光电子实验教育理念分析

前言:寻找写作灵感?中文期刊网用心挑选的光电子实验教育理念分析,希望能为您的阅读和创作带来灵感,欢迎大家阅读并分享。

光电子实验教育理念分析

本文作者:罗彬彬 赵明富 舍丽 周登义 曹阳 全晓莉 单位:重庆理工大学电子信息工程与自动化学院

20世纪70年代以来,由于半导体激光器和光纤技术的重要突破,推动了以光纤传感、光纤传输、光盘信息存储与显示、光计算以及光信息处理等技术的蓬勃发展,从深度和广度上促进了光学和电子学及其他相应学科(数学、物理、材料等)之间的相互渗透,形成了一个边缘的研究领域。光电子学一经出现就引起了人们的广泛关注,反过来又进一步促进了光电子学及光电子技术的发展。光电子技术包括光的产生、传输、调制、放大、频率转换和检测以及光信息存储和处理等。因此,可以这么说,现代信息技术的支撑学科是微电子学和光学,光电子学则是由电子学和光学交叉形成的新兴学科,对信息技术的发展起着至关重要的作用。光电子技术是光频段的电子技术,是电子技术与光学技术相结合的产物,光电子技术是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科,其技术广泛应用于光电探测、光通信、光存储、光显示、光处理等高新技术光电信息产业。同时,随着生物医学、生命科学等新兴学科的发展,其中的信息获取手段对光电子技术的依赖程度越来越高,加快了这些学科之间的交叉融合,从而诞生了很多边缘学科,比如生物光子学、光医学等。综上所述,可见光电子技术在现代信息产业技术中的重要地位,因此,光电子技术这门课程不仅是光学工程专业的基础必修课程,也应该作为电子信息工程专业的专业选修课程来开设。

电子信息工程专业的光电子技术课程的基础理论知识包括:光度学基本知识、光辐射传播、光束调制与解调、光辐射探测技术等。其中,光度学基本知识是最基础的内容,包括:电磁波波谱、辐射度学、光度学、热辐射基本定律、激光原理、典型激光器等。光辐射传播包括:光辐射的电磁理论、光波在大气中的传播规律与特性、光波在电光晶体中的传播规律与特性、光波在声光晶体中的传播规律与特性、光波在磁光晶体中的传播规律与特性、光波在光纤波导中的传播规律与特性、光波在水中的传播特性、光波在非线性介质中的传播等。光度学基本知识和光辐射传播这两个基础内容可以说是光电子技术课程基础中的基础,而对于电子信息工程专业的学生来说,这些知识点比较抽象,为了便于该专业学生对光电知识的接受和激发他们的兴趣,因此,在课堂上有必要多花时间重点讲解这部分的知识点,同时在制作PPT教案时尽可能使用图片或动画描述一些原理性的知识。

比如:在讲解激光是如何产生的时候,可制作动画描述自发辐射、受激吸收、受激辐射的原理;在讲解激光器的结构和工作原理时,可制作多色图片对激光在各种光学谐振腔中的受激放大过程进行描述;在介绍各种典型的激光器时,最好收集到它们的实物照片进行讲解;在讲解光波在各种光学晶体中的传播特性与规律时,最好能制作三维立体的图片描述光学晶体的各向异性的特性,相应的公式表达尽量简洁化,然后结合动画描述光波在其中传播时所发生的变化。光束的调制、扫描和解调技术的理论教学内容包括:光束调制的基本原理、电光调制技术、声光调制技术、磁光调制技术、直接调制技术、光束机械扫描技术、光束电光扫描技术、光束声光扫描技术、空间光调制器等。这些知识点的理论基础都是“光辐射在光学晶体中的传播规律和特性”。其中光束调制的基本原理移植了微电子学中微波调制中的很多概念,电子信息工程专业的学生易于理解,但是光束调制和扫描的实现技术中,除了需要使用各种光学晶体以外,还需要使用半波片、全波片、起偏器、检偏器共同组成一个系统完成光束的调制和扫描。这些光学器件对于没有光学工程基础的电子信息工程专业的学生来说比较陌生,因此,在讲解过程中应该通过动画或图片等手段形象地描绘线偏振光、椭圆偏振光、圆偏振光等基本光学概念,并借用相关的光学参考资料对这些光学器件的功能和原理进行简单介绍。

只有这样,才有利于电子信息工程专业的学生深刻理解光束的调制、扫描、解调等技术。光辐射探测技术的理论教学内容主要包括:光电探测的物理效应、光电探测器的性能参数、光电探测器的噪声、光电导探测器—光敏电阻、PN结光伏探测器的工作模式、硅光探测器、光电二极管、光热探测器、直接光电探测系统、光频外差探测的基本原理等。由于电子信息工程专业的学生已经具备了较好的半导体器件理论基础知识,而光电子器件本身也属于半导体器件,因此学生只要掌握了爱因斯坦的光电效应原理,就很容易理解各种光电子器件的工作原理、性能特点及应用领域。该部分所介绍的各种光电半导体器件很可能会在学生将来从事信息产业技术的相关工作中用到,也可能会在将来某些学生跨到光电信息或光学工程相关专业进一步深造时从事相关科研课题研究时用到,比如:PN结光伏探测器、光敏电阻、光电二极管、光电三极管等,都会经常用到。因此,建议在理论教学过程中,除了结合图片等多媒体教学手段介绍相关光电子器件的工作原理外,最好能够给学生展示光电子器件的实物,以便给学生一些感官认识。电子信息工程专业光电子技术课程的系统方面的知识点包括:光电成像系统、光电显示系统等。

其中,光电成像系统的基本器件是电荷耦合摄像器件(CCD),CMOS摄像器件和电荷注入器件(CID)。目前,CCD摄像器件的应用最为成熟和广泛,主要包括线阵CCD和面阵CCD等,其原理基础仍然是光电半导体器件和两相或三相电极电路的结合。因此,教学中应结合脉冲数字电路知识重点讲解CCD的原理和特点。光电成像系统的内容包括:系统基本结构、基本参数、红外成像系统、红外成像中的信号处理及综合特性等。其中红外成像系统涉及很多应用光学方面的知识,这对没有应用光学基础知识的电子信息工程专业的学生来说比较陌生,而且属于光学工程专业学生的研究方向之一,因此,这部分内容简单介绍即可。而红外成像中的信号处理都涉及电子电路方面的知识,属于电子信息工程专业的范畴,这部分内容可以重点讲解。光电显示系统包括阴极射线管原理、液晶显示原理、等离子体显示原理、电致发光显示原理及多色激光显示原理等,其中前三类显示技术的应用已很广泛和成熟,可以重点讲解,而后两类显示技术比较前沿,可以简单介绍,以便让电子信息工程专业的学生了解当今光电显示技术的发展趋势。电子信息工程专业光电子技术课程应用方面的内容包括:光纤通信、激光雷达、激光制导、红外遥感、红外跟踪制导、光纤传感技术等。这些应用技术可以分别举一个相应的实际应用系统进行介绍,让学生体会到光电子技术的重要性和广泛性,激发他们对这门技术的兴趣。#p#分页标题#e#

对于电子信息工程本科专业而言,毕竟培养的学生不属于光学工程或光电子技术领域的人才,而且电子信息工程专业已有很多属于本专业的实验课程及课程设计,笔者认为光电子技术课程的实验教学应根据该专业学生的理论基础和将来他们最可能需要的工程能力而设置。在该课程中,各种光电子器件和原理、功能及应用最易于电子信息工程专业的学生理解,而且也是电子信息工程师应该具备的基本知识,因此,笔者建议开设一些光电子器件的相关实验课。由于光电子技术课程的总学时设置为48学时,所以建议理论教学为40学时,8学时为实验教学(共4个实验)。

根据笔者6年来给电子信息工程专业本科学生讲授这门课程的经验,建议实验课程设置如下:(1)光敏电阻的工作特性实验。可选择几种不同类型的光敏电阻,实验要求掌握光敏电阻的主要特性参数,掌握使用光敏电阻时需要注意的事项,比如:光源光谱特性必须与光敏电阻的光敏特性匹配,防止光敏电阻受杂散光的影响等。了解数字信息传输和模拟信号传输时应该选择哪种特性参数的光敏电阻。实验设置为2个课时。(2)光电二极管的工作特性及参数测量实验。包括PIN光电二极管和雪崩光电二极管(APD),要求通过实验测量Si和Ge的PIN光电二极管光谱特性,设计PIN光电二极管和APD光电二极管输入输出特性测试电路,并进行相应实验分别获得它们的光电转换效率及增益系数等参数。实验设置为2个课时。(3)光电三极管的电路设计及参数测量实验。设计一个光电三极管的光子探测及放大电路,并通过实验测量光电三极管的光电转换效率及放大系数等参数。实验设置为2个课时。(4)光电池的伏安特性、光谱、温度特性的测量。通过实验绘出光电池的伏安特性曲线、光谱特性曲线、温度特性等。实验设置为2个课时。通过以上实验课程,能够使电子信息工程专业的学生对光电子基本器件有些感官认识,而且能够深刻掌握它们工作的基本原理和基本特性,为将来在具体工程设计及进一步深造奠定基础。

光电子技术在国家的信息产业、国防工业中占有举足轻重的地位,电子信息技术与光学信息技术的结合也越来越紧密。对于当今的电子信息工程专业的学生而言,除了需要牢固掌握本专业的知识和技能以外,了解和掌握光电子技术的基础知识和相关技术的发展趋势也是必不可缺的。本文通过对电子信息工程专业特点和光电子技术课程内容的分析,讨论了该课程与该专业的内在联系,分析了其重要性,并根据笔者6年来的授课经验,提出了本门课程在电子信息工程专业中的理论及实验的教学内容、教学重点、教学方法及课程设置等方面的一些意见和建议。