石油石化管道工程技术展望

前言:寻找写作灵感?中文期刊网用心挑选的石油石化管道工程技术展望,希望能为您的阅读和创作带来灵感,欢迎大家阅读并分享。

石油石化管道工程技术展望

摘要:

石油石化行业中管道的服役工况十分恶劣,很多管道未达其设计寿命而失效报废,造成极大浪费,因此采用表面工程技术对其进行防护和修复具有十分重要的经济价值。主要阐述了热喷涂、自蔓延高温合成和表面镀层等三种表面工程技术对管道内外表面的强化机理,并对它们的实际应用进行了具体介绍。热喷涂技术主要介绍了电弧喷涂、火焰喷涂和等离子喷涂三种热喷涂技术,并分别从它们的工艺原理、适用材料体系、制备涂层性能(结合强度、孔隙率等)以及经济性等方面进行了对比介绍。高温自蔓延合成技术主要从材料和工艺两方面进行了剖析,并对其所制备陶瓷内衬管的连接方法进行了具体介绍。镀层技术主要对钨合金电镀和Ni-P化学镀两种镀层技术的优缺点和适用范围进行了对比介绍。最后针对表面工程技术的特点,对其在石油石化行业的前景进行了分析与展望

关键词:

表面工程技术;热喷涂;自蔓延高温合成;镀层;管道

石油石化行业中的管道很多,这些管道由于长年累月处于严苛的腐蚀磨损环境当中,表面往往先于基体遭到破坏而造成整管报废。鉴于此,对管道表面采取强化处理延长其寿命,不仅可减少资源浪费,同时还可消除腐蚀磨损带来的安全隐患,因此具有十分重要的经济价值。表面工程技术是通过表面涂覆、表面改性或多种表面技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状况,以获得所需表面性能的系统工程技术。采用表面工程技术,可有效提高工件服役寿命,同时也可对破损工件表面进行再制造修复,使其重新投入使用[1—2]。表面工程技术方法很多,针对管道以及与管道形状类似的大型工件,主要有以下几种表面工程技术应用较为广泛:1)热喷涂技术;2)自蔓延高温合成技术;3)表面镀层技术。本文主要介绍了这几种技术的原理特点,并对其在石油石化行业管道中的应用进行了分析与展望。

1热喷涂技术

热喷涂技术的基本原理是,利用热源将喷涂材料加热到熔化或半熔化状态,借助焰流或外加推力将熔滴雾化或推动熔粒形成喷射的粒束,高速喷射到基材表面形成涂层[3]。根据热源不同,热喷涂主要分为电弧喷涂、火焰喷涂、等离子喷涂和爆炸喷涂等,其中在管道中应用较为广泛的主要有电弧喷涂、火焰喷涂和等离子喷涂。

1.1电弧喷涂

从1916年Schoop博士研制出第一台实用型电弧喷枪算起,到现在已过去了整整100年的时间[4]。在过去的一个世纪里,电弧喷涂技术取得了长足的进展。电弧喷涂是将两根金属丝材分别接入喷涂电源的正极和负极,利用送丝机构将喷涂丝材连续送入两侧导电嘴内,当两根丝材在端部接触时,将短路产生电弧,使丝材熔化,同时利用压缩气体将其雾化成微熔滴,高速喷射到工件表面形成涂层[5—6]。从最初的普通电弧喷涂,到高速电弧喷涂(highvelocityarcspraying,HVAS),再到高速燃气电弧喷涂(high-velocityair-fuelarc,HVAF-ARC),可喷涂的材料范围越来越大,涂层质量也得到明显提高。电弧喷涂设备简单、成本低廉、易携带、工作效率高,可在野外进行大面积喷涂作业,例如在桥梁、海洋平台、电厂锅炉四管上均可采用电弧喷涂。但电弧喷涂涂层的结合强度较低(相比于其他热喷涂方式),涂层孔隙率偏高,且无法直接喷涂不导电的高熔点陶瓷涂层。

1.2火焰喷涂

火焰喷涂的送料方法主要有两种,一种方法是将线材或棒材从喷枪的中心孔内送出,利用氧炔焰将其熔化,并通过压缩空气流将熔滴雾化,喷射到工件表面形成涂层;另一种方法是,将送粉罐中的喷涂粉末送入喷枪,粉末经火焰熔化后并通过压缩气体雾化成熔滴,喷射到工件表面形成涂层。目前以采用粉末的火焰喷涂为主流。在20世纪80年代,美国SKS公司又研制成功了超音速火焰喷涂技术(highvelocityoxygenfuel,HOVF),通过改变喷涂气体成分和喷嘴设计,使喷涂温度大幅提高,同时将喷涂粒子速度提高到610~1060m/s[7],因此涂层质量(主要是结合强度和致密性)得到巨大改善。火焰喷涂操作方便,应用广泛,可在野外作业施工,成本较低,且涂层致密度和结合强度较电弧喷涂明显提高。其缺点是焰流较细,喷涂效率不如电弧喷涂。

1.3等离子喷涂

等离子喷涂是在阴极和阳极之间产生直流电弧,电弧将工作气体电离成高温等离子体,形成的等离子体焰流将粉末熔化形成液滴,高速气流将液滴雾化后,将其喷射到基体表面形成涂层。在过去的几十年里,等离子喷涂设备和技术不断完善,相继出现了水稳等离子喷涂、高能等离子喷涂、真空等离子喷涂等技术[8—9],使等离子喷涂涂层的质量不断提高。等离子喷涂的优点在于其喷涂温度非常高,中心温度可达10000K以上,可制备任何高熔点的陶瓷涂层,且涂层致密度良好,结合强度也非常高;其缺点则是喷涂效率较低,且设备昂贵,一次性投资成本较高。

1.4热喷涂技术应用

热喷涂技术适于在形状不甚复杂的零部件上制备涂层,一是便于喷涂,二是避免在死角位置出现应力集中。热喷涂技术在石油石化行业管道(类似的包括有杆、轴、轮等)中应用十分广泛,且有许多成功案例。中海油青岛基地采用火焰喷涂在天然气输送管道外壁喷涂ZnAl涂层,有效地提高了管道在高腐蚀、冲蚀环境下的服役性能[10]。青岛石化厂原油罐内加热盘管采用热喷Al加涂料封孔处理,取得了良好的效果[11]。中石油川西北某气田对集输管道弯头处采用HOVF喷涂Al2O3/TiO2涂层,使弯头寿命提高了5~10倍[12]。国内某炼化厂在锅炉过热器管和沸腾管上采用45CT涂层进行防护,26个月后对管道和涂层进行检查,均未出现失效现象。据估计,45CT涂层可保证锅炉管道安全运行7~10a,极大地降低了维护频次和停工带来的间接损失[13]。美国德克萨斯州和路易斯安娜州海上油管采用热喷涂Zn(0.25mm)+两道乙烯基铝粉漆以及热喷涂Al(0.16mm)+乙烯铝粉漆进行防护,25a后涂层依然完好[14]。此外,石油石化行业中可采用热喷涂的管形工件还有很多,如钻井装备的套管、钻杆、油杆、活塞杆和柱塞等。

2自蔓延高温合成技术

2.1自蔓延高温合成技术发展

自蔓延高温合成(selfpropagationhigh-tempe-raturesynthesis,SHS)是利用反应物之间高化学反应热的自传导作用来合成新材料的一种技术[15—16],它具有设备简单、工艺简洁、生产效率高、低能耗、无污染的优点,是一种非常适用于管道内壁防护的表面工程技术。通过SHS制备的陶瓷内衬,具有结合强度高、硬度高、耐腐蚀等特性,可有效延长管道寿命[17]。石油管道常用陶瓷内衬的主要成分为Fe+Al2O3,其过程是将氧化铁粉和铝粉在钢管内按比例均匀混合,之后在离心机上高速旋转,再通过电火花引燃,粉末在燃烧时发生置换反应,形成Fe+Al2O3的熔融层,熔融层在离心力作用下分层,Fe紧靠钢管内壁,Al2O3则远离管壁形成陶瓷内衬层[18]。SHS最早是由前苏联科学家Merzhanov在1967年研究火箭固体推进及燃烧问题时提出的[19],随后美日科学家也迅速跟进,中国在20世纪80年代开始对SHS技术进行系统研究,并且取得了一系列进展[20],其研究主要集中在材料和工艺两个方面。

2.1.1材料方面

Guo等[21]的研究表明,在铝热剂中加入适量SiO2,可明显提高内衬涂层的致密度和结合强度,加入3%~6%的ZrO2则可有效降低涂层脆性。Meng等[22]的研究则表明,加入Ti、Ni和B4C后,过渡层与基体、陶瓷层之间形成更多的冶金结合,力学性能显著提高。为提高陶瓷内衬涂层的耐蚀性,有研究者在氧化铁粉中加入CrO3、NiO等化合物,Al粉在燃烧合成时,将Cr、Ni等元素置换出来与Fe形成不锈钢,从而提高内衬涂层的耐蚀性[23—25]。此外,为避免腐蚀介质侵入,也有学者采用树脂填充的方法对内衬涂层孔隙和微裂纹进行封闭,取得了良好的耐蚀效果[26]。

2.1.2工艺方面

SHS制备的陶瓷内衬涂层由于内应力等原因呈现多孔结构,因此通过适当的工艺方法降低孔隙率一直以来都是人们非常关注的问题。Odawara等[27]的研究表明,提高陶瓷内衬涂层熔融状态停留时间,同时降低冷却速度,有助于降低涂层的孔隙率。离心力也是一个非常重要的工艺参数,有研究称,当离心力达到350g(g为重力常数)时,涂层孔隙率降低了36.3%,而再继续提高离心力时,孔隙率变化不大[28]。同时,填装、混料等工序均对涂层质量具有一定影响。SHS陶瓷内衬涂层具有优异的耐蚀性,与常用不锈钢1Cr18Ni9Ti相比,耐不同腐蚀介质侵蚀的能力明显较高。同时,陶瓷内衬涂层还具有良好的耐磨性,显微硬度可达1500HV左右,具有非常强的抗冲蚀能力,因此,SHS是一种非常适合管道内壁的一种表面强化技术。

2.2自蔓延高温合成技术应用

SHS适用于在管体内部制备陶瓷内衬层,可在新管和满足条件的废旧油管上使用。目前,该技术在油田集输管道系统中已有部分应用。自2007年以来,SHS在大庆油田、吉林油田、长庆油田、延长油田、胜利油田等大型油田油管修复中进行了实际应用,并取得了良好的效果。以吉林油田为例,利用SHS技术将9505t废旧油管进行修复,修复后的陶瓷内衬油管达到7967t,在300多口油水井中使用三年多未出现明显的腐蚀和磨损现象,使用寿命提高了5倍以上。

2.3SHS管道补口处理

管道补口是十分重要的一个技术环节,尤其是对带有腐蚀介质和压力环境的特殊管道,补口的优劣直接决定管道的服役寿命。SHS制备的陶瓷内衬油管采用的补口处理方式主要有两种。一种方法是在端口位置涂抹一层水玻璃热熔胶,对接管口后焊接,焊接热量将热熔胶熔化分解,分解产物将陶瓷内衬之间的缝隙密封。这种方法的优势在于成本低廉,工艺简单,缺点则是陶瓷内衬间会存在少量微孔,适用于压力不高的油田集输管线。松原大多油田的配套公司通常采用这种方法。第二种方法则是在制备陶瓷内衬之前,在管端内侧堆焊一层长度约5cm左右的耐蚀合金(通常以镍基合金和不锈钢等耐蚀合金为主),再对管端进行分层焊接。这种方法的优势在于,堆焊层耐蚀质量有保证,焊接结构完整,普适性较强;缺点则在于成本较高,工作效率较低,适用于压力较高的腐蚀介质管线[29]。

3镀层技术

镀层的种类和制备方法很多,适用于管道的镀层制备方法主要有电镀、化学镀和渗镀等,其中采用最多的镀层为钨合金电镀和Ni-P化学镀。

3.1钨合金电镀

电镀是镀层金属或其他不溶性材料做阳极,待镀工件做阴极,通过电解作用将镀液中的金属离子在工件表面还原形成镀层的方法。电镀钨合金主要分为两种类型:二元系钨合金镀层和三元系钨合金镀层。二元系钨合金镀层主要有Fe-W、Co-W、Ni-W等,三元系钨合金镀层主要有Fe-W-P、Ni-W-P、Fe-W-B、Co-W-B、Ni-W-B、Fe-Co-W、Ni-Co-W、Fe-Ni-W等[30]。钨合金镀层具有良好的耐磨性、耐蚀性和热稳定性。当W达到一定含量时,镀层组织会由晶态转变为非晶态。例如在电沉积Ni-W合金时,当W含量超过44%时,晶体结构就将由晶态转化成非晶态[31]。非晶组织表面无晶体缺陷,因此具有比晶态组织更优异的耐蚀性和耐磨性。钨合金电镀技术是油井管等常用的镀层种类,其生产工艺技术主要为卧式电镀技术和立式电镀技术。对于管道外壁,通常采用卧式电镀技术;而对于管道内壁,则通常采用立式电镀技术[32]。钨合金镀层工艺简洁,且生产过程无三废排放,是具有良好经济价值和环境友好型的清洁工艺[33]。

3.2Ni-P化学镀

Ni-P化学镀是金属表面防护和表面强化的重要手段之一,它是利用次磷酸盐做强还原剂,将镀液中的Ni2+还原成Ni,同时次磷酸盐分解,产生的P原子溶解在Ni的晶格里,形成过饱和固溶体。在这一过程中,Fe、Ni等及其合金都具有催化作用,沉积可在催化作用下自发在镀件表面进行[34]。Ni-P化学镀在无外加电流情况下,在一定条件下也可得到非晶态Ni-P合金镀层[35]。而能否形成非晶,则主要取决于镀层中P的含量[36—46]。研究资料显示,含P10%~11%的Ni-P合金为非晶组织,具有最优的耐蚀性能[47—48]。Ni-P化学镀工艺简洁,无需外加电流,因此非常适合在管道上制备镀层[49]。但Ni-P化学镀在镀层表面容易出现漏镀现象,且Ni-P镀层属于阴极性涂层,在漏镀点位置容易发生电偶腐蚀,加速基体破坏[50]。

3.3镀层技术应用

镀层技术在美国、欧洲以及中东石油石化管道工业中已有成熟应用,我国在20世纪80年代开始对镀层技术进行推广,在中石油大庆油田、中石油青海油田、中石化胜利油田、中石化中原油田和中石化江汉油田等大型油田公司均取得了良好的防护效果。实际数据表明,油管镀层的腐蚀速率仅为5μm/a,虽然某些孔隙部位发生点蚀现象,但并不影响使用。此外,渗铝、铝钛共渗等技术在石油石化管道中均有一定的应用,但由于所需渗镀温度较高等原因,均未形成规模化生产[51—52]。

4表面工程技术在石油石化行业的分析及展望

我国是能源生产和消耗大国,每年的石油用量十分巨大,如何在石油勘探、开采、炼化、储运过程中减少损失,特别是减少因腐蚀和磨损带来的损失,是目前急需解决的问题。表面工程技术经过近百年的发展与应用,已经被证明是材料防护领域中十分有效的防护技术。应用表面工程技术虽然一次性投入较高,但金属/陶瓷涂层却能使工件服役寿命成倍提高,这不但节省了大量的维修费用,而且还避免了由于停工停产所带来的间接经济损失。在石油石化行业中,虽然有些公司企业已经认识到表面工程技术的这种实用性和经济性,并应用于实际生产当中,但是从大范围来看,表面工程技术在石油石化行业的应用率还普遍较低。笔者认为,表面工程技术在石油石化领域未能大面积推广应用的原因主要有以下几点:1)材料工艺设计复杂。表面工程每种技术均有自己的适用范围,其普适性较差,技术人员需要根据工件的材质、尺寸、形状以及服役工况选择不同的材料和工艺方法。这就要求技术人员对表面工程的各种技术具有清楚的理解和认识。而相关技术人员在石油石化企业还比较稀少,因此限制了表面工程技术在基层企业的推广和应用。2)施工难度较大。表面工程的每种技术,对材料质量、工艺参数以及环境条件等均有较高的要求,否则将难以制备出性能优异的涂层。这就对施工人员的素质提出了较高的要求,无形当中增加了人力成本。3)一次性投资成本较高。表面工程技术设备多、投资大,且需要定期对设备进行维护保养,因此加工成本较高。客户面对价格几倍于有机涂层的金属/陶瓷涂层,往往存在抵触心理。鉴于以上几点情况,一方面要提高表面工程技术在石油石化行业中的契合度,使广大企业负责人认识到表面工程技术广阔的发展空间,响应国家提出的走资源节约型道路的号召;另一方面,从节约成本、提高效率方面加大对表面工程技术的研究,进一步扩大表面工程技术在石油石化行业的应用范围,最终形成产业优势。

5结语

通过对热喷涂、自蔓延高温合成、镀层等三种表面工程技术在石油石化管道中的应用介绍,分析了各种技术的适用范围,并对表面工程技术的深层次应用进行了展望。在石油石化行业进行表面工程技术推广,符合国家循环经济和节能减排的方针战略,对十三五国家石油石化集约化发展具有十分重要的意义。

作者:童辉 韩文礼 张彦军 林竹 魏世丞 徐滨士 单位:中国石油集团工程技术研究院 石油管工程重点实验室-涂层材料与保温结构研究室 中国石油集团工程技术研究院-哈尔滨工程大学防腐保温联合实验室 装甲兵工程学院

参考文献:

[1]徐滨士,刘世参.中国材料工程大典——材料表面工程[M].北京:化学工业出版社,2006.

[2]徐滨士.表面工程的理论与技术[M].北京:国防工业出版社,2010.

[3]国洪建,贾均红,张振宇,等.热喷涂技术的研究进展及思考[J].材料导报A:综述篇,2013,27(2):38—40.

[4]陈永雄,徐滨士,许一,等.高速电弧喷涂技术在装备维修与再制造工程领域的研究应用现状[J].中国表面工程,2006,19(5):169—173.

[5]童辉.深海潜水器防腐、抗疲劳涂层制备及防护机理研究[D].北京:北京工业大学,2015.

[10]高荣义.热喷涂技术在石化设备维修中的应用[J].科技创新导报,2010(10):96—97.

[11]凤蕾,杨朝晖.热喷涂技术在石油化工设备上的应用[J].石油化工建设,2014(4):79—82.

[12]谌哲,杜磊,兰宇,等.热喷涂技术及其在天然气管道中的应用[J].上海涂料,2009,47(2):19—22.

[13]王引真,孙永兴.热喷涂技术在石油石化工业中的应用与发展[J].石油工程建设,2004,30(4):1—5.

[14]张晞,孟立新.金属热喷涂防腐技术在管道运输业应用展望[J].表面技术,2000,29(6):23—25.

[15]胡亚群,周泽华,王泽华,等.自蔓延高温合成涂层技术的研究现状[J].粉末冶金工业,2015,25(4):68—73.

[17]李俊寿,尹玉军,马玉峰.SHS陶瓷衬管技术的研究现状[J].材料导报,2005,19(8):72—75.

[18]符寒光.自蔓延高温合成技术应用展望[J].石油矿场机械,2003,32(1):1—4.

[20]傅正义.SHS技术研究进展—纪念SHS技术诞生三十周年[J].复合材料学报,2000,17(1):5—10.

[21]郭伏安,符寒光.离心自蔓延高温合成陶瓷内衬复合钢管的研究与应用[J].湖南有色冶金,2002,18(6):27—29.

[24]符寒光,邢建东.自蔓延高温合成陶瓷衬管技术的进展[J].矿冶,2002,11(6):59—63.

[26]李海林,马玉录,于新海,等.陶瓷树脂内衬复合钢管介绍[J].腐蚀与防护,2000,21(2):70—71.

[28]王贵和.离心SHS涂层工艺实验研究[D].北京:中国地质大学,1998.

[29]王豪,曾祥国,肖雨果,等.管道堆焊及SHS内衬陶瓷的制备及性能测试[J].管道技术与设备,2016(1):33—36.

[30]雷丹,林琳,张国超,等.电沉积钨合金镀层的研究现状与应用进展[J].全面腐蚀控制,2012,26(6):2—6.

[31]周婉秋.Ni-W非晶态镀层的制备和性能研究[J].电镀与精饰,1996,15(4):18—24.

[32]刘丽娟.抽油杆管镀钨工艺研究及应用[D].青岛:中国石油大学,2014.

[33]王绍军,刘含阳,胡勇,等.镀钨合金防腐油井管试验研究及应用[J].石油矿场机械,2012,41(11):46—49.

[34]周丽,殷凤仕.化学镀镍磷合金层的性能研究[J].山东工程学院学报,1999,13(1):31—33.

[35]盛长松,刘希武,苗普.油气田渗镀涂层防腐蚀技术及展望[J].石油化工腐蚀与防护,2011,28(6):4—8.

[37]雷扬,袁学韬,孙冬柏,等.非晶纳米晶Ni-P合金的流动镀工艺[J].腐蚀与防护,2012,33(11):1014—1018.

[47]高进,孙金厂,崔明铎.Ni-P合金化学镀非晶态合金的耐蚀性研究[J].表面技术,2001,30(5):36—38.

[48]吕逍,张罡.化学镀非晶Ni-P合金镀层耐蚀性研究[J].沈阳理工大学学报,2013,32(1):11—13.

[49]王小泉,魏帅,邢汝霖,等.镍磷化学镀镀层沉积速率影响因素研究[J].西安石油大学学报(自然科学版),2005,20(5):55—58.

[50]孙晓霞.海洋环境中增强化学镀镍磷合金镀层耐孔蚀性能的工艺研究[D].青岛:中国海洋大学,2006.

[51]丁庆如.渗铝钢的性能及在石化工业中的应用[J].石油化工设备技术,1997,18(5):48—51.

[52]李安敏,郑良杰,胡武.钢材热浸镀铝的研究进展[J].材料导报A:综述篇,2013,27(5):96—99.