实习指导书。制定各门课程实践技能考核办法,加强学生实践技能考核。理论教学和实验教学由学校组织实施,生产实习和专业实践与合作办学单位共同组织实施。实训环节的成绩由指导实习的企业参与评定。
(二)校外实训基地建设
1.开展校企合作,实现双方共赢。实训基地建设离不开企业的参与。校企合作、工学交替是高职教育发展的必由之路。生物技术及应用专业通过签订合作办学协议,共建立了15个稳定的校外实训基地。如桂林莱茵生物应用技术有限公司、广西北生集团海玉农业开发有限责任公司、南宁市良风江食用菌生产示范基地等。这些实训基地实力雄厚,足以承担本专业的实训任务。我们每年都会派遣学生到企业进行实践,不少学生在实习期间就被企业选中留用。
同时,校企合作加大了企业参与教学的深度和广度,企业给学生提供真实的工作环境,使学生学到书本学不到的知识,直接体验将来所从事的职业及工作岗位,开阔学生的视野,增长学生的见识,有助于学生就业后顺利地实现从学生到员工的角色转换。同时,企业通过基地可以物色到合适的员工。例如,我们在2005年成立了有企业专家参与的生物技术及应用专业指导委员会,共同研究生物技术及应用的专业设置、培养目标和规格、专业培养方案设计等。根据培养目标,确立毕业生的应职岗位群,进一步明确职业岗位所需要的知识、能力、素质结构。根据职业岗位的要求安排及指导学生,培养学生的职业素质。在利用企业实践优势的同时,也利用学校教师理论知识丰富的优势,积极为企业服务。
生物技术应用范文2
关键词:现代生物技术;医药领域;应用
引言
随着科学技术的急速进步,尤其是分子生物相关先进理论成果、当代先进技术不断侵入现代生物技术,全面社会需求,生物技术由高新技术代替过去传统技术俨然成为现代生物技术发展的必然。现代生物技术作为一项高新技术,其与医药领域存在着密不可分的联系,现代生物技术发展一方面能够促进医学基础学科发生革命性转变,一方面能够为医药工业开辟出又一片天地[1]。
1现代生物医药的重点领域
1.1肿瘤治疗
世界范围内,肿瘤死亡率在疾病死亡率中有着十分高的占比,每年各个国家用于肿瘤的治疗费用数以亿计。肿瘤属于一种多机制的复杂病症,现阶段依旧采取早期诊断、放疗、化疗等综合方式治疗,疗效并不十分客观,同时会对患者造成极大的痛苦。当前,唯有现代生物医药方可肩负起彻底攻克肿瘤的人类使命,肿瘤治疗着实进入到一个两难的局面。在对肿瘤患者机体癌细胞进行杀死时,同时会危机到患者机体的正常细胞。基于此,现代生物医学提出了导向治疗理论。导向治疗指的是借助抗体寻找靶标,就好似导弹的导航仪,于病灶中有效引入肿瘤药物,从而不至于伤及到其他正常细胞[2]。现阶段,在数百余种开发的现代生物技术药物中,存在一半被用于肿瘤治疗,对肿瘤发病机制研究、抗肿瘤新药研发及现代生物技术均呈现出良好的发展前景。
1.2神经退行性疾病治疗
神经退行性疾病,好比小脑萎缩症、帕金森氏病、脑中风等,势必会愈来愈有赖于现代生物医药的发展。单单美国每年中风患者就超过80万,且死于中风人数达到20万,而治疗此类疾病的有效药物十分有限,特别是治疗不可逆脑损伤方面的药物更是极少,伴随神经生长因子、溶栓活性酶的开发为治疗此类病症带来了希望[3]。
1.3自身免疫性疾病治疗
当前,现代生物医药在治疗自身免疫性疾病中扮演着十分重要的角色。诸多炎症是由机体自身免疫不足造成,好比风湿性关节炎、哮喘、皮肌炎等,全球范围内全年单单用于风湿性关节炎的治疗费用超过千亿美元,治疗此类顽疾的高效基因药物市场前景十分可观。在自身免疫性疾病中,艾滋病(AIDS)是属于对人类危害最大的一种病症,现阶段治疗AIDS仍旧还没有十分有效的特异性药物,但很显然,医药领域已经把攻克AIDS的希望寄托于现代生物技术。
2现代生物技术在医药领域的应用
2.1制取活性物质
在现代医药领域中,医疗环节应用的抗生素、菌体药物及酶制剂等各种类型药物,均是通过微生物发酵而成的,此类微生物发酵产物只不过是不计其数生物活性物质中的几种。一般而言,生物活性物质均是通过液体深层培养法而生成的,一些物质可发挥对生物体内酶活性予以抑制的作用,此类物质即为酶抑制剂,酶抑制剂在医药领域有着十分可观的发展潜力。在现代医药领域中,诸多生理活性物质均可借助现代生物技术得以生成。就好比,在治疗大部分关节炎过程中,体激素往往能够获得满意的疗效,体激素成分中可的松对于风湿性关节炎疗效则更为显著。而醋酸可的松属于以脱氧胆酸为生产的原料,通过32个环节的化学反应合成而来,如若借助黑根霉将黄体转换成11-a-轻基黄体酮,则能够省去多个不必要的化学合成工序,有效提升其收率[4]。
2.2开展基因治疗
自基因角度而言,基因治疗指的是将具备正常功能的基因置换或是增补到部分存在缺陷的基因中,进而实现对基因缺陷予以修复的目的。自治疗角度而言,基因治疗指的是借助导入遗传物质对病患机体细胞基因予以转变,进而实现防治疾病的目的,此种导入基因既可以是与缺陷基因有着对应功能的同源基因,又可以是与缺陷基因不存在关联的治疗基因。在应用现代生物技术开展基因治疗期间,多采用下述两种治疗方式:(1)生殖细胞基因治疗法,即借助现代生物技术对生殖细胞基因表达予以转变;(2)体细胞基因治疗法,即借助现代生物技术对体细胞基因表达予以转变。自理论角度而言,对生殖细胞缺陷予以修复,一方面能够对当代基因缺陷展开治疗,一方面能够保证基因缺陷不至于遗传到下代人细胞基因中。
2.3改进生产工艺
现如今,我国已设立了国家基因资源库、生物样本库及蛋白质库,将各式各样化学药物制剂技术、基因重组治疗性抗体、大规模培养、基因治疗等作为关键,通过一些大规模企业构建健全医产学研密切相融的新药研发体系。在应用基因工程技术改进药物生产工艺期间,其能够起到提升菌种生产性能和水平、简化工艺改善收率、优化工业生产菌种及极大降低生态污染等作用。世界范围内生物制药市场中基因工程药物已经占据很高的份额,有着高成长、不易攻破壁垒及极佳市场潜力等特点。自上世纪90年代以来,我国基因工程药物复合增速超过5层,平均毛利率高达80个百分点[5]。基因工程药物包括单抗、重组蛋白及新型疫苗等,近些年借助基因技术改进亚欧无生产工业、生成高产菌株的实例不断增多。
2.4单体克隆
单体克隆抗体一经问世,便得到医药领域专家、学者的热切关注,其不仅具备可标准化、质地均一、反应灵敏等优势特征,还能够展开大规模大批量的工业化生产。现如今,市场上已有数以百计的单抗治疗制剂、单抗诊断试剂,且还存在诸多单抗治疗制剂正在被开发。单抗偶合物能够展开机体定位诊断,有效促进肿瘤、心脑血管疾病等病症诊断工作的开展。单抗偶合物一方面能够促进机体肿瘤定位,一方面能够展开导向治疗,强化肿瘤治疗药物的细胞毒性功效,降低不良反应及用于杀死机体肿瘤细胞等。此外,单抗简易家庭诊断药物,好比糖尿病诊断药物、妊娠诊断药物等逐步在市场中推广,简易诊断法作为一种时展趋势将逐步由医院转至家庭。
3结束语
总而言之,现代生物技术在医药领域的广泛应用,为人类增强体质、攻克病魔做出了不可磨灭的贡献。在预防、诊断和治疗影响人类健康的重大疾病方面也起到了关键的作用,基于此形成的生物医药产业是截至目前现代生物技术最为庞大的应用领域。
参考文献
[1]臧秀兵.浅谈生物技术在现代医药行业的应用[J].科技创新与应用,2012(27):32-32.
[2]黄金会,罗浩原.基于生物技术在现代医药行业的应用分析[J].生物技术世界,2015(9):155-155.
[3]王可炜,羊芳明.现代生物技术在中医药创新发展中的应用和挑战[J].按摩与康复医学(下旬刊),2011(36):34-35.
[4]高巍,刘佳.医药领域中现代生物制药技术的作用分析[J].中国药物经济学,2012(3):162-163.
生物技术应用范文3
关键词:螃蟹;病害防控;生物防治
1水产病害生物防治技术
这些年,国内水产养殖规模扩大。但是,一些病毒病、细菌病的感染,严重制约水产集约化发展。而抗生素药物的滥用,导致这些致病菌源的耐药性增强,以往的适用药剂久治难愈。就此,迫切需要一种生态环保型的防病措施加以替代。为此,生物技术应用而生,虽然还处于研发阶段,但是很多技术上的优势,让我们看到了降药残、抗耐药性的曙光。用于水产病害防治的生物技术,主要是借助生物基因重组、反义核酸、反义核酶等技术而改变水产动物的抗病性,以起到降低病害、提高产量、获得高效益产出的目的。从生物防治的应用效果来看,展现出这些技术优势:减少化学药剂使用量,降低药物残留,节约生产成本。降低耐药性,有效抑制致病菌源的扩散蔓延。有利于生态环保,为消费者提供绿色、无公害水产品。有利于保护生态环境,响应构建生态环保社会的响应。
2螃蟹病害影响因素
不同其他水产养殖,螃蟹养殖要获得高产高效,需要注意的事项更多。这些细节一旦疏忽,将会造成严重的病害威胁。
2.1水质问题
螃蟹生活在水中,对水质的要求更高。尤其池塘中养蟹,水体必须做出处理,否则会为病害感染创造条件。其一,定期组织消毒。消毒常用漂白粉、生石灰,在杀灭致病菌的同时,能确保水体洁净卫生。其二,投放腐殖质肥料。池塘中加适量腐殖质,主要用作肥料。达到水体变青绿色,证实养分充足。
2.2生存环境
生存环境除水质,还有居住和活动场所。螃蟹营养储备源自水中,多数以水草为食源,泥沙仅仅能辅助消化。螃蟹一般居住在较为潮湿的环境内,对于生长环境的水质有较高的要求,养殖螃蟹时应对养殖环境的水质做好清洁工作,布置适量较为茂盛的水草,使螃蟹能够小范围的活动,并围绕着产生很多昆虫、小鱼、小虾等等,会使螃蟹的生存环境更加健康,生态系统更加完善,对避免各种病害效果不错。
3生物技术在螃蟹养殖病害防治上的应用
3.1基因重组用于增强抗病性
以往螃蟹病害的防治,对消毒剂、抗菌素的依赖较大。此类药物的频繁使用,一方面影响水产养殖环境;另一方面造成病原微生物的耐药性。为避免此类问题的问题,可尝试借助病毒蛋白基因重组技术,加载到合适的载体中,而后注射到螃蟹常食用食物中,以增强其抗病体质,确保螃蟹养殖的稳定性和安全性。
3.2生物反义技术用于病毒病的控制
螃蟹养殖生产中,病毒病的危害较大,借助水平传播和垂直传播,能殃及整个螃蟹池。在病毒病的控制中,生物反义技术的作用显著。该项技术的作用原理,利用反义核酸技术和反义核酶技术,对病毒原核细胞和真细胞进行基因操作,以抑制病毒的合成和复制,有效控制螃蟹病毒病的传播。作为一种新型的生物控病技术,其用于螃蟹病毒病的防控功效是不容置否的。但是,还需要不断的完善,以扩大病毒病防控的应用范围。
3.3转基因用于增强免疫力
螃蟹养殖生产期间,在例行消毒、投药预防等工作时,或多或少在水体中会形成药物残留,久之会造成机体的某些病理病变。出于病防重于治的考虑,可借助转基因技术,提前在螃蟹体内注射特定启动因子的外源基因,使着病毒反义RNA序列提前得以表达,这样后期病毒内侵后的复制将受阻,而起到控制病害的目的。自长远角度考虑,该项技术对螃蟹养殖的病害防控是很有效的,但是当前还没有得到大面积的推广应用。
3.4基因工程苗用于预防接种
基因工程运用在螃蟹养殖中防治病害能够起到良好的作用,因为它能够帮助螃蟹排除一定的客观因素的影响,能够让水产养殖产品中的螃蟹在生存环境中可以更好的成长。基因工程疫苗的出现,让螃蟹养殖产业看到了更多的希望。基因工程疫苗从细菌和病原体中提取了具有一定免疫力的基因,然后进行了基因重组,让疫苗提高了免疫力,在与传统疫苗的对比中,提高了抗药性和稳定性,能够提高养殖螃蟹的免疫力,在提高了螃蟹免疫力的基础上,能够保证健康与天然。基因工程疫苗能够满足大部分水产养殖户的需要,能够发挥出其作用,并且在技术层面上趋于成熟,能够批量生产,满足市场的需要。
生物技术应用范文4
生物技术是分子遗传学、生物化学、微生物学等基础学科发展的产物。作为一种高新技术,生物技术在整个科学领域中占据了越来越显著的地位。作为世界新技术革命的重要组成部分,生物技术已经成为人类彻底认识和改造自然界,克服人类自身所面临的人口膨胀、粮食短缺、环境污染、疾病危害、能源资源匮乏等一系列重大问题的有效手段和工具[1]。
目前在黄瓜育种中,广大科研工作者利用生物技术结合常规育种方法,创新了一大批含有优异基因的黄瓜育种材料,培育出多个丰产、优质、多抗品种。生物技术在黄瓜遗传育种上的应用非常广泛,下面介绍在这方面已取得的一些重要进展。
2分子标记技术在黄瓜遗传育种中的应用
2.1黄瓜基因的分子标记
开展基因分子标记研究是进行分子标记辅助选择育种、分离和克隆基因的基础。“十五”期间,我国科研工作者建立了适合黄瓜的RAPD、AFLP和SSR标记的优化反应体系,并对黄瓜的多个基因进行了分子标记。
钱忠英等[2]优化的黄瓜RAPD反应体系为:PCR程序94 ℃预变性3 min,94 ℃变性30 s,37 ℃复性30 s,72 ℃延伸2 min,循环40周,最后72 ℃延伸7 min为佳;模板DNA的适宜浓度为2.5~5 ng/μL,引物浓度为0.6 mol/μL,dNTPs浓度为0.25 mmol/L,Mg2+浓度为1.875 mmol/L。张桂华等[3]建立了适合黄瓜的AFLP反应体系:在50μL酶切连接体系中,取300 ng基因组DNA进行双酶切和接头连接,然后取4μL酶切连接产物进行预扩增,预扩增产物稀释30倍后,采用“2+3”选择性扩增引物组合用于选择性扩增可以得到很好的扩增效果。葛风伟[4]等摸索了适宜黄瓜的SSR反应体系,认为在25Μl PCR反应体系中,Mg2+的最适浓度为0.2 mmol/L;dNTP最适浓度为0.2 mmol/L;反应体系中Taq聚合酶宜加入1U,引物应加入30 ng;DNA最适浓度为5 ng/μL。另外,刘殿林[5]、张正奇[6]、孙敏[7]等也对黄瓜基因组DNA提取方法和RAPD反应体系进行了探索。
基因分子标记方面,陈劲枫等[8]利用RAPD技术获得了黄瓜全雌性特异的片段B111000。娄群峰等[9]筛选得到了与黄瓜全雌性F基因连锁距离为6.7 cM的AFLP标记TG/CAC234,并将该标记转化为SCAR标记SA166。张桂华等[10]找到2个与白粉病抗病相关基因连锁距离为5.56 cM的AFLP标记,目标片段的大小分别为238 bp和236 bp。张素勤等[11]研究并获得了与控制黄瓜霜霉病和白粉病的感病QTLs均紧密连锁的显性AFLP标记:E25M632-103。该标记从分子水平说明黄瓜霜霉病和白粉病的某个感病QTLs是连锁的。丁国华[12]筛选得到与抗霜霉病基因dm连锁不十分密切的CsRGA3标记。在dm和CsRGA3之间还检测到黄瓜白粉病抗病基因pm的存在,显示了dm和pm存在连锁关系。国艳梅[13]筛选到的AFLP标记E4M6和E5M5,分别与黄瓜营养部分苦味基因Bi连锁,距离15.0 cM;和不苦基因bi连锁,距离18.8 cM。顾兴芳等[14]找到了与黄瓜果实苦味基因Bt紧密连锁的两个显性AFLP标记E23M662-101和E25M652-213,与Bt的遗传距离分别为5 cM和4 cM,且位于Bt两侧。Thomas等[15]以WⅡ983G×Strait8的55个F2+代个体和Iudm1×Strait8的90个F2+代为研究群体,从960对RAPD引物产生的135个多态性标记中筛选出5个与黄瓜霜霉病基因(dm)紧密连锁的标记:G14-800、X15-1100、AS5-800、BC519-1100和BC526-1000。
2.2黄瓜遗传图谱的构建与基因定位
1994年,Kennard等[16]以G421×H-19获得的F2+群体为材料,构建了一张总长为766 cM的遗传图谱,该图谱由10个连锁群组成,包含了58个位点标记,2个位点之间的平均距离为(21±8)cM。同时利用种间杂交GY14×PⅡ83967获得F2+群体构建了含有70个位点,10个连锁组群,总长480 cM的连锁图谱。1997年,Serquen等[17]以G421×H219杂交的100个F2+株系为试材利用RAPD技术构建了一个含有80个位点的连锁图谱,包含了77个RAPD标记,3个形态标记,分为9个连锁组群,整合长度628 cM,平均标记间隔7.8 cM。
2000年,Danin-Poleg等[18]以GY14×PⅡ83967为材料,用SSR标记技术构建了黄瓜的遗传图谱,将14个SSR标记定位到8个连锁组群中,整合图谱总长为783.2 cM,并发现其中有9个标记与甜瓜相同。Bradeen等[19]利用Joinmap软件,以G421×H219的杂交后代群体为研究对象,整合出含有10个连锁群,255个标记,总长为538.6 cM的遗传图谱,平均标记间隔为2.3 cM。又以GY14×PⅡ83967为材料,构建了一张包括了15个连锁组群,197个标记,整合图谱长度为450.1 cM的黄瓜遗传图谱。Park等[20]利用对番木瓜环斑病毒(PRSV-W)和南瓜花叶病毒(ZYMV)敏感的“Straight8”和对PRSV-W、ZYMV有抗性的TMG1(TaichungMouGua)的F6代重组自交系(RLs)为材料,构建了包含353个位点,12个连锁组群的连锁图谱。Fazio等[21]采用G421×H219获得的171个RLs和216个F2+单株构建了包含14个SSR标记、24个SCAR标记、27个AFLP标记、62个RAPD标记、1个SNP标记和3个重要形态学标记(雌性,有限生长和小叶),分为7个连锁组群,总长为706 cM的遗传图谱。Young等[22]以黄瓜抗病毒和感病毒的亲本组成的重组自交系进行AFLP、RAPD、RFLP标记,并构建了353个位点的黄瓜图谱。
“十五”期间,我国科研工作者构建了2张黄瓜遗传图谱,其一是张海英等[23]利用黄瓜重组自交系为作图群体,构建的包含9个连锁组群,共有234个分子标记的连锁图谱,其中包括141个AFLP标记、4个SSR标记和89个RAPD标记,覆盖基因组长度727.5 cM,平均图距3.1 cM。应用该图谱对控制黄瓜耐弱光的数量性状基因(QTL)进行了研究,将影响叶面积增长量的5个QTL分别定位在LG1、LG7和LG9连锁群[24]。其二为李效尊等[25]利用F2+代群体,构建的包含77个SRAP标记和79个RAPD标记的遗传图谱,分属4个大的连锁群和5个小的连锁群,总长度1110.0 cM,平均间距为13.7 cM。并将侧枝基因(lb)定位在一个大的连锁群上,其两侧标记是OP-Q5-1和OP-M-2-2,与lb的间距分别是9.3 cM和15.9 cM;将全雌性基因(f)定位在一个小的连锁群上,其两侧标记是OP-Q5-2和BC151,与f的间距分别是13.8 cM和13.6 cM。
2.3分子标记在黄瓜亲缘关系和遗传多样性上的研究
分子标记技术以其准确性高、速度快、周期短而较多地应用于黄瓜种质亲缘关系分析和种质资源多样性检测方面。利用RAPD标记进行研究的报道有:张海英等[26]分析了华北型与欧洲温室型品种的杂交后代的遗传漂移情况,进行了初步的遗传分析以及F2+个体的基因型分析。刘殿林等[27]分析了39份黄瓜材料的遗传差异,不同材料间的遗传距离(D)在0.0642~0.592之间,并根据遗传距离,按UWPGA法进行了聚类分析。夏立新等[28]计算出黄瓜亲本间分子遗传距离,研究了田间园艺性状与分子遗传距离间各种相关曲线的相关系数。陈劲枫等[29]对黄瓜属的22份材料的亲缘关系进行了研究,聚类分析为2群:CS群(黄瓜、西南野黄瓜及野黄瓜)和CM群(甜瓜、菜瓜、野生小黄瓜及非洲角黄瓜)。庄飞云等[30]也将23份材料按亲缘关系聚类为黄瓜、近缘野生种、种间杂交种和甜瓜亚属种4类。李锡香等[31]分析了66份黄瓜种质基因组DNA,将供试种质分为8个组群。另外,利用RAPD标记可以从分子水平上探测黄瓜亲本自交系与其杂种F1代的遗传差异[32]。
AFLP技术也经常用在亲缘关系和遗传多样性研究上面。王志峰等[33]利用AFLP技术对包括80份山东黄瓜地方品种和24份其他地区品种的遗传亲缘关系进行了研究,聚类分析结果显示:山东黄瓜地方品种与日本品种和欧美品种分属不同类群或亚类群,山东地方品种分为8组,各组内生态类型基本一致。AFLP分析计算出15份密刺类黄瓜品种的遗传距离在0.033~0.686之间,聚类分析分为8类,新泰密刺和山东密刺遗传差异较小,与长春密刺遗传差异较大[34]。李锡香等[35]以8对引物对70份不同来源的野生和栽培黄瓜种质基因组DNA进行AFLP分析,将供试种质聚类为3大种群:西双版纳黄瓜组群、印度野生黄瓜组群和栽培黄瓜组群。Zhuang等[36]用RAPD和SSR分析黄瓜野生种、半野生种的亲缘关系,二者的遗传分析结果具有很高的协调性,二者遗传距离的相关系数为0.94。
另外,李俊英等[37]发现在不同黄瓜品种的线粒体中存在类质粒分布的差异,其存在有一定随机性,不同品种中的同一种类质粒间具有同源性。
2.4黄瓜基因的克隆与表达
黄瓜基因克隆有多篇报道。康国斌等[38]克隆得到了在黄瓜冷敏型品种低温锻炼异表达基因的cDN段(ccr18),大小为639 bp。在基因组中以单拷贝或低拷贝形式存在。ccr18基因与黄瓜低温锻炼相关,与拟南芥染色体IIIBAC库中的F14P3基因组序列具有88 %的同源性。白吉刚等[39]扩增出黄瓜生长素结合蛋白基因(ABPl)cDN段,大小约为800 bp,该基因在开花前1 d的子房中表达信号较弱,在授粉后2 d、4 d和6 d的幼果中表达增强。丁国华等[40]利用简并引物从黄瓜基因组DNA中分离得到15条同时具有特征保守域结构的NBS类型抗病基因同源序列(RGA),翻译产物与许多抗病蛋白有较高的同源性。
牛林海[41]克隆了黄瓜HMG(high mobility group proteins)基因,并认为该基因是单拷贝,具有组织特异性表达,在根中表达最强。叶青静[42]测定了黄瓜果实组织中的与细胞分裂相关的精氨酸脱羧酶(ADC)基因cDNA序列(约1.83 kb)、与细胞膨大有关的扩张蛋白基因cDNA序列(约786 bp)以及一条酸性转化酶的cDNA全长序列(约2.25 kb)。李志英[43]获得了正常和“花打顶”黄瓜之间的2个差异片段所在基因的全长cDNA序列,分别定名为CUATP和CuADC。“花打顶”植株中CUATP的表达明显减少,而CuADC表达量增加。梅茜[44]构建了黄瓜幼果的cDNA文库,得到139个表达序列标签(ESTs),其中有97条与已知基因高度相似,36条为低度相似序列,在GenBank中未找到匹配同源序列的ESTs为6个。娄群峰[45]从中国弱雌性黄瓜中克隆出了全长为1024 bp的ACC合酶基因,包含6个开放阅读框,不同生态型黄瓜中ACC合酶基因序列保守性很强。不具有性型特异性,但在植株不同部位表达程度存在明显差异。
2.5黄瓜杂种纯度及品种指纹图谱分析
黄瓜种子纯度鉴定的常规方法是根据田间表现性状进行鉴定,后来发展为利用同工酶的方法,但二者都有一定的缺陷。利用分子标记技术鉴定黄瓜种子纯度,可以在苗期甚至种子阶段进行,高效快速、稳定可靠。克服了传统田间检验要根据植株园艺性状进行而导致的费时、费力等缺点。但相关报道比较少。
王和勇[46]研究表明,黄瓜不同组织器官的DNA对RAPD扩增无影响,均可获得一致的指纹图谱,并建立了种子纯度鉴定的RAPD的反应体系。孙敏[47]等通过RAPD标记鉴定和分析了黄瓜品种真实性,也建立了适宜黄瓜种子纯度鉴定的RAPD指纹图谱。金红等[48]研究了抗除草剂基因在黄瓜杂种纯度快速鉴定上的应用,摸索出田间抗性鉴定和室内种子抗性鉴定的除草剂临界浓度,建立了一套在种子发芽阶段或2片真叶期进行黄瓜杂交种纯度鉴定的新技术。
2.6分子技术鉴定黄瓜病害
王惠哲等[49]以感病组织和健康组织总RNA为模板,进行cDNA合成和PCR扩增,对75份黄瓜病毒病样本进行了检测,结果从感病组织中扩增出与预期的425 bp大小一致的目标片段,而健康组织无此扩增产物;29份材料检测到TMV,检出率达38.67 %。同样的方法,也检测到黄瓜上的西瓜花叶病毒2号(WMV22)[50]。李淑菊等[51]利用RT-PCR对黄瓜病毒毒原种类进行检测。陈洁云等[52]用同样技术明确了ZYMV和CMV是浙江及其周边地区侵染葫芦科植物最主要的病毒种类,夏季CMV普遍发生,ZYMV主要发生在秋季。
3黄瓜组培技术与单倍体和三倍体培养
利用对黄瓜离体组织的培养,通过愈伤组织和胚状体两条途径均可获得再生植株。何晓明等[53]建立了子叶及下胚轴离体培养体系,通过愈伤组织分化出的不定芽获得再生植株。郭德章等[54]将分离纯化的黄瓜子叶原生质体,培养于mKM8p液体培养基中,原生质体可持续分裂至愈伤组织形成。当再生的愈伤组织直径达0.5~1.5 cm时,及时转入改良的MS附加不同生长激素的培养基上诱导分化及再生,结果产生大量体胚并再生成植株。
不少报道对黄瓜组织培养的影响因素做了探讨。侯爱菊等[55]认为外植体类型、基因型及植物生长调节剂对诱导黄瓜直接器官发生有显著影响,子叶节是最佳的外植体类型。杨爱馥等[56]研究认为愈伤组织诱导阶段和胚胎发生阶段分别采用9 %和6 %的蔗糖浓度,可促进体细胞胚胎发生;胚诱导培养基中添加6-BA 0.5 mg/L,以及愈伤组织诱导阶段甘露醇与蔗糖配合使用,可提高体细胞胚胎发生率。梅茜等[57]研究表明,苗龄和ABA是影响子叶分化形成不定芽的显著因素;加入适量的AgNO3可改善黄瓜愈伤组织的质地、促进芽的形成。与曹利仙等[58]试验结果相同。郭德章等[54]认为Ca2+浓度对黄瓜原生质体的稳定和细胞分裂有重要影响。李云等[59]研究后认为赤霉素处理离体黄瓜子叶不能诱导花芽分化,萘乙酸的促进作用不明显,激动素KT1.0诱导花芽分化的频率最高。但周俊辉等[60]认为l/2 MS培养基中附加0.10 mg/L 6-BA能显著提高离体黄瓜子叶的开花率,White培养基中附加2.00 mg/L的KT开花率也有明显提高。相同浓度的L-丙氨酸和L-酪氨酸均明显促进黄瓜子叶开花,而甘氨酸对黄瓜子叶开花则有一定的抑制。
在黄瓜单倍体和多倍体培养方面,杜胜利等[61]在国内首次建立了一整套通过未受房离体培养产生黄瓜单倍体植株的技术体系,再生频率达25 %。雷春等[62]通过射线辐射花粉授粉并结合胚培养从3个基因型中获得了单倍体植株。陈劲枫等[63]研究了异源三倍体黄瓜的离体繁殖的培养基配方最佳的不定芽诱导培养基为:MS + 6-BA 2.2 mg/L和MS + 3.0 mg/L KT + 0.2 mg/L NAA,然后丛生芽在MS + 0.2 mg/L 6-BA的培养基上伸长大约10 d后取整齐一致的芽在1/2 MS + 0.2 mg/L 6-BA培养基上生根。
4黄瓜遗传转化体系建立及基因工程改良
基因工程技术是现代生物技术改良作物品种的关键技术之一,在农业生产中有着广泛的应用前景。可应用于黄瓜上的转基因方法有农杆菌介导法、基因枪法、花粉管通道法和电激法等,目前以农杆菌介导法为主要方法。近几年来,广大科研工作者研究和建立了黄瓜高效遗传转化体系,并通过农杆菌介导将CMV-CP、CBF3、Cor15A、Chi、Glu、CTB/CS3、RS等基因导入黄瓜基因组。
陈峥等[64]的研究表明,在共培养的菌液中添加乙酰丁香酮,明显提高外植体的愈伤组织诱导率;延长农杆菌与外植体的共浸染时间至40 min,外植体的存活率和出芽率显著提高。姚春娜等[65]试验表明,超声波处理可以明显提高农杆菌对外植体的转化频率。侯爱菊等[66]建立了一套黄瓜遗传转化体系,适宜的选择压力为卡那霉素30 mg/L。金红等[67]也对影响遗传转化体系的因素进行了摸索。于静[68]、孙兰英[69]、赵隽等[70]均认为子叶节是黄瓜遗传转化体系的最佳外植体,最适宜的芽诱导培养基为MS + 6-BA 0.5 mg/L;子叶节预培养1~2 d,在添加6-BA 0.5 mg/L、乙酰丁香酮100μmo1/L,pH 5.2的MS培养基上进行培养,遗传转化效率最高。利用TDZ从子叶节上诱导出再生芽,效果优于BA。
金红等[67]将抗除草剂基因bar导入到黄瓜子叶中,获得落地转化株系。邓小燕等[71]构建成植物表达载体Pbinp-35S-CBF3。通过农杆菌介导转化黄瓜子叶,获得了具有卡那霉素抗性的黄瓜再生植株。张兴国[72]等也将冷cbf3基因和corl5a抗寒基因导入黄瓜基因组,创制出耐寒黄瓜新材料。白吉刚等[73,74]将拟南芥生长素结合蛋白基因转化黄瓜,获得的转基因植株单性结实能力增强。通过黄瓜离体子叶不定芽再生体系,陈丽梅[75]和林建丽[76]已分别将荧光素基因(luc)、ATT1基因和花生白黎芦醇合酶(RS)基因导入黄瓜,获得了阳性转基因植株。柏锡[77]获得了转组织型纤溶酶原激活剂基因的黄瓜植株。张国广[78]将来源于菜豆的几丁质酶(Chi)基因和克隆自烟草的β-1,3-葡聚糖酶(Glu)基因导入3个基因型的黄瓜基因组中。侯爱菊[66]、孙兰英[69]和杨成德[79]也利用农杆菌介导法将菜豆几丁质酶基因导入黄瓜。
5存在问题及展望
黄瓜有7对染色体,染色体组总长度750~1 000 cM,高饱和的分子连锁图应具有7个连锁群。目前构建的遗传图谱相对不饱和,整合后的连锁图谱虽然密度增加,但是不能覆盖整个基因组。被定位到图谱上的分子标记不多,与重要性状紧密连锁的标记就更少。因此,仍需对黄瓜分子标记进行研究,找到与性状紧密连锁的标记,为分子标记辅助育种和基因的定位克隆奠定基础。黄瓜组织培养以二倍体的研究居多,单倍体和多倍体的研究较少,黄瓜单倍体组织培养的技术在国内仍未成熟,黄瓜转基因技术也还停留在研究阶段,与实际应用还有相当差距,今后尚需进一步研究。
参考文献
[1] 姜健.生物技术在农业发展中的应用[J].农业与技术,1999,19(3):8-11.
[2] 钱忠英,蔡润,潘俊松,等.黄瓜RAPD体系的优化与应用[J].上海交通大学学报(农业科学版),2003,21(3):208-213.
[3] 张桂华,杜胜利,鞠秀芝,等.黄瓜AFLP反应体系的建立[J].华北农学报,2004,19(2):10-12.
[4] 葛风伟,张海英,陈青君,等.黄瓜SSR反应体系的建立[J].华北农学报,2004,19(2):5-9.
[5] 刘殿林,杨瑞环,哈玉洁,等.黄瓜基因组DNA提取与RAPD分析[J].华北农学报,2002,17(4):9-12.
[6] 张正奇,邹敏芬,熊劲芳,等.黄瓜DNA的提取研究[J].湖南大学学报(自然科学版),2003,30(6):31-33.
[7] 孙敏,乔爱民,王和勇,等.黄瓜DNA提取及其RAPD-PCR反应体系的优化[J].种子,2004,23(6):9-14.
[8] 陈劲枫,娄群峰,余纪柱,等.黄瓜性别基因连锁的分子标记筛选[J].上海农业学报,2003,19(4):11-14.
[9] 娄群峰,陈劲枫,MollyJahn,等.黄瓜全雌性基因连锁的AFLP和SCAR分子标记[J].园艺学报,2005,32(2):256-261.
[10] 张桂华,杜胜利,王鸣,等.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得[J].园艺学报,2004,31(2):189-192.
[11] 张素勤.黄瓜霜霉病和白粉病抗性遗传机制及其分子标记研究(博士毕业论文).2005.
[12] 丁国华.黄瓜抗病基因同源序列的克隆及其对霜霉病抗病基因标记的研究(博士毕业论文).2004.
[13] 国艳梅.黄瓜苦味遗传规律研究及AFLP分子标记(硕士毕业论文).2003.
[14] 顾兴芳,张素勤,张圣平,等.黄瓜果实苦味Bt基因的AFLP分子标记[J].园艺学报,2006,33(1):140-142.
[15] Thomas H,Staub J E,Claude Thomas.Linkage of random amplified polymorphic DNA marker stodowny mildew resistance in cucumber (CucumissativusL.)[J].Euphytica,2000,115:105-113.
[16] Kennard W K,Poetter K,DIjkhuIzen A,et al.Linkage samong RFLP,RAPD,isozyme,disease-resistance and morphological marker sinnarrow and wide crosses of cucumber[J].TheorAppl.Genet,1994,89:42-48.2.
[17] Serquen F C,Bacher J,Staub J E.Mapping and QTL analysis of horticultural trait sinanarrow cross in cucumber(CucumissativusL.)using random 2 amplified polymorphic DNA markers[J].MolecularBreeding,1997,3:257-268.
[18] Danin-Poleg Y,Reisn,Baudracco-Arnas S.Simples equecerepeats in Cucumism apping and mapmerging[J].Genome,2000,43:963-974.
[19] Bradeen J E,Staub C,Wye C.Toward sanexpande dandinte grated linkagemap of cucumber(CucumissativusL.)[J].Genome,2001,44:111-119.
[20] Park Y H,Swnsoy S,Wye C,etal.Agenetic map of cucumber composed of RAPDs,RFLPs,AFLPs, and lociconditioning resistance topapayaring spot and zucchini yellow mosaic viruses[J].Genome,2000,43(6):1003-1010.
[21] Fazd G,Staub J E,Srevensm R.Genetic mapping and QTL analysis of horticultural traits in cucumber(CucumissativusL.)[J].Theor.Appl.Genet.,2003,107(5):864-874.
[22] Young H P,Suat S,Cispin W,et al.Agenetic map of cucumber composed of RAPDs,RFLPs,AFLPs and locicondition[J].Genome,2000,43:1003-1010.
[23] 张海英,葛风伟,王永健,等.黄瓜分子遗传图谱的构建[J].园艺学报,2004,31(5):617-622.
[24] 张海英,陈青君,王永健,等.黄瓜耐弱光性状的QTL定位[J].分子植物育种,2004,2(6):795-799.
[25] 李效尊,潘俊松,王刚,等.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建[J].自然科学选展,2004,14(11):1225-1229.
[26] 张海英,王永健,许勇,等.黄瓜育种中“血缘”遗传关系分析研究[J].华北农学报,2001,16(2):20-26.
[27] 刘殿林,杨瑞环,哈玉洁,等.不同来源黄瓜遗传亲缘关系的RAPD分析[J].华北农学报,2003,18(3):50-54.
[28] 夏立新,陈德富,等.黄瓜亲本间分子遗传距离与杂种优势的相关性[J].南开大学学报(自然科学),2001,34(2):91-94.
[29] 陈劲枫,庄飞云,逯明辉,等.采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系[J].植物分类学报,2003,41(5):427-435.
[30] 庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的RAPD分析[J].园艺学报,2003,30(1):47-50.
[31] 李锡香,蔚,杜永臣,等.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究[J].植物遗传资源学报.2004,5(2):147-152.
[32] 齐秀丽.黄瓜自交系及其F1代的RAPD分析(硕士毕业论文).2003.
[33] 王志峰,孙日飞,孙小镭,等.山东省黄瓜地方品种资源亲缘关系的AFLP分析[J].园艺学报,2004,31(1):103-105.
[34] 王志峰,孙小镭,孙日飞,等.山东密刺类黄瓜亲缘关系研究[J].中国蔬菜,2005(2):6-8.
[35] 李锡香,蔚,杜永臣,等.黄瓜种质资源遗传多样性及其亲缘关系的AFLP分析[J].园艺学报,2004,31(3):309-314.
[36] Zhuang F Y,Chen J F.Assessment of genetic relationship samong Cucumisspp.by SSR and RAPD marker analysis[J].Plant Breeding,2004,123:167-172.
[37] 李俊英,闻颖达.黄瓜线粒体类质粒pC1,pC4在品种间的分布及同源性研究遗传[J].科学通报,2001,28(4):367-371.
[38] 康国斌,许勇,雍伟东,等.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析[J].植物学报2001,43(9):955-959.
[39] 白吉刚,刘佩瑛,等.黄瓜生长素结合蛋白cDN段的克隆及其表达[J].植物生理与分子生物学学报,2002,28(3):200-204.
[40] 丁国华,秦智伟,刘宏宇,等.黄瓜NBS类型抗病基因同源序列的克隆与分析[J].园艺学报,2005,32(4):638-642.
[41] 牛林海.裂叶牵牛、玉米和黄瓜HMG基因的克隆及功能分析(硕士毕业论文).2002.
[42] 叶青静.黄瓜果实发育相关基因的克隆及其表达调控的研究(硕士毕业论文).2003.
[43] 李志英.黄瓜“花打顶”形态、解剖、细胞学特征及相关基因的分离与鉴定(博士毕业论文).2003.
[44] 梅茜.黄瓜幼果cDNA文库构建与部分ESTs分析(硕士毕业论文).2004.
[45] 娄群峰.黄瓜全雌性基因分子标记及ACC合酶基因的克隆与表达研究(博士毕业论文).2004.
[46] 王和勇.黄瓜杂交种子纯度的RAPD鉴定(硕士毕业论文).2001.
[47] 孙敏,乔爱民,王和勇,等.黄瓜杂交种子纯度的RAPD鉴定[J].西南师范大学学报(自然科学版),2003,28(2):103-107.
[48] 金红,杜胜利,陈峥,等.抗除草剂基因在黄瓜杂种纯度快速鉴定上的应用研究[J].华北农学报,2004,19(3):31-34.
[49] 王惠哲,李淑菊,庞金安,等.黄瓜上烟草花叶病毒的RT-PCR检测[J].天津农业科学,2004,10(2):11-13.
[50] 王惠哲,李淑菊,霍振荣,等.利用RT-PCR检测黄瓜上的西瓜花叶病毒[J].天津农学院学报,2004,11(4):20-22.
[51] 李淑菊,王惠哲,霍振荣,等.利用RT-PCR对黄瓜病毒病毒原种类进行检测[J].华北农学报,2004,19(3):100-102.
[52] 陈洁云.两种葫芦科病毒的分子检测和致病性研究[J].植物病理学报,2003,33(5):449-455.
[53] 何晓明,林毓娥.黄瓜子叶和下胚轴的离体培养[J].植物生理学通讯,2001,37(5):423-424.
[54] 郭德章,鄢铮,赖钟雄,等.‘翠秀’黄瓜子叶原生质体的高效培养及植株再生[J].园艺学报,2003,30(2):227-228.
[55] 侯爱菊,朱延明,杨爱馥,等.诱导黄瓜直接器官发生主要影响因素的研究[J].园艺学报,2003,30(1):101-103.
[56] 杨爱馥,朱延明,侯爱菊.几个影响黄瓜子叶体细胞胚胎发生的因素[J].植物生理学通讯,2003,39(3):206-208.
[57] 梅茜,张兴国.黄瓜组织培养研究[J].西南农业大学学报,2002,24(3):266-267.
[58] 曹利仙,赵鹂,唐宇力,等.硝酸银对黄瓜离体子叶培养芽再生的促进效应[J].甘肃农业大学学报,2001,36(2):168-171.
[59] 李云,鄢洪强,李林,等.离体培养黄瓜子叶花芽分化研究[J].内江师范学院学报,2004,19(6):86-88.
[60] 周俊辉,周家容,林毕成,等.6-BA和氨基酸对黄瓜子叶离体培养成花的影响[J].植物生理学通讯,2004,40(2):171-173.
[61] 杜胜利,魏爱民,魏惠军,等.利用生物技术创造黄瓜育种新材料方法研究[J].天津科技,2001,(2):627.
[62] 雷春,陈劲枫,钱春桃,等.辐射花粉授粉和胚培养诱导产生黄瓜单倍体植株[J].西北植物学报,2004,24(9):1739-1743.
[63] 陈劲枫,罗向东,余纪柱,等.异源三倍体黄瓜的离体繁殖和鉴定[J].植物生理学通讯,2003,39(2):109-112.
[64] 陈峥,金红,程奕,等.提高黄瓜农杆菌遗传转化体系再生频率的研究[J].天津农业科学,2001,7(4):47-49.
[65] 姚春娜,王亚馥.超声波辅助发根农杆菌对黄瓜遗传转化的影响[J].园艺学报,2001,28(1):80-82.
[66] 侯爱菊.黄瓜抗真菌基因遗传转化体系的研究(硕士毕业论文).2001.
[67] 金红,杜胜利,陈峥,等.抗除草剂转基因黄瓜的获得及T_1植株抗性鉴定[J].华北农学报,2003,18(1):44-46.
[68] 于静.CTB/CS3基因表达载体构建及对黄瓜的转化(硕士毕业论文).2003.
[69] 孙兰英.几丁质酶基因对黄瓜遗传转化的研究(硕士毕业论文).2003
[70] 赵隽,王华,潘俊松,等.黄瓜子叶节离体再生体系的研究[J].上海交通大学学报(农业科学版),2004,22(1):43-48.
[71] 邓小燕,张兴国,井鑫,等.冷诱导转录因子基因CBF3转化黄瓜的研究[J].西南农业大学学报(自然科学版),2004,26(5):603-605.
[72] 张兴国,邵长文,等.基因Cor15A和CBF3导入黄瓜基因组[J].蔬菜分子育种研讨会论文集,2004.
[73] 白吉刚,宋明,刘佩瑛,等.生长素结合蛋白cDNA的克隆及其在黄瓜中的表达[J].植物学通报,2002,19(6):705-709.
[74] 白吉刚,王秀娟,尹谦逊,等.生长素结合蛋白基因转化黄瓜的研究[J].中国农业科学,2004,37(2):263-267.
[75] 陈丽梅.黄瓜的高效再生和根癌农杆菌介导的遗传转化(硕士毕业论文).2004.
[76] 林建丽.花生白黎芦醇合酶基因表达载体构建及黄瓜遗传转化体系的初步研究(硕士毕业论文).2004.
[77] 柏锡.t2PA基因对黄瓜的遗传转化及其在不同植物中的表达效率分析和密码子改造(硕士毕业论文).2003.
生物技术应用范文5
关键词:生物技术;基因工程;病害;虫害;防治
随着我国经济社会的不断发展,我国农业科技水平有了长足的发展,我国农业科技的研究和发展也取得了飞跃式的发展。
1在植物病害防治中,生物技术的应用
1.1抗病毒基因工程
自从抗TMV转基因植株诞生以来,植物抗病毒害基因工程的发展就不断开展起来。病毒外壳蛋白可以有效起到对病毒的抗击能力,我国和国外的一些研究已经将诸多病毒的外壳蛋白予以转化,并拥有遗传功能,实现了对于病毒的免疫功能[1]。
1.2抗真菌基因工程
研究人员经过试验研究证明,几丁质酶具有移植病原真菌的作用,而植物能够产生几丁质酶,就是因为植物受到了来自于体外病菌的攻击,植物自身启动了防御机制而形成的。在对菜豆的几丁质酶的研究当中,发现菜豆对于田间的立枯病菌具有较强的抗菌活性,具有转基因的菜豆死亡率不到40%,而没有经过转基因处理的菜豆死亡率则超过了50%,具有显著的抗真菌效果[2]。此外,研究人员从水稻、甜菜以及油菜等多种农作物中发现并分离出了几丁质酶基因,并针对抗真菌进行了相关实验,均产生了明显的抗病源真菌的显著效果。
2在植物虫害防治中,生物技术的应用
植物病虫害生物技术是我国生物技术领域的重要研究成果,我国的植物病虫害生物技术是将植物、动物以及细菌自身的抗虫基因通过生物技术手段提取出来,并将其提取出来的抗虫基因植入到植物当中,从而使得植物具有抗虫转基因的作用。目前,我国通过生物技术已经培育出多个抗虫害的植物品种,能够防治10多种虫害,并且通过试验证明,防治虫害的效果良好。蛋白酶抑制剂在各种生物体内均有存在,它能够去掉生物体的代谢具有基础性作用,还能够抵抗非自身的蛋白水解酶对生物体自身的侵害。研究人员通过试验研究证明,当植物受到来自于外界的攻击和损伤时,植物体内会分泌的蛋白酶抑制剂会陡增,据此推断,蛋白酶抑制剂在植物受到虫害时,起到防御功能。我国此领域的研究人员,对于我国多个植物进行了蛋白酶抑制剂的研究,均证实具有此种效应[3]。
3生物技术在植物病虫害防治中的展望
随着我国生物技术的不断发展,我国对于植物病虫害防治的水平也随之不断提高,我国对于病虫害防治基因的研究不但深入,而且全面,不断对病虫害防治的发生和病菌的作用机理进行更加深入地研究和剖析。生物技术的研究和深入地发展已经从理论研究阶段逐步向实际应用方向发展,通过将抗虫、抗病毒以及抗真菌的基因转基因到植物体内,进行植物病虫害的防治,利用转基因工程达到植物病虫害防治的目的。生物技术是我国研究人员防治植物病虫害的新途径,能够具有针对性的消灭病虫害,还避免损伤有益菌群和真菌[4]。随着生物技术的深化研究和发展,生物技术防治植物病虫害的转基因效果会更加优良,遗传基因工程将会是未来的生物技术防治植物病虫害的主要方向和趋势。有生物技术病虫害防治领域的专家学者预测,未来10年,我国在植物病虫害的防治方面,有可能实现大面积应用转基因工程方法来面对植物病虫害的侵袭。甚至有许多的生物技术专家认为,未来人类的农业生产当中,大部分农作物将会是转基因工程的产物[5]。
4结语
随着我国科学技术的不断进步,对植物病虫害防治的研究也取得了长足的进步。我国生物技术日新月异的发展,为我国植物与病虫害之间的致病机理和影响关系提供了研究基础,是通过不断深入和全面对于病虫害致病机制的研究,从而实现对于植物的基因优化和改良。生物技术在植物病虫害防治当中的广泛应用,能够有效提高植物病虫害的防治率,有效保证我国植物的良性发展,提高我国植物的成活率、质量和产量。本文深入研究了生物技术在植物病虫害防治当中的广泛应用和发展前景,同时对于生物技术防治植物病虫害的机理进行了阐释,并对生物技术在植物病虫害的应用做了论述,展望了未来生物技术在植物病虫害方面的发展趋势和生物技术的发展方向。
参考文献
1吴霞.生物技术在园林植物病虫害防治中的应用[J].现代园艺,2016(22)
2陈和平.生物技术与植物病虫害防治技术研究[J].时代农机,2016(3)
3窦宝峰.生物技术在植物病虫害防治中的应用及其展望[J].农业与技术,2015(12)
4黄正鸿.生物技术在植物病虫害防治中的应用及其展望[J].农业与技术,2014(7)
生物技术应用范文6
关键词:畜牧;生物技术;应用
中图分类号:S8-1 文献标识码:B 文章编号:1007-273X(2016)02-0046-01
生物技术也称为生物工程,是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,按照预先设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的的一门学科。
近年来,现代生物技术领域的研究和开发,取得了显著的成绩。目前,大量与人类健康和动物健康密切相关的基因都已得到克隆和表达,诸如胰岛素、生长激素、细胞因子、及多种单克隆抗体等基因工程药物已正式生产,并应用于实践。现代生物技术在畜牧兽医生产方面发挥了十分重要的作用。
1 现代生物技术的发展趋势
现代生物技术已在农业、医药、轻工业、食品、环保、海洋、和能源等许多方面得到广泛地应用,同时医药生物技术、农业生物技术等一些新型产业正在迅速兴起。现代生物技术的发展趋势主要体现在下列几个方面[1]。
(1)基因操作技术日新月异,不断完善。
(2)转基因植物和动物取得重大突破。现代生物技术给农业和畜牧业带来新的飞跃。
(3)阐明生物体基因组及其编码蛋白质的结构与功能是当今生命科学发展的一个主流方向。
(4)蛋白质工程是基因工程的发展,它将分子生物学、结构生物学、计算机技术结合起来,形成了一门高度综合的学科。
(5)国际上信息技术的飞速发展渗透到生命科学领域中,形成了引人注目、用途广泛的生物信息学。
2 现代生物技术在畜牧生产上的应用
2.1 转基因动物
要改善家畜和家禽的遗传性能,如产奶量、产毛品质、增重快慢、产蛋频率等,人们往往需要多代杂交选择,最后培育出高产的动物品种。这种传统的育种方法尽管费时而且费用昂贵,效果也很好。然而这种方法的不足之处是一旦育成了一个较好的品种,再想要通过杂交引入其他新的遗传性状就非常困难。因为带有有益遗传性状的品种可能同时也携带有一些有害基因。因此,又需要重新进行多带杂交和严格选择。
随着现代生物技术的发展,传统的杂交选择法的各种缺陷就日益明显,而现代分子育种技术却显示出越来越强大的生命力。通过运用DNA导入细胞的技术,结合从细胞中分离出细胞核到去核卵母细胞中的核移植方法,把单个有功能的基因或基因簇插入到高等生物的染色体中去,并在其中表达。完成这项工作需要采取以下几个步骤:①将克隆的外源基因注射到一个受精卵的细胞核中;②接种后的受精卵移植到雌性受体的子宫,使其顺利完成胚胎发育;③移植后的受精卵生长发育为后代,其中的部分后代其细胞中都携带有转入的外源基因;④利用这些能产生外源蛋白的动物作为种畜或种禽,培育新的纯合系。举例来说,如果转入的外源基因其编码产物具有促进生长的功能,那么携带了这一基因的动物就有可能生长得快,饲料报酬一旦提高,就会大大降低生产成本。人们把转入了外源基因的动物称为转基因动物,其导入的基因成为转入基因[2]。
完整的动物模型可以模拟人类疾病的起始和发展,并为测试各种可能的治疗方案提供了一个有效的系统。利用转基因动物科学家们已建立起各种人类遗传病的鼠模型。在育种方面,利用转基因技术可以研究出高产奶牛,可以让羊产出具有人奶性质的高营养的羊奶,还可以研究出具有抗病能力的品系来等。
2.2 克隆动物
克隆动物是指不经过生殖细胞而直接由体细胞获得新的个体。1997年2月23日,世界上第一只来源于体细胞的、通过克隆方式获得的克隆羊――多莉诞生了。英国科学家们先从一头六岁的芬兰母羊的乳腺中取出一个细胞,并在体外繁殖成为一个细胞系。从用药物刺激大量排卵的苏格兰黑面母羊体内取出卵细胞,移出卵细胞的细胞核,并将样乳腺细胞与无核的卵细胞融合,并开始增殖。将移核后开始发育的卵细胞植入第三头母羊(即代孕母羊)的子宫,最终产下发育完全的羔羊,这就是闻名全世界的克隆羊多莉[1]。
从实际应用角度上讲,克隆动物技术的成熟对于动物资源的种质保存,尽可能多地保存生物圈内的生物多样性具有重要意义。克隆动物对培育优良物种也有重要意义。人们认为,克隆动物至少可以从生产移植器官、培育优良畜禽品种、利用动物作为生物反应器、生产药物和提供实验动物等几个方面造福于人类。
3 小结
现代生物技术在近二十年的发展中受到了全世界的普遍关注,一方面是由于现代生物技术发展迅速,用途广泛;另一方面是由于现代生物技术具有其他技术所无法比拟的优越性,即可持续发展。面对人口膨胀、资源枯竭、环境污染……等一系列直接关系到整个人类生死存亡的严重问题,人们越来越深切地认识到了发展具有可持续发展的新技术、新产业的必要性和紧迫性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为原料生产的,因此其原料具有再生性,同时利用生物技术系统生产产品产生的污染也很少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染。鉴于生物技术产业的以上特点,清洁、经济的生物技术必然在二十一世纪获得更大的发展[2]。
参考文献: