前言:中文期刊网精心挑选了远程监控技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
远程监控技术论文范文1
关键词:PLC;远程监控;故障诊断;方法
DOI:10.16640/ki.37-1222/t.2017.11.204
0 前言
PLC远程监控系统的设计从其结构和控制要求上实现了系统工作环境、感染源种类因素分析和电源及软件抗干扰能力的优化,利用串行通讯协议实现前端机与PLC的串行通信强化了系统信息传输的安全性和精准性。近几年随着PLC远程监控的应用范围越来越广泛,如何利用故障诊断方法强化PLC远程监控系统的应用作用,为我国设备运行和使用提供技术保障成为了研究的主要侧重点,具有典型性。
1 PLC远程监控
PCL远程监控中主要是利用PLC实现设备h程控制程序编写,进而实现PLC远程故障诊断,完后才能网络技术相关数据的传输和通讯,并且利用设备现场传感信息采集和数据运行来实现数据系统的信号转换和信号处理,利用数据信号的信息分析能力完成及设备的运行情况,及时完成故障的诊断处理[1]。
PLC远程监控的应用领域较为广泛,近几年随着4G网络技术的逐渐发展,PLC能够有效的实现远程现场设备的终端信息采集处理,进而完成数据传输工作的数字化和可视化处理,完成设备故障的诊断和维护[2]。PLC远程监控在工业上的应用主要是以工业集成化、自动化、规模化和高效化发展为方向,完成对设备故障诊断的精确性优化。
2 PLC远程监控的特诊
从特征性的角度出发对PLC远程监控系统急性分析,其主要包含系统安全可靠性、系统智能化和实时性的特征[3]。
系统安全可靠性特征:PLC远程监控利用庞大的有机组合体实现了远程故障信息的集中处理和分析,进而提高了信息的可靠性,强化了设备信息系统的整体故障判定准确性,为设备的使用和维护经济损失带来了可靠性。
系统智能化特征:PLC远程监控在设备监控和故障诊断的过程中根据设备的运行数据情况,实现了异常和故障的智能化判定和处理,并且能够及时的采取控制措施,以完成正常系统的智能化运行。
实时性特征:PLC远程监控在其工作系统的处理和监控上能够实现监控连续性,始终对设备运行的状态实施整体监控,并且采用无间断反应传输的方式将监控的信息实时的传递给后台的工作人员,进而降低了传统反馈信息传输的延迟性和不稳定性缺陷,进一步奠定了PLC远程监控在设备运行监控中的实时性特征。
3 PLC远程监控故障诊断方法分析
3.1 数字模型故障诊断方法
数字模型故障诊断方法主要是利用系统的可测量运行信息和数学模型先验知识故障信号对比进行检测,其属于一种分离系统故障的诊断方法。数字模型故障诊断方法主要是包含两个故障处理阶段,残差产生和故障决策。其中残差产生主要是利用被监控系统输出和输入信信号残差反应整个系统可能出现的故障,如果无故障则残差一般为零。故障决策流程主要是当残差被检测出存在故障,利用阙值的设定以及统计决策模型的似然或序贯概率比的方式决定故障决策方案,完成数据模型故障PLC远程监控诊断。
3.2 可测信号故障诊断方法
可测信号故障诊断主要是根据直接可测的输入和输出信号变化关系或变化趋势完成故障的整体诊断。可测信号故障诊断的过程中包含输入输出信号小波变化故障诊断以及数学形式表达故障诊断两个流程。第一流程中PLC远程监控系统能够利用系统暑促胡的幅值、频率、相位值等进行信号与故障源之间关系判定。第二流程数学形式表达故障诊断主要是使用批分析法、概率密度法及功率谱分析法的方式对输入和输出信号之间的波动差异性进行基础计算,完成可测信号故障运行诊断。
3.3 人工智能故障诊断方法
目前PLC远程监控人工智能故障诊断主要包含故障树诊断、故障专家诊断、模糊识别诊断和模糊数学诊断四种方法。其中故障树诊断主要是利用系统或设备内特定时间及其子系统部件故障之间的逻辑结构关系图完成故障逐层次的故障树分析法。故障专家诊断主要是利用专家视觉、听觉、触觉等客观事实对系统故障进行判定。模糊识别诊断主要是采用离线分析法和在线诊断分析法对系统故障表象特征向量集进行故障模式向量函数识别。模糊数学诊断主要是利用模糊集聚类分析系统不同水平子集之间的关系,作为故障判定的成因向量,利用故障模糊合成法完成对故障的远程诊断和监控。
4 总结
通过本文中对PLC远程监控及其故障诊断方法进行分析,能够看出PLC远程监控的应用具有安全可靠性、系统智能化和实时性的特征。就目前我国国内PLC远程监控故障诊断方法来看,其主要包含数字模型故障诊断方法、可测信号故障诊断方法和人工智能故障诊断方法三种类型,在其故障诊断方法构建和优化的过程中必须充分发挥网络远程监控技术的数据共享功能,加强远程监控系统故障诊断信息交流的快速性和交互性,进而为PLC远程监控系统的技术完善奠定基础。
参考文献:
[1]杨文刚.基于PLC的远程设备故障诊断方法研究[J].现代制造技术与装备,2016,05(02):82-83.
远程监控技术论文范文2
【关键词】 视频流媒体转发技术 智慧城市体系 消防远程监控 应用分析
引言
城市发展朝着智慧或智能型的方向转变是城市发展的必然趋势,尤其是借助网络、传感或遥感技术等品信息处理技术构建智慧城市成为其中必备的技术支持和基础。在智慧城市体系构建当中,城市的基础设施建设、信息资源开发利用等,对城市居民以及城市本身的发展起着极为重要的作用,而其中以网络信息科技为支撑产生的作用及效果则会更加明显[1]。而具体如何将网络信息科技应用到智慧城市的构建当中,以下则具体分析视频流媒体转发技术在其中消防远程监控中的应用[2]。
一、视频流媒体转发技术
流媒体技术是一种应用于流媒体的综合技术,其中涉及到多媒体采集、编码、传输、解码和存储等方面。实际上,流媒体在播放之前并不是对所有内容进行下载,而是只对部门内容进行缓存,在整个数据传送的过程中,用户能够在计算机上利用播放器或其他硬件软件实现对多媒体文件的播放,这种方式能够节省下非常多的用户下载等待时间和存储空间,与此同时后台服务器实际上仍然还在进行多媒体文件的下载。
二、智慧城市体系及架构
在当前时代及社会发展形势下,智慧城市是与网络充分融合的,例如城市的基础设施建设与电信网、物联网等相互结合,并且其最终形成的模式是以智慧技术高度集成、智慧产业高端发展、智慧服务高效便民的新模式[3]。在智慧城市体系之下,城市居民的生产、生活更加便利和高效,城市的运行、发展更加趋于智慧化。针对“智慧城市”,IBM《智慧的城市在中国》就提出“它能够充分运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,从而对于包括民生、环保、公共安全、城市服务、工商业活动在内的各种需求做出智能的响应,为人类创造更美好的城市生活”[4]。
总而言之,智慧城市体系的构建对城市的发展以及城市居民的生活、生产有着积极的作用,该理念下的城市发展未来也必将成为城市经济、国家经济,甚至世界经济发展的关键。
三、视频流媒体转发技术在智慧城市体系中的应用分析
由于智慧城市体系构建当中,城市的基础设施建设等是与网络信息科技相互结合,因此针对视频流媒体转发技术在其中的应用,以下则具体以其在智慧城市体系当中的消防远程监控系统中的应用,予以具体的分析和探讨。
3.1 智慧城市体系中的消防远程监控系统及其现状分析
3.1.1 智慧城市体系中的消防远程监控系统
城市视频监控可以涉及各个领域和行业,比如工地监控、餐饮监控、道路监控、旅游景点监控、企业生产监控、城市治安监控等[5]。针对城市消防远程监控系统,是利用现代通讯网络的优势,将每一个建筑物内独立的火灾自动报警系统联网,同时综合地理信息系统、数字视频监控等信息技术,从而在监控中心内对所有的联网建筑物的火灾报警情况进行监测。需要注意的是,互联网网络传输的宽带和传输质量影响关系到整个系统的可靠性,但是因各个建筑物内多用户访问数字视频图像给网络宽带带来较大问题,影响到城市消防远程监控效率。
3.1.2 城市消防远程监控系统现状分析
在城市消防远程监控系统中,当一个用户访问系统中的一路视频图像,就会占用一定的网络宽带。实际上,整个系统可能会出现多个用户去访问相同路数的视频图像或多个单位同时去访问各自的视频图像,在这个过程中大量用户的涌入就很容易出现视频图像不流畅、图像卡死的问题出现[6]。导致这种问题出现的原因在于城市消防远程监控中心申请的网络管带不够,因此出现网络阻塞。因网络阻塞问题的出现就需要运营商申请增加网络宽带,但是需要注意的是城市消防远程监控系统的真正意义在于传输火灾报警信息,其中查看视频图像只是辅助作用,传输火灾报警信息才是关键。因此本文研究将视频流媒体转发技术与城市消防远程监控系统的结合。
3.2 视频流媒体转发技术在智慧城市消防远程监控系统中的应用
视频流媒体转发技术通常而言是以ezCSS流媒体转发服务器软件为基础的,该软件主要是针对各种公共网络环境下的视频传输开发的网络视频管理软件,其在城市消防远程监控系统当中得以应用,不仅能够解决访问视频网络宽带问题,还能够解决广域网和局域网的网络互访功能[7]。就视频流媒体转发技术在智慧城市消防远程监控系统中的应用,以下主要结合实例予以深入分析。
实例:ikan视频监控平台由杭州协凯科技有限公司开发,可以对接视频监控主流厂商的软件平台,将不同视频监控平台上的资源汇集、接口整合,再为第三方应用提供业务系统集成接口,基于HLS(Http Live Streaming)的流媒体传输协议开发,以视频图像应用为手段实现视频转发的功能,让视频监控的本地化走向互联网,内部管理走向社会大众。ikan视频监控平台架构见图1。
ikan视频监控平台具有五大优势:
优势一:突破专网的限制,提供互联网的服务
对接建设在专网的视频监控平台,为互联网提供视频监控资源调用的入口,同时在专网与互联网之间建起安全堡垒,降低发生在视频监控平台的网络安全风险。
优势二:支持对接主流厂商的视频监控平台,整合对外接口,且兼容性高
提供与大量监控平台对接的能力,实现对接主流厂商不同版本的视频监控平台,将不同视频监控平台的接口整合成统一的对外接口。
优势三:汇聚视频资源,专业处理流媒w,降低应用平台对接复杂度
经过ikan视频监控平台的流媒体转发,将视频资源整合,互联网应用对接本平台就可以调用在不同监控平台上的视频资源,实现一对一的简单开发,降低一对多开发的复杂度,提高开发的效率。
优势四:覆盖多平台、免播放插件、高效的视频输出
实现在不同类型的系统平台(Mac、windows、IOS、Android)和业务平台(APP、网页、微信公众号)的免OCX控件实时预览,3-5秒钟内快速播放,自适应网络状况,确保视频播放的流畅度,有效解决操作视频监控平台碰到的常见问题。
优势五:平台可用性高,扩展性强
提供标准统一的API接口,可以根据接口文档进行二次开发,将视频功能模块嵌入到各种各样的互联网应用;也可以根据客户视频相关的需求进行定制开发,满足在各行各业的使用。以浙江台州移动阳光厨房的ikan视频转发技术为例进行分析,目前台州市共建成“阳光厨房”1513家,其中大型、特大型餐馆、养老机构435家,学校食堂349家,单位食堂58家,中小餐饮单位671家。利用ikan视频转发技术建立起来的移动阳光厨房,在单位的各单位的洗碗洗菜间、烹调间、冷菜间、二次更衣室等关键点位安装了监控摄像头,采用这种开放式的监管方式不仅让餐饮经营单位实现了良好的营销宣传,同时对保证广大人民群众的食品卫生安全也有积极意义。目前,台州的1513家“阳光厨房”已接入市市场监督管理局智慧监管系统,共有840家已接入台州餐饮服务食品安全社会共治平台。其中厨房监控系统与餐饮监管部门实现联通,相关工作人员可以直接利用健康系统远程进行监督操控,一旦发现违规行为可以进行现场取 证。通过研究发现ikan视频转发技术能够实现多用户对视频图像的远程访问功能,最终减少运营商在网络宽带方面的投入。综上关于视频流媒体技术在智慧城市体系中的应用实例分析,城市运行在技术的支持下,展现出更加智慧的一面。当然,视频流媒体转发技术在智慧城市体系中的应用,具体还涉及到到其他方面例如其在医疗卫生当中的应用、在交通发展当中的应用等,并且视频流媒体转发技术在其中的应用也体现出了极好的功效,在此就不详细阐述。总之,该视频流媒体转发技术在城市智慧化的过程中具有极为重要的作用。
四、结束语
综上所述,视频流媒体转发技术的优势十分突出,尤其是对智慧城市体系的构建起着先进性的作用。关于视频流媒体转发技术在智慧城市体系中的应用,本文主要就其在智慧城市消防远程监控系统中的应用给予具体的分析和阐述。视频流媒体转发技术在ezCSS流媒体转发服务器的基础上,则充分体现出了消防工作的迅速性、快捷性和协调性,尤其是在消防监控中的图像处理上凸显其巨大的优势。当然,以上仅仅探讨了视频流媒体技术在城市消防方面的应用,其在城市其他的基础设施建设如医疗卫生、交通监控等方面的应用也是不容忽视的。总之,视频流媒体转发技术在智慧城市体系的构建当中值得推广和应用。
参 考 文 献
[1]赵勇,刘娟,李健. 智慧城市体系框架浅析[J]. 电信网技术,2013,04:1-6.
[2]唐云凯. 基于物联网技术构建智慧城市体系研究[A]. 旭日华夏(北京)国际科学技术研究院.首届国际信息化建设学术研讨会论文集(一)[C].旭日华夏(北京)国际科学技术研究院:,2016:2.
[3]商燕,张升. 基于有线电视网络的智慧城市体系建设[J]. 通讯世界,2016,01:6-7.
[4]王文超,邱桂苹,穆森,赵倩. 基于视频监控的流媒体分发方法的研究[J]. 信息通信,2012,31(05):32-33.
[5]刘英,王涛,甘朝辉,洪波,岳云鹤. 多级视频监控流媒体服务系统设计方案[J]. 无线电工程,2011,11(12):1-4.
[6]王,郑三立,王文彬,纪勇. 流媒体技术在变电站遥视系统中的研究与实现[J]. 中国电力,2010,42(07):77-80.
远程监控技术论文范文3
关键词:油田;数字化;开发;应用;效率
1 油田数字化的概况
数字油田就是通过数字地球技术为技术基础来实现油田的全面信息化。通常来说国内的数字油田包括以下几个方面,一是数字油田是数字地球在油田的具体应用,油田在自然状态下的数字化信息虚拟体即为数字油田,数字油田也是油田应用系统的一个综合集成,数字油田是企业的数字化模型的发展,数字油田对于油田的发展来说是油田数字化的企业实体形式,数字化油田工程中的能动者是数字化应用的工作人员,也就是说数字化油田其实是油田的一个科技化虚拟表现,通过对油田基本信息的汇总和分析建立油田模型,根据不同的数据处理进行探查和研究,进行油田工程中的模拟情况,其中油田的生产信息以及地理信息尤为重要,数字化油田的建设能够根据基本信息的模型建设及时获取油田的生产动态快速进行反应和完善,另外企业的信息化和油田的数字化能够很大程度的改善在油田这个大工程中各部门的互相联系和数据的整合能力,提高了工作的效率和安全。为石油企业建立数据以及信息资源的共享和管理体系是数字化油田的发展核心,以资料库的发展为基础,在信息共享的基本条件下不断的发挥石油勘探开发以及地面建设储运销售等全面的生产和管理,综合建立数据体系,与各专业的应用系统融合和完善,通过油田生产管理优化应用的基本模型实现虚拟技术数据的可视化和多维化的全面发展,另外智能化的分析也为油田的数字化提供了更好的方向,通过智能化分析的模型更好的实现企业经营管理的信息化背景基础,物联网技术就是针对数字化油田的开发管理而研发的一种针对性技术,能够满足油田的生产运行、生产管理以及监控等各个方面的基本需求,是石油勘探开发中一项综合的技术应用,能够实现油田开发管理的一体化和规范化,实现了现代化生产经营的规范、统一的数据平台。
2 油田数字化的应用
2.1 数据处理 数字化油田在发展过程中,由于设备承载力问题等原因对油田的开采效率和安全有很大的影响,这就需要我们采取措施去避免,另外数据对于油田工程来说也尤为重要,油田工程中数据的丢失或者传输的不及时不准确都会造成油田工程的延误和影响,并且在油田开采的过程中有多个采油点,这就会出现大量的数据需要采集和储存,大量信息的输入和输出对网络宽带以及设备的要求就更高,数据库建立不仅仅是去订阅相对应的学术论文,而且是建立属于我们自己的数据收集和管理系统,这个系统可以是中国石油内部各公司联合构建的,也可以是某个油田内网对内查阅的,但重要的是要有极强的针对性和实用性,能够对于采油采气的技术研究和发展起到推动和促进作用。
2.2 远程监控 数字化油田实现了油井生产过程的远程监控,其中油田的远程监控系统能够对油井的供图、压力、温度、电流、功率等进行远程监控并且通过网络进行传输和分析,对于油井的生产工况有一个实时的诊断,另外远程控制还能够实现实时产液量的计量,用电消耗的分析以及可以通过扭矩法、电能法等计算和控制抽油机的平衡,通过远程的监控分析和诊断从而实现油井工作中的参数优化设计,通过优化设计以及诊断资料由专家进行解决方案的确定,基于油井工况诊断和工艺参数设计结果,远程实时实现对油井的大闭环智能控制,通过井场摄像机传送视频信息到视频服务器,通过交换机上传至无线网桥,后经无线网络最终实现现场视频数据传送到站内视频监控平台。另外,注水井生产远程监控分析优化系统通过网络远程采集注水井的压力、流量等数据,利用PID算法自动调节阀门开度。同时将即时流量数据和累计流量数据以及各种压力数据,传送到RTU,利用CDMAGPRS网络将数据传回到油田企业内部网计算服务器。Web系统根据系统设定的权限和管理范围,对管理的水井进行定制查询和统计、展示等。
2.3 物联网的应用 通过技术的不断发展,石油互联网也逐渐应用到油田的生产实践当中,物联网技术在数字化油田建设中的应用能够简化油田的建设工作,在油田数据采集、远程监测、物资管理等繁复的工作中物联网的技术应用很大程度上减轻了工程负担,提高了工作效率,物联网技术的应用能够实现跨地域的协同工作,物联网的应用紧密联系了工程中的各个琐碎的环节,对于油田工程中的多项业务科学有序的进行了整合,实现了油田生产经营过程中的优化,不断拓宽了油田的勘探业务,在科技迅速发展的今天数字化油田的进程中物联网技术的应用是数字化油田的一个发展方向,对于数字化油田的建设来说是一个有效的措施,油田勘探的不断发展与油田的信息采集以及智能化技术的应用随着油田勘探开发的进一步深入、信息采集与智能计算技术的迅速发展,油田中物联网的应用越来越成熟,能够更好的服务于油田的开发和完善。
2.4 无线网络部应用 无线网络的应用通过无线通信产品的选择能够基本实现增压站和井场之间的数据实时传输、视频监控、远程控制等效果,不仅如此还能够进行数据的传输,实现数据共享和数据的科学管理等应用。
做好数字油田,必须树立思想先进比系统先进更重要的理念,要有创新思想,开放学习的态度及分享成果的意识;要勇于承认差距,改变现状,迎头赶上;要服从大局、服从整体,统筹兼顾,突出加强勘探生产、实施管控、基础建设等重点;要将生产运行的理念转变为生产决策的理念,更好地推进油田科学发展。
3 结语
综上所述,油田数字化的建设不是一概而论的,而应该是结合油田的具体特点,通过对现有资源的集成和整合,对于创新和管理理念进行分析,对于油田的生产管理和综合研究的数字化管理系统统一建立,从而对安全、监控过程、人力资源的节约进行强化,从而提高效率和公司效益,数字化管理能够很大程度的提高生产效率,大大降低劳动强度,不断提高安全保障的水平,大大降低安全风险,从而不断实现油田管理的科技现代化的发展。达到强化安全、过程监控、节约人力资源和提高效益的目标。
参考文献:
[1]苗青.油田数字化建设中存在的问题及对策[J].油气田地面工程,2013(9):120-121.
[2]夏立明.自动化仪表在实现数字化油田中的应用[J].吉林化工学院学报,2012,29(11):13-16.
远程监控技术论文范文4
关键词:温度传感器,湿度传感器,GSM,远程监测
1、引言
高级别的质量检测需要在高质量的环境中进行。温度和湿度是环境的重要参数,对温湿度的监测是实现优质环境的重要手段。为了避免人为干扰环境和提高效率,远程监测是一种有效的方法。目前的远程监测系统大多采用以太网络、无线数据传输模块或zigbee无线网络传输数据[ 1-6]。但是,以太网是有线传输,需布线,受地理环境影响较大;无线数据传输模块的传输误码率高,可靠性差;zigbee是专用协议无线网络,成本高,开发难,而且覆盖范围有限。本文提出一种基于GSM的温湿度远程监测系统,具有传输误码率低、成本低及覆盖范围广等优点,并且可与监测人员的手机绑定,实现随时、随地,移动监测。
2、传感器的数学模型
2.1 半导体温度传感器原理
根据PN结理论,在一定的电流模式下,PN结的正向电压与温度具有很好的线性关系。对于理想二极管,只要正向电压VF大于几个KT/q,其正向电流IF与正向电压VF和温度T之间的关系可表示为
(1)
式中IS 为二极管反向饱和电流, K 为波尔兹曼常数(1.38×10-23J/K),T 为绝对温度(K), q为电子电荷(1.602×10-19库仑),
整理后,得
(2)
如前所述,晶体管的基极一发射极电压在其集电极电流恒定条件下,可以认为与温度呈线性关系[7]。
2.2 阻抗型高分子湿度传感器原理
阻抗型高分子湿度传感器的感湿原理如下:高分子湿敏膜吸湿后,在水分子作用下,离子相互作用减弱,迁移速度增加;同时吸附的水分子使解离的离子增多,膜电阻随湿度增加而降低,由电阻变化可测知环境湿度。阻抗型高分子湿度传感器复阻抗与空气相对湿度、材料配方和电极结构都有关系: 与我有关系
(3)
其中m为叉指对数,b为单个叉指长度,n为电化学反应电子转移数,f为法拉第常数,c*为氧化剂浓度,D为扩散系数[8]。
但由于传感器的材料配方、电极结构等方面的不同,导致各种不同的阻抗型高分子湿度传感器的特性曲线有较大差别,不能用统一的曲线来概括。
3、远程监测系统
本系统采用先进的GSM无线通信技术、配合以嵌入式解决方案和数据采集等先进技术,构建了一种基于GSM的温湿度远程监测系统。
3.1 系统组成及功能
系统分为监测中心站和远程监测终端两个部分:监测中心站主要有PC主机、GSM通信模块TC35i组成(或用户手机);远程监测终端主要是由LPC2148ARM内核控制器、GSM通信模块TC35i、信号调理电路、人机接口和通信接口电路组成。监测中心站通过GSM网络与监测终端进行无线远程通信,实现了基于GSM的远程监测。系统结构图如图1所示。
图1 远程监控系统框图
系统实现的功能主要包括数据采集、数据传送、报警、实时控制和数据处理。远程监测终端主要负责采集温度、湿度、2项数据,根据监测中心的命令进行实时上传数据。中心对收到的采集数据进行处理,报警,实现实时监控。
3.2 温度检测电路
本系统采用AD公司生产的单片半导体集成模拟型温度传感器AD590。它具有线性度高、精度高、体积小、响应快、价格低等优点,测温范围为-55~+150℃。具有良好的互换性,非线性误差为±0.3℃。此外,AD590的抗干扰能力强,信号的传输距离可达100 m以上[9]。
流过器件AD590的电流(μA)等于器件所处环境的热力学温度(开尔文)度数:
(4)
式中,—流过器件(AD590)的电流,单位K
AD590的灵敏度为1μA/K,0℃时输出273μA电流,每上升1℃输出电流增加1μA ,每下降1℃输出电流减小1μA。AD590基本测温电路如图2所示。
图2 温度检测电路
3.3 湿度监测电路
系统采用CHR-01型阻抗型高分子湿度传感器,其复阻抗与空气相对湿度成指数关系。其基本特性为:工作电压1V AC(50Hz ~ 2 K Hz),检测范围20%~ 90% RH,检测精度±5%,工作温度范围0℃~+85℃,特征阻抗范围21 ~ 40.5KΩ。湿度传感器阻抗变化与温度有关,其关系见规格书中湿度阻抗特性数据表,通常先检测温度,然后按阻抗查表获得湿度值。由于直流电压可使水分子电离,加速老化,所以采用交流电压测试其阻抗[10]。
将CHR-01与555构成多谐振荡器,通过检测频率,进而获得阻抗。湿度检测电路如图3所示。
图3 湿度检测电路
低电平表达式:
高电平表达式:
输出频率表达式:
(5)
利用单片机的定时器/计数器进行频率测量,假设计时时间为T(s),此期间计数值为N,则被测频率f=N/T
则CHR-01的阻抗为
(6)
其中R1与C的选择很关键,电容C要选择高精度电容,一是保证其充放电的能力,二是为了其电容值精确,更方便计算湿敏电阻的返回值。
3.4 GSM模块
本系统采用西门子公司工业级GSM模块TC35i进行远程数据传输。TC35i支持中英文短消息,自带异步串行通信接口,方便与PC机和单片机接口,可传输语音和数据信号,通过AT命令可实现双向传输指令和数据,波特率可达300b/s。它支持Text和PDU格式的SMS(Short MessageService,短消息),电源范围为直流3.3~4.8V,电流消耗为空闲状态为25mA,发射状态平均为300mA。
3.5 微控制器LPC2148
现场监测站采用了PHILIPS公司基于ARM7 TDMI-S 内核的微控制器LPC2148作为主控制器,完成现场监测站的全局控制。论文参考网。LPC2148内嵌32KB 的片内静态RAM 和512 KB 的片内Flash 存储器,片内集ADC、DAC 转换器,实时时钟RTC,2 UART ,及USB2.0等多种接口。具有JTAG调试接口、方便在线调试,而且应用电路相对简单,开发和生产的成本低。芯片可以实现最高60 MHz 的工作频率,能够满足嵌入式系统μC/OS-II 及人性化的人机界面的要求。大容量的内存,方便了收发短消息时的数据缓冲。
4、系统的软件设计
系统采用GSM无线通信模块TC35i实现远程数据通信,TC35i通过AT命令来进行控制,采用短消息方式进行数据传输。系统软件包括现场监测站软件和监测中心站软件两部分。现场监测站软件主要完成短消息收发、PDU数据协议分析、A/D转换、串口通信及人机接口的功能,其中重点是短消息收发和PDU数据协议分析,这是解决现场监测站与监测中心站之间远程无线通信的关键。论文参考网。监测中心站的短消息收发及PDU数据协议分析与现场监测站软件流程基本相同,不再赘述。
4.1 发送短消息
发送短消息的过程:首先将短消息中心号码、对方号码、短消息内容编码成PDU格式;然后计算出短消息的长度,发送AT+CMGS=〈lenghth〉〈CR〉,〈CR〉代表回车即ASCⅡ码0x0D。等待TC35i模块返回ASCⅡ字符“〉”,则可以将PDU数据输入,PDU数据以〈Z〉作为结束符。短消息发送结束后模块返回〈CRLF〉OK〈CRLF〉。发送短消息流程图如图4所示。
图4 发送短消息流程图
4.2 接收短消息
接收短消息使用定时器进行周期性串口查询的方式。短消息到达后,计算机可以接收到指令〈CRLF〉+CMTI:“SM”,INDEX(短消息存储位置)〈CRLF〉。读取PDU数据的AT命令为AT+CMGR=INDEX〈CRLF〉,执行此命令后模块返回刚刚收到的PDU格式的短消息内容。收到PDU格式的短消息后,将这个短消息进行解码,解码出短消息发送方的手机号码、短消息发送时间、发送的短消息内容。接收短消息流程图如图5所示。论文参考网。
图5 接收短消息流程图
6、结论
为了实现质检所需的优质环境,本文研究一种基于GSM的温湿度远程监测系统。设计了以LPC2148为核心的现场监测终端系统,实现温湿度的采集,短消息收发及人机接口等功能,并通过GSM模块TC35i与监测中心站通信,接受指令并实时上传信息,实现了监测中心对现场温湿度的远程监测。实验表明,本系统传输误码率低,通信可靠,具有很好市场前景,也为高效率远程监测系统的实现提供了一种新方法。
参考文献:
[1] 王天杰,原明亭,基于C8051F020的以太网远程监控系统的设计.化工自动化及仪表, 2007, 34 (5) : 36~39
[2] 朱正伟,王昌明,基于以太网的远程电网测控系统的设计与实现[J]. 高电压技术,2005,31(2):70-72.
[3] 孙静,王再英. 基于以太网远程温度监控系统的设计[J].微计算机信息,2008,24(9)
丁彦闯,韦佳宏,刘广哲. 基于nRF2401 的分布式测温系统设计. 电子测量技术,2008,31(12):107~109
孙玉坤,王博,黄永红. 基于PTR2000 的无线生物发酵监控系统. 仪表技术与传感器,2007(7):32~34
[4] 刘卉. 基于无线传感器网络的农田土壤温湿度监测系统的设计与开发. 吉林大学学报,2008,38(3):604~608
[5] 张军国. 基于ZigBee无线传感器网络的森林火灾监测系统的研究. 北京林业大学学报,2007,29(4):41~45
[6] 高文华. 基于ZigBee的温湿度监测系统. 电子测量技术,2008,31(10):122~124
[7] 张越. 高压开关温度在线监测技术的研究. 燕山大学硕士论文,2001.
[8] 刘若望.高分子电阻型薄膜湿度传感器——元件构造、老化机理、感湿机理探讨. 浙江大学硕士论文,2002
[9] 美国AD公司编写AD590技术手册
[10] 西博臣公司编写CHR-01型阻抗型高分子湿度传感器技术手册
[11] 潘泽友,李凌,袁小兵,等.基于GSM的数据采集信息系统[J]. 仪器仪表学报,2004(2):520~522
远程监控技术论文范文5
论文摘要:介绍了八钢物流道路运输实现可视化的设想,将其分为公路运输和铁路运拾两个部分,分别介绍了实现可视化的方式、所需技术和主要功能.
冶金工业企业生产过程指从原材料的入厂开始,到半成品的流动、产成品的存储和交付、废弃物的处理等全过程,整个生产过程实际上就是系列化的物流活动。八钢是有50多年历史的老企业,通过艰苦奋斗,不断积累,形成了现在的发展格局。从目前的视角看,为使八钢整体生产物流顺畅,在物流布局及技术手段等方面都需要优化。以八钢物流道路运输为例,进行探讨。
在八钢的生产过程中,运输是生产的直接组成部分,八钢各生产单元通过运输使其空间状态联接在一起。在物流过程中很大一部分责任是由运输担任的,运输是物流的基础和主要组成部分.八钢本部的大宗原燃料的运输形式主要是道路运输和皮带运输,相对而言道路运输的不可控因素更多,主要探讨道路运输的两种方式:公路运输和铁路运输。
1公路运输可视化分析
可视化公路运输主要内容包括:车辆动态识别和定位技术应用、电子地图技术应用、车辆导航技术应用、交通管理、协作运输管理等。
1.1车辆识别
为了实时掌握公路运输的状况,对公路运输的基本单元的状态即车辆状态必须知道,这就涉及到车辆识别。基于空间信息技术的移动式车辆侦测自动识别技术在公路运输方面具有无可比拟的优势。
1.2电子地图
电子地图是公路运输实现可视化必需的人机界面(Interface),它具备了地理信息系统(GIS)的大多数功能。公路运输可视化的大部分信息都需要通过电子地图来表示。电子地图能够把数字信号(包括对数字地图、遥感数字图象及自行数字化采集的数据进行可视化处理后形成的数字信号)和模拟信号显示在计算机屏幕上。
电子地图主要有两方面作用:一是多维地图的静态显示和动态显示作用;二是动态环境下空间数据库与物流信息管理系统数据库的交流作用。总之电子地图要完成GIS中空间数据视觉化的任务。
电子地图主要通过点状要素(出入口、道口、交通灯等)、线状要素(公路、铁路等)、面状要素(停车场、料场等)来反映交通详细信息,满通运输服务的要求。
1.3车辆导航
车辆导航是指为具体的在厂内道路上的运输车辆提供导航,它是车辆驾乘人员重要的辅助工具,使之能在正常情况先按照预定的线路行驶,异常情况下按照指定的线路移动。
为实现车辆导航,必须将GP导航系统与电子地图、无线电通信网络及交通管理信息系统结合起来,最终通过车载GP设备为驾乘人员传递相关的图像和声音信息。
1. 4交通管理
随着八钢产能的不断扩大,厂内运输的车流量将进一步增加,为使道路交通完全处于受控状态,制定相关规则并监督执行非常必要(尤其对大型运输车辆的控制)。交通管理具体内容包括:车辆行进线路规划、车辆监控(路线、速度等)、停车位管理、交通道口监控、车辆指挥、故障处理和紧急救援等。
首先对所有进出八钢的大型运输车辆的行进线路按物品(对应相应的物资编码)做好规划,线路规’划本着线路最简捷的原则进行,同时要考虑出入口、道口、回车场地、道路状况、车流量、其它公路运输等因素,尽可能避免迂回运输和重复运输。线路规划是动态的,可根据需要适时调整。线路规划在大型运输车辆进入门禁的时候,以声、光和图像的形式通过车载GPS设备传递给驾乘人员,为其提供导航。
大型运输车辆进入八钢厂区的导航是强制的,为此需要实时跟踪和监控,确保其按照指定的线路、速度行驶,发现错误及时纠正。
随着车流量的增加,靠车辆自律管理厂内交通将不能满足要求,为此需要在重要道口建立交通信号控制系统和视频监控系统。交通信号系统主要用于管理道口现场交通;视频监控系统主要是将被监控点实时采集的交通视频图像传输给监控中心,以便监督和及时调整控制流量。
八钢有必要建立类似于城市交通指挥系统的交通管理系统,可以作为勺又钢物流信息管理系统”的一个独立的子系统。交通管理系统以电子地图和GPS数据库为工作平台,运用计算机网络,集成交通信号控制系统、电视监控系统、交通诱导系统、电子警察系统、通信系统和车辆导航等系统,实现各种交通管理信息集成整合,深化处理和增值服务,便于驾乘人员了解相应信息和交通状况,使指挥人员能够迅速决断、快速反应、及时修正交通计划,保证交通的安全与畅通。
1.5协作运输管理
从实现物流可视化的角度来探讨协作运输管理。
将来八钢的大宗原燃料的公路运输主要通过社会协作的方式进行,为使公路运输能够按照八钢的要求和意愿进行管理,在商谈协作的时候,必须要求协作方按照八钢的要求做一些必要的工作。
由于公路运输处于买方市场,在商谈协作运输时掌握一定的主动权。
首先,要考虑软硬件配备,主要包括:必须配备承担运输所需的车辆,车辆应装备符合实现八钢可视化物流所必须的GPS车载设备和车辆自动识别装置,具备车辆实时监控系统(主要监控八钢外部运输),具备与八钢联网的信息系统等。
其次是运输管理,主要包括:为了避免集中到达,要求公路运输商(可能是多家)按八钢的交通容量编制运输计划,尽可能减小每批次的车辆数量;为充分利用社会资源,要求公路运输商能实时控制在途车辆(必要时能提交八钢共享),按照预定的计划时间到达,同时要保证“运输的一致性”;在途车辆出现意外,有应急预案应对;对进入八钢厂区的车辆能够服从八钢交通管理的要求;按照八钢统一的电子结算方式进行运杂费结算等。
2铁路运输可视化分析
铁路运输占道路运输的比重在今后几年会逐步增加(大宗原燃料运输里程一般在200km以上),铁路运输需要高度关注。可视化铁路运输主要内容包括:车辆识别和定位技术应用、电子地图技术应用、铁路信号系统数据交换、车辆动态调度等。
2. 1车辆识别和定位技术应用
着重从机车跟踪的角度探讨车辆识别和定位。
为实现铁路运输可视化,需要知道机车行进方向、车辆数、车辆顺序、车厢数、车辆标签、所对应车辆的物品编码(含品名、规格、产地等信息)、计量信息、列检信息、装卸信息、运行时间和运行位置等信息。这些都需要依靠车辆识别和定位技术来实现。
铁路区域计算机连锁系统(RCIS)、动态自动识别称量系统、全球定位系统(G PS )、电视监控系统是进行车辆识别和定位的技术基础,它们各有侧重。
GPS在车辆定位方面有无可比拟的优势,是实现车辆定位的重要手段,在GPS基础上结合RCIS获取的各节点信息,可实现车辆全过程精确定位和车辆动态跟踪。
铁路区域计算机连锁系统和电视监控系统相结合,借助模拟运算工具,也可实现车辆定位和跟踪的功能。
用于车辆识别的技术手段包括图像自动识别技术、射频识别技术和移动式车辆侦测自动识别技术(CPS技术),由于车厢经常倒换,采用图像自动识别技术、射频识别技术进行识别更经济适用,尤其是射频识别技术在我国铁路运输管理中已得到广泛使用,也有相应的技术规范支撑。采用GPS用于机车识别无疑是最佳选择。将机车信息、车箱信息、编组信息等有效结合,即可得到完整的车列信息。
2.2电子地图技术应用
电子地图是铁路运输可视化重要的视觉平台,作用同公路运输,通过它可直接、快捷地了解到机车运行状况。
电子地图是实现可视化动态车辆调度十分重要的工具。电子地图有两类:一是基于地理信息系统(G IS)的电子地图,与实际地形相符,真实感强,但受幅面限制,一些信息不能直接反映在地图上;二是模拟的示意性的电子地图,可能与实际相差很大,但它幅面利用率高,可清晰显示更多信息。以前更多的选择后者,“鹰眼”技术使得前者的应用领域和范围越来愈多。通过“鹰眼”技术可以详细了解到每个区域的细部信息,通过链接甚至可以获取包括某个信号灯的状态、某个道岔的位置、某个摄像机获取的车辆和行人图像等信息。
2.3远程监控系统
在调度中心实现对道口、车站、铁路沿线环境和现场的远程监控,一是可大大减轻日常人员巡视的工作量;二是便于及时发现危险隐患,保障安全生产。
远程监控系统的主要功能包括:实时视频监控、信息存储、报警联动、远程遥控和校验等。
远程监控系统由现场设备(可变焦红外线数字摄像机、活动云台)、传输通道(有线或无线)、主站设备(服务器、存储装置、软件)、监控终端等组成。
远程监控系统已成为铁路运输管理不可缺失的一个重要组成部分,随着信息技术的发展,运用多媒体技术、基于wEB服务器的远程监视系统,可以为有权限的局域网用户提供实时的信息服务。
2.4铁路信号系统数据交换
八钢内部的铁路运输系统与公共铁路运输系统关联度很高,随着八钢产能不断提高,与外部公共铁路运输系统建立实时数字信息交换制度对双方都有必要。可通过约定数据交换范围、方式和格式,在双方的数据服务器之间设置防火墙,实现信息共享并融入各自的管理系统。
内部可视化的相关信息需要集成在电子地图上,这样就需要在“八钢物流信息管理系统铁路运输子系统”和现有的区域计算机连锁系统(Rcls)、拟建的车辆识别和定位系统、远程电视监控系统等之间实现信息无缝链接.由于现有的区域计算机连锁系统(RBI)建设时未考虑与其它系统信息交换,相应的软硬件不一定能满足要求,届时需要对服务器部分做相应的改动或升级。新建系统要充分考虑今后的拓展需求。
2.5车辆动态调度
车辆动态调度是“八钢物流信息管理系统铁路运输子系统”重要组成部分,结合物流管制中心的建设就可视化的铁路运输管理和车辆动态调度的功能和内容展开描述。
车辆识别和定位技术应用、电子地图技术应用、铁路信号系统数据交换等都是为可视化的铁路运输管理和车辆动态调度服务的。铁路运输管理系统主要功能包括铁路运输计划的管理、车辆运行信息显示、车辆追踪、物流信息显示、调车作业图表管理、列车运行图的管理、运行数据统计分析、系统自诊断等。
铁路车辆动态调度需要一个可视化的信息平台,其主界面就是集合各种相关信息的铁路运输电子地图(或称之为八钢铁路地理信息系统图)。铁路车辆动态调度是计划管理体系的一个重要组成部分,以计划为驱动,实现产供销运的紧密衔接,对采购、销售、生产物流实施跟踪管理。通过车辆调度模块生成、调整和发送车辆运行计划、维护和调整调度作业图表、发送调度指令;铁路运输过程中的物流管理作业过程(如列检、计量、装卸等)也需要依靠车辆调度模块来动态的实现控制;为使运输过程处于可控状态,车辆调度模块还要对车辆的动态跟踪;实时(或定时)对铁路运输计划的预测统计分析是车辆调度的重要工具和手段,通过它可获得与铁路运输相关的信息(如库存、消耗、待运、在途等信息),以便提前判断和制定相应的措施。
3结束语
远程监控技术论文范文6
【关键词】输液点滴 HT66FU50 监控 步进电机
1引言
目前我国几乎所有医院采取的都是传统的输液方式,护士和医生只能根据经验和病人的反馈来控制墨菲式管的轮夹,输液速度不能精确控制。显然,这是不方便的,并有可能造成不必要的伤害。如果有液体点滴速度监控装置,将会大受欢迎。目前的输液监控报警器体积较大,价格较高,并不适合它的应用以及普及。针对这一情况,本文设计了一种由单片机控制的输液监控报警系统。
该系统包括红外发射接受装置,HT66FU50单片机,步进电机,LED显示屏等。其中红外检测电路和单片机共同实现滴液速度的红外检测功能,用于将液滴滴下一滴的信息转换为电信号传入单片机,经过单片机计算其液滴滴速,并用LED显示。通过电机控制储液袋的高度来达到控速的目的。在实际应用中,系统还分为主站和从站两部分,以便医护人员同时对多床位进行远程监控。监控中心(主站)显示各床位的输液情况。当输液结束或出现异常时,从站向主站发送报警信号,等待护士前来处理。整个装置简单实用,操作简单,安装方便,成本低,十分有意义。
2方案的总体结构
本设计基于HT66FU50的输液监控系统主要有三大部分组成,主站,从站,以及主从站之间的通信线路。其中,主站根据需要可以简单设计为输液现场信息显示以及声光报警。而从站包含的主要模块有:输液信号采集单元、声光报警单元、电动机单元、按键显示单元、通信单元和单片机电路等。输液信号采集单元将采集到的信号经过整形后发送给单片机,经单片机处理后在键盘上显示计算所得的液滴滴速并将其与所设定的值进行比较来控制电动机的正反转。同时,从站的单片机要将所采集的数据发送给主站,如果发生意外,则从站还要发出报警信号并将信号发送给主站。从站系统框图如图1所示。
3系统硬件设计
系统从站主要有5个单元构成,分别是HT66FU50单片机最小系统、红外线检测单元、步进电机单元、声光报警单元、键盘及显示单元。该设计以HT66FU50单片机最小系为中心。红外传感检测单元传感器采用红外对射器,基本原理是以光电效应为基础,将被测量的变化转换为光信号的变化,然后借助光电元件进一步将光信号转化成电信号。当有液滴滴落要经过光源和光电接受器件之间时,光线会发生折射和散射,导致光电接收器件接收不到光信号,这时光电器件输出一个电平跳变。然后送到HT66FU50单片机进行处理。声光报警采用一个蜂鸣器与一个发光二极管实现。当传感器检测到液位低于预设值或传感器检测不到有液滴滴落时,从站单片机控制蜂鸣器和报警灯工作,在发出声光报警的同时向主站发出报警信息。步进电机单元由单片机产生脉冲,经驱动电路变换、放大后输入步进电机。控制电路每发一个脉冲,驱动电路则驱动步进电机走一步,进而去控制储液袋的高度来达到控速的目的。
4 系统软件结构
主程序功能:它对一系列寄存器进行初始化,中断寄存器,内部振荡器控制寄存器,计数器/定时器控制寄存器,端口I/O交叉开关控制寄存器。在其循环程序中主要进行显示滴速(实际滴速与设置滴速),键盘查询,判断与设置滴速与实际滴速之间的关系从而控制电动机正反转,另外循环程序中还要判断是否有报警信号,如果有则要使发光二极管发光,驱动蜂鸣器发声,停止电动机工作。主程序的功能流程图如图2。
5结语
输液点滴监控器能够准确地反应输液瓶的中的液滴滴速,并能够在120秒内及时平稳地调整输液瓶的高度,使实际的输液速度达到医疗人员设定的值,并且在出现异常情况或者输液完成及时发出声光报警信息,有效的将病人的输液信息发送到医护中心。
最近几十年来,随着计算机技术、网络通讯技术、微电子技术和自动控制技术的发展和互联网+的应用,国内外远程医疗监控技术的水平也在不断提高,然而医疗监护技术的设备发展仍不能满足医院,病人,人身健康等各方面的要求,因此,更加方便、智能的监控设备已具有迫切的市场需求和广阔的市场前景。
【参考文献】
[1]李文仲,段朝玉.Zigbee无线网络技术入门与实战[M].北京:北京航空航天大学出版社,2007.
[2]刘刚,秦永左.单片机原理及应用.北京:北京大学出版社.2006.
[3]王守利.基于无线传感器网络技术的远程医疗监护系统的研制[D]. 哈尔滨理工大学硕士论文,2009.
[4]耿萌,张效义,欲宏毅.ZigBee路由技术研究[J].传感器与微系统,2006,25(11):82-85.
[5]罗俊海,周应宾.物联网网关系统设计[J].电信科学,2011(2):105-106